Aspects-Based Sentiment Analysis of Extreme Weather on Twitter Using Long Short-Term Memory

Main Article Content

Tursun Abdurahmonov
Muhammad Nabil Toby Abiyyu
Dzikru Nur Khayat
M. Ary Heryanto

Abstract

This study presents an aspect-based sentiment analysis of tweets related to extreme weather events in Indonesia, utilizing the Long Short-Term Memory (LSTM) model. The dataset was obtained through a Twitter crawling process, followed by a series of preprocessing steps including data cleaning, stop word removal, normalization, tokenization, and stemming. The three primary areas of emphasis in the study were kinds of bad weather forecasts, and the government or society reactions. Using a lexicon-based technique, sentiment labelling generated three groups: positive, neutral, and negative. A random oversampling method was employed to address the data imbalance. The model using the LSTM algorithm was trained individually for aspect and sentiment classification tasks, so reaching high accuracies of 98.94% and 97.53%, respectively. The results indicate that the model effectively categorises talk on extreme weather and the opinions of the public. A word cloud visual representation was additionally created to show frequently occurring terms in the dataset, thereby offering insights into current themes and sentiment expressions. This work provides valuable input for government agencies and legislators in developing communication and disaster response plans, thereby serving to better understand the public's view on climate-related events. Future work could involve improving techniques for preprocessing and using larger, wider-ranging datasets for improving the model's robustness and generalisation.

Article Details

How to Cite
Abdurahmonov, T., Toby Abiyyu, M. N., Khayat, D. N., & Heryanto, M. A. (2025). Aspects-Based Sentiment Analysis of Extreme Weather on Twitter Using Long Short-Term Memory. Journal of Informatics and Web Engineering, 4(2), 430–443. https://doi.org/10.33093/jiwe.2025.4.2.28
Section
Thematic (Augmented Intelligence)

References

Y. E. N. Nugraha, I. Ariawan, and W. A. Arifin, “WEATHER FORECAST FROM TIME SERIES DATA USING LSTM ALGORITHM,” JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI, vol. 14, no. 1, pp. 144–152, Mar. 2023. doi: 10.51903/jtikp.v14i1.531.

H. Hikmah, A. Asrirawan, A. Apriyanto, and N. Nilawati, “Peramalan Data Cuaca Ekstrim Indonesia Menggunakan Model ARIMA dan Recurrent Neural Network,” Jambura Journal of Mathematics, vol. 5, no. 1, Feb. 2023. doi: 10.34312/jjom.v5i1.17496.

M. Z. Rahman, Y.A. Sari, and N. Yudistira, (2021), “Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM)”, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(11), 5120-5127.

A. F. Wijaya, and H. Faradian, "Sentiment Analysis of Indonesia’s Extreme Weather Using LSTM," B.S. thesis, Universitas Pancasila, Jakarta, 2024.

L. Li, T.-T. Goh, and D. Jin, “How textual quality of online reviews affect classification performance: a case of deep learning sentiment analysis,” Neural Computing and Applications, vol. 32, no. 9, pp. 4387–4415, Nov. 2018. doi: 10.1007/s00521-018-3865-7.

W. K. Sari, “Klasifikasi Teks Menggunakan Long ShortTerm Memory Dengan Fitur Word Embedding Glove Dan Word2Vec,” 2020.

L. R. Krosuri, and R. Satish, “Sentiment Analysis using Neural Network and Sentiment Analysis using Neural Network and LSTM,” IOP Conf. Ser. Mater. Sci. Eng., 2021. doi: 10.1088/1757-899X/1074/1/012007.

A. A. W. Maharani, “Sentiment Analysis of Forest Fires on Social Media Networks Twitter Using the Long ShortTerm Memory (LSTM) Method,” Kaji. Ilm. Inform. dan Komput., vol. 3, no. 6, 2023. doi: 10.30865/klik.v3i6.866.

N. O. Aljehane, “A New Approach to Sentiment Analysis on Twitter Data with LSTM,” in 2023 3rd International Conference on Computing and Information Technology (ICCIT), 2023, pp. 657–663. doi: 10.1109/ICCIT58132.2023.10273876.

A. Singh, J. Rawat, S. Bhandari, U. Negi, and S. Pahwa, “Sentiment Analysis on Twitter Data Using LSTM with Emoji Embedding,” In 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM), pp. 681–686, 2022. doi: 10.1109/ICIEM54221.2022.9853058.

C. Zhang, and Y. Lu, “Study on artificial intelligence: The state of the art and future prospects,” Journal of Industrial Information Integration, vol. 23, 2021. doi: https://doi.org/10.1016/j.jii.2021.100224.

Y. Romadhoni, and K. F. H.Holle, “Analisis Sentimen Terhadap PERMENDIKBUD No. 30 pada Media Sosial Twitter Menggunakan Metode Naive Bayes dan LSTM,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 7, no. 2, pp. 118–124, 2022. doi: 10.30591/jpit.v7i2.3191.

S. Y. Kolo, and S. Supatman, “Analisis Sentimen Terhadap Opini Masyarakat Terkait Perubahan Cuaca Di Indonesia Menggunakan Algoritma Support Vector Machine,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 2, pp. 1412–1416, 2024.

M. Y. Hidayatulloh, A. Sunanto, A. Armansyah, M.F.A. Gevin, and D.D. Saputra, “Optimasi Sentimen Analisis Informatif dan Tidak Informatif dari Tweet di BMKG Menggunakan Algoritma Naive Bayes dan Metode Teknik Pengambilan Sampel Minoritas Sintetis,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 7, pp. 1–12, 2023. doi: 10.30645/j-sakti.v7i1.565.

N. M. Sham and A. Mohamed, “Climate Change Sentiment Analysis Using Lexicon, Machine Learning and Hybrid Approaches,” Sustainability, 14(8), 2022. doi: https://doi.org/10.3390/su14084723.

S.M. ALRASHIDI, F.N. ALANAZI, H.A. ALBALAWI, O.M. ALBALAWI, and A.M. AWADELKARIM, “Machine Learning-Based Sentiment Analysis for Tweets Saudi Tourism,” Journal of Theoretical and Applied Information Technology 100, no.16, pp. 5096-5109.

R. K. Behera, M. Jena, S.K. Rath, and S. Misra, “Co-LSTM: Convolutional LSTM model for sentiment analysis in social big data,” Information Processing & Management, vol. 58, no. 1, 2021. doi: https://doi.org/10.1016/j.ipm.2020.102435.

I. H. Kusuma, and N. Cahyono, “Analisis Sentimen Masyarakat Terhadap Penggunaan E-Commerce Menggunakan Algoritma K-Nearest Neighbor,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 8, no. 3, pp. 302–307, 2023. doi: 10.30591/jpit.v8i3.5734.

T. Zhao, L. Meng, and D. Song, ‘Multimodal Aspect-Based Sentiment Analysis: A survey of tasks, methods, challenges and future directions’, Information Fusion, vol. 112, p. 102552, Dec. 2024. doi: 10.1016/j.inffus.2024.102552.

X. Shi, M. Yang, M. Hu, F. Ren, X. Kang, and W. Ding, ‘Affective knowledge assisted bi-directional learning for Multi-modal Aspect-based Sentiment Analysis’, Computer Speech & Language, vol. 91, p. 101755, Apr. 2025. doi: 10.1016/j.csl.2024.101755.

A. Hariz, I. Bin, A. Azrir, P. Naveen, and S.-C. Haw, “Sentiment Analysis using Machine Learning Models on Shopee Reviews,” Journal of System and Management Sciences, vol. 14, no. 2, Jan. 2024, doi: 10.33168/jsms.2024.0213.

A. O. Aremu and I. Muhammad, “Sentiment analysis in social media: A case study of hike in university school fees in selected Nigerian universities,” Journal of Informatics and Web Engineering, vol. 3, no. 2, pp. 98–104, June 2024, doi: 10.33093/jiwe.2024.3.2.7.