Deep Learning Approaches to Autocorrelation Function and Signal-to-Noise Ratio Estimation in Noisy Images
Main Article Content
Abstract
Accurate estimation of signal-to-noise ratio (SNR) in Scanning Electron Microscopy (SEM) is crucial because it evaluates the image quality. SEM images faced a challenge whereby Gaussian noise commonly appears in the images. Thus, researchers have developed several methods to estimate the SNR value. With the introduction of deep learning, most of the limitations in the classical methods can be addressed. This paper proposes a novel deep learning, CNN-based Calibration Map Network (CalibNet) to estimate the SNR value from SEM images using a calibration map between classical SNR and autocorrelation function SNR. The architecture consists of convolutional layers, rectified linear unit (ReLU) activations, max-pooling layers, adaptive pooling, and a regression head to predict the SNR value correctly. The proposed model is trained, validated and tested on two SEM images, the Biofilm SEM dataset (67 images) and the NFFA-EUROPE SEM dataset (961 images). Each image was artificially corrupted with Gaussian noise variance ranging from 0.001 to 0.01 to simulate realistic SEM imaging conditions. The proposed model was compared with Classical SNR, Autocorrelation Function (ACF), Nearest Neighbour (NN)-ACF, First-Order Linear Interpolation (LI)-ACF, and Quadratic-Sigmoid (Quarsig)-ACF methods. The results show that CalibNet outperformed all the classical methods in terms of mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) and R-squared (R²). Statistical analyses further confirmed that CalibNet predictions closely align with the Classical SNR values. Future work includes exploring more advanced model architectures, alternative calibration techniques, and real-time SNR estimation applications.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All articles published in JIWE are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. Readers are allowed to
- Share — copy and redistribute the material in any medium or format under the following conditions:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use;
- NonCommercial — You may not use the material for commercial purposes;
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
References
N. S. Kamel and K. S. Sim, “Image signal-to-noise ratio and noise variance estimation using autoregressive model,” Scanning, vol. 26, no. 6, pp. 277–281, Nov. 2004, doi: 10.1002/sca.4950260605.
K.-C. Chang et al., “Integrating ultraviolet sensing and memory functions in gallium nitride-based optoelectronic devices,” Nanoscale Horiz., vol. 9, no. 7, pp. 1166–1174, 2024, doi: 10.1039/D3NH00560G.
G. Schinazi, E. J. Price, and D. A. Schiraldi, "Chapter 3 - Fire testing methods of bio-based flame-retardant polymeric materials," in Bio-Based Flame-retardant Technology for Polymeric Materials, Y. Hu, H. Nabipour, and X. Wang, Eds., Elsevier, 2022, pp. 61-95. doi: 10.1016/B978-0-323-90771-2.00009-2.
H. S. Samuel and F. Makong Ekpan, “The use of scanning electron microscopy SEM for medical application: A mini review,” Eurasian Journal of Science and Technology., no. Online First, May 2024, doi: 10.48309/ejst.2024.449519.1134.
E. Oho, N. Ichise, W. H. Martin, and K.-R. Peters, “Practical method for noise removal in scanning electron microscopy,” Scanning, vol. 18, no. 1, pp. 50–54, Jan. 1996, doi: 10.1002/sca.1996.4950180108.
M. Prasad and D. Joy, “Is SEM noise Gaussian?,” Microscopy and Microanalysis, vol. 9, pp. 982–983, Aug. 2003, doi: 10.1017/S1431927603444917.
J. Chen, X. Jang, K. Goto, T. Takashi, and Y. Toyoda, “A flexible deep learning based approach for SEM image denoising,” in Metrology, Inspection, and Process Control XXXVIII, M. J. Sendelbach and N. G. Schuch, Eds., San Jose, United States: SPIE, Apr. 2024, p. 127. doi: 10.1117/12.3011135.
D. Roldan, C. Redenbach, K. Schladitz, C. Kubel, and S. Schlabach, "Image quality evaluation for FIB-SEM images," Journal of Microscopy, vol. 293, no. 2, pp. 98-117, Feb. 2024, doi: 10.1111/jmi.13254.
S. H. Shirazi, N. U. Haq, K. Hayat, S. Naz, and I. U. Haque, “Curvelet based offline analysis of SEM images,” PLoS ONE, vol. 9, no. 8, p. e103942, Aug. 2014, doi: 10.1371/journal.pone.0103942.
I. B. Montenegro, K. Prikoszovich, S. Lee, K. Quiring, J. Zimmerman, and C. Kirchlechner, “Redundant cross-correlation for drift correction in SEM nanoparticle imaging,” Oct. 30, 2024, arXiv: arXiv:2410.23390. doi: 10.48550/arXiv.2410.23390.
N. Marturi, S. Dembele, and N. Piat, "Scanning electron microscope image signal-to-noise ratio monitoring for micro-nanomanipulation," Scanning, vol. 36, no. 4, pp. 419-429, Jul. 2014, doi: 10.1002/sca.21137.
A. Rodriguez-Sanchez, A. Thompson, L. Korner, N. Brierley, and R. Leach, "Review of the influence of noise in X-ray computed tomography measurement uncertainty," Precision Engineering, vol. 66, pp. 382-391, Nov. 2020, doi: 10.1016/j.precisioneng.2020.08.004.
K. S. SIM, M. A. KIANI, M. E. NIA, and C. P. TSO, “Signal-to-noise ratio estimation on SEM images using cubic spline interpolation with Savitzky-Golay smoothing,” Journal of Microscopy, vol. 253, no. 1, pp. 1–11, Jan. 2014, doi: 10.1111/jmi.12089.
A. E. Ilesanmi and T. O. Ilesanmi, “Methods for image denoising using convolutional neural network: a review,” Complex & Intelligent Systems, vol. 7, no. 5, pp. 2179–2198, Oct. 2021, doi: 10.1007/s40747-021-00428-4.
J. Heine, E. Fowler, and M. B. Schabath, “Fourier analysis of signal dependent noise images,” Scientific Reports, vol. 14, no. 1, p. 30686, Dec. 2024, doi: 10.1038/s41598-024-78299-1.
M. Taassori, “Enhanced wavelet-based medical image denoising with Bayesian-optimized bilateral filtering,” Sensors, vol. 24, no. 21, p. 6849, Oct. 2024, doi: 10.3390/s24216849.
A. E. Ilesanmi and T. O. Ilesanmi, “Methods for image denoising using convolutional neural network: a review,” Complex & Intelligent Systems, vol. 7, no. 5, pp. 2179–2198, Oct. 2021, doi: 10.1007/s40747-021-00428-4.
S. S. M. M. Rahman, M. Salomon, and S. Dembele, "Towards scanning electron microscopy image denoising: a state-of-the-art overview, benchmark, taxonomies, and future direction," Machine Vision and Applications, vol. 35, no. 4, p. 87, Jul. 2024, doi: 10.1007/s00138-024-01573-9.
P. Jain and V. Tyagi, “LAPB: Locally adaptive patch-based wavelet domain edge-preserving image denoising,” Information Sciences, vol. 294, pp. 164–181, Feb. 2015, doi: 10.1016/j.ins.2014.09.060.
L. Chang, X. Feng, X. Li, and R. Zhang, “A fusion estimation method based on fractional Fourier transform,” Digital Signal Processing, vol. 59, pp. 66–75, Dec. 2016, doi: 10.1016/j.dsp.2016.07.016.
A. De Stefano, P. R. White, and W. B. Collis, "Training methods for image noise level estimation on wavelet components," EURASIP Journal on Advances in Signal Processing, vol. 2004, no. 16, p. 405209, Dec. 2004, doi: 10.1155/S1110865704401218.
K. S. Sim, Z. X. Yeap, F. Ting, and C. Tso, “The performance of adaptive tuning piecewise cubic hermite interpolation model for signal-to-noise ratio estimation,” International Journal of Innovative Computing, Information and Control, vol. 14, pp. 1787–1804, Oct. 2018, doi: 10.24507/ijicic.14.05.1787.
X. Liu, M. Tanaka, and M. Okutomi, “Single-image noise level estimation for blind denoising,” IEEE Transactions on Image Processing, vol. 22, no. 12, pp. 5226–5237, Dec. 2013, doi: 10.1109/TIP.2013.2283400.
K. L. Lew, K. S. Sim, and S. C. Tan, “Single image estimation techniques for SEM imaging system,” JOIV International Journal on Informatics Visualization, vol. 9, no. 1, p. 104, Jan. 2025, doi: 10.62527/joiv.9.1.3505.
W. Ahmed, S. Khan, A. Noor, and G. Mujtaba, “Deep learning-based noise type classification and removal for drone image restoration,” Arabian Journal for Science and Engineering, vol. 49, no. 3, pp. 4287–4306, Mar. 2024, doi: 10.1007/s13369-023-08376-6.
K. S. Sim, C. C. Lim, S. C. Tan, and C. K. Toa, “Deep convolutional neural network for SEM image noise variance classification,” Engineering Letters, vol. 31, no. 1, 2023.
F. Liu, Q. Song, and G. Jin, “The classification and denoising of image noise based on deep neural networks,” Applied Intelligence, vol. 50, no. 7, pp. 2194–2207, Jul. 2020, doi: 10.1007/s10489-019-01623-0.
P. Pawar, B. Ainapure, M. Rashid, N. Ahmad, A. Alotaibi, and S. S. Alshamrani, “Deep learning approach for the detection of noise type in ancient images,” Sustainability, vol. 14, no. 18, p. 11786, Sep. 2022, doi: 10.3390/su141811786.
W. Ahmed, Z. H. Khand, S. Khan, G. Mujtaba, M. A. Khan, and A. Waqas, “Multi-type image noise classification by using deep learning,” International Journal of Computer Science and Network Security, vol. 24, no. 7, pp. 143–147, Jul. 2024, doi: 10.22937/IJCSNS.2024.24.7.17.
B. N. Orcutt, “Scanning Electron Microscopy (SEM) photographs of biofilms on indium tin oxide electrodes from cathodic poised potential experiments with subsurface crustal samples from CORK borehole observatories at North Pond on the Mid-Atlantic Ridge during R/V A.” Biological and Chemical Oceanography Data Management Office (BCO-DMO)., Feb. 03, 2020. doi: 10.1575/1912/bco-dmo.780261.1.
R. Aversa, M. H. Modarres, S. Cozzini, and R. Ciancio, “NFFA-EUROPE - 100% SEM dataset.” NFFA-EUROPE Project, 2018. doi: 10.23728/b2share.80df8606fcdb4b2bae1656f0dc6db8ba.