K-Means Clustering Optimization of Toddler Malnutrition Status Using Elbow Method
Main Article Content
Abstract
The problem of nutritional status is still a major challenge in the health sector in developing countries, including Indonesia. Malnutrition in toddlers can have serious long-term impacts on children's growth and development, including increased risk of disease, impaired cognitive function, and low productivity in the future. To overcome this problem, an in-depth analysis is needed to determine the distribution of nutritional status of toddlers in one of the provincial capitals in Indonesia, which can be used as a basis for planning more effective interventions. This study uses the K-Means algorithm to classify areas based on the prevalence of malnutrition in toddlers across all sub districts in the city. Determination of the optimal number of clusters was carried out using the Elbow method, which showed that the most appropriate clusters were two clusters. To assess the quality of the cluster, the Davies Bouldin Index (DBI) was used which produced a score of 0.361, while the Silhouette Score was 0.799, indicating that the cluster results were of high quality. The clustering results showed significant variations in the prevalence of malnutrition in various sub districts. Cluster 0 represents areas with low prevalence of malnutrition, comprising six sub districts, while Cluster 1 includes ten sub districts with high prevalence of malnutrition. By identifying these high-risk areas more clearly, health authorities and practitioners can develop more targeted and effective nutrition interventions. This research highlights the importance of data driven decision making in public health, supporting augmented intelligence in identifying and addressing nutritional problems in urban areas. The insights provided by this clustering approach contribute to more efficient and strategic health intervention planning.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All articles published in JIWE are licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. Readers are allowed to
- Share — copy and redistribute the material in any medium or format under the following conditions:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use;
- NonCommercial — You may not use the material for commercial purposes;
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.
References
P. Arum, I. Nurmawati, N. Muna, I. Muflihatin, D. R. P. Mudiono, and A. P. Wicaksono, “Comparison of mother’s and toddler’s characteristics based on the nutritional status of the toddler,” International Journal of Health Information Systems, vol. 1, no. 2, pp. 63–69, 2023, doi: 10.47134/ijhis.v1i2.4.
Kementerian Kesehatan Indonesia, Menuju Solusi Gizi Seimbang: Tantangan Dan Langkah-Langkah Konkrit Di Indonesia. 2021.
Y. O. Sari, A. Aminuddin, F. Hamid, P. Prihantono, B. Bahar, and V. Hadju, “Malnutrition in children associated with low growth hormone (Gh) Levels,” Gaceta Sanitaria, vol. 35, pp. S327–S329, 2021, doi: 10.1016/j.gaceta.2021.10.046.
Kementerian Kesehatan Republik Indonesia, Peraturan Menteri Kesehatan Republik Indonesia Nomor 2 Tahun 2020 Tentang Standar Antropometri Anak. 2020.
Kemenkes RI, “Status Gizi SSGI 2022,” BKPK Kemenkes RI, pp. 1–156, 2022.
J. H. A. M. Ikotun, A. E. Ezugwu, L. Abualigah, and B. Abuhaija, “K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data,” Information Sciences (New York), vol. 622, pp. 178–210, 2023, doi: 10.1016/j.ins.2022.11.139.
M. Ula, A. Faridhatul Ulva, and I. Sahputra, “2021) 1910-1914 Accredited,” Jurnal Mantik, vol. 5, no. 3, pp. 1910–1914, 2021.
S. D. Raihannabil, “Penerapan metode hierarchical clustering untuk klasterisasi provinsi di Indonesia berdasarkan indikator status gizi anak baduta ( bawah dua tahun ) tahun 2023,” Emerging Statistics and Data Science Journal, vol. 2, no. 3, pp. 424–436, 2024, doi: 10.20885/esds.vol2.iss.3.art32.
W. Hadikurniawati, K. D. Hartomo, and I. Sembiring, “Spatial clustering of child malnutrition in central Java: A comparative analysis using K-means and DBSCAN,” in Proceedings of ICMERALDA 2023 - International Conference on Modeling E-Information Research Artificial Learning Digital Applications IEE Xplore, 2023, pp. 242–247, doi: 10.1109/ICMERALDA60125.2023.10458202.
O. Ardhiyanto, M. S. Asyidqi, A. Y. P. Yusuf, and T. A. Munandar, “Clustering of child nutrition status using hierarchical agglomerative clustering algorithm in bekasi city,” International Journal of Information Technology and Computer Science Applications, vol. 1, no. 3, pp. 122–128, 2023, doi: 10.58776/ijitcsa.v1i3.42.
G. Bazoukis, J. Hall, J. Loscalzo, and E. M. Antman, "The inclusion of augmented intelligence in medicine : A framework for successful implementation," pp. 1-8, 2022, doi: 10.1016/j.xcrm.2021.100485.
K. D. A. N. K-medoids, “Klasterisasi kabupaten dan kota di jawa barat dalam kasus gizi buruk menggunakan algoritma k-means dan k-medoids,” vol. 7, pp. 251–261, 2024, doi: 10.37600/tekinkom.v7i1.1387.
M. D. Chandra, E. Irawan, I. S. Saragih, A. P. Windarto, A. K-means, and M. D. Chandra, “Penerapan algoritma K-means dalam mengelompokkan balita yang mengalami gizi buruk menurut provinsi,” Jurnal Teknologi Informasi dan Rekayasa Komputer, vol. 2, no. 1, pp. 30–38, 2021, doi: 10.37148/bios.v2i1.191.
M. R. Y. K. E. Lestari, A. Warmi, S. Winarni, S. Sylviani, Risnawita, and E. S. Nugraha, "Revealing the hidden pattern of under-five malnutrition prevalence distribution in West Java-Indonesia from canonical correspondence analysis and predictive the global burden of malnutrition has been an extremely critical and urgent issue. Malnutrition r," Communications in Mathematical Biology and Neuroscience, no. 2, pp. 1–30, 2024, doi: 10.28919/cmbn/8915.
S. A. Siallagan and M. Safii, “Grouping of toddlers with malnutrition based on provinces in Indonesia using K-medoids algorithm,” Journal of Artificial Intelligence and Engineering Applications, vol. 1, no. 1, 2021, doi: 10.59934/jaiea.v1i1.53.
A. N. Sari and F. Harianto, “Regional mapping in bangkalan district based on potential indicators of total stunting using K-mode,” Media Gizi Indonesia (National Nutrition Journal), no. 1, pp. 76–82, 2022, doi: 10.20473/mgi.v17i1SP.76.
S. K. C. White, “The future of augmented intelligence,” Bell Labs Technical Journal, vol. 25, pp. 1–18, 2020, doi: 10.15325/BLTJ.2020.3015275.
M. K. D. and I. Joe, “A deep-learned embedding technique for categorical features encoding.,” IEEE Access 9, 2021, doi: 10.1109/ACCESS.2021.3104357.
R. Shetty; G. M.; U. Dinesh Acharya and S. G.;, “Enhancing ovarian tumor dataset analysis through data mining preprocessing techniques,” IEEE Access, vol. 12, 2024, doi: 10.1109/ACCESS.2024.3450520.
P. Zhou, J. Chen, M. Fan, L. Du, Y.-D. Shen, and X. Li, “Unsupervised feature selection for balanced clustering,” Knowledge-Based Systems, vol. 193, 2020, doi: 10.1016/j.knosys.2019.105417.
P. G. et. al., “Fficient prediction of cardiovascular disease using machine learning algorithms with relief and lasso feature selection technique,” IEEE Access 9, vol. 10.1109/AC, 2021.
A. Dewantoro and T. B. Sasongko, “Comparison of LSTM model performance with classical regression in predicting gaming laptop prices in Indonesia,” Journal of Applied Informatics and Computing, vol. 8, no. 1, pp. 203–212, 2024, doi: 10.30871/jaic.v8i1.8137.
N. Sakinah Sidik and U. Kebangsaan Malaysia AZLIN ALISA AHMAD, “Kelebihan dan Kekurangan Sukuk Blockchain: Satu Sorotan Literatur,” 2021, doi: 10.26475/jcil.2021.6.2.13.
S. Palaniappan, R. Logeswaran, S. Khanam, and Z. Yujiao, “Machine Learning Model for Predicting Net Environmental Effects”, Journal of Informatics and Web Engineering, vol. 4, no. 1, pp. 243–253, Feb. 2025.
F. Sutomo et al., “Optimization of the K-nearest Neighbors algorithm using the Elbow Method on stroke prediction,” Jurnal Teknik Informatika, vol. 4, no. 1, pp. 125–130, 2023, doi: 10.52436/1.jutif.2023.4.1.839.
R. Hariyanto and M. Z. Sarwani, “Optimizing K-measn algorithm using Particle Swarm Optimization to group student learning processes,” Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 6, no. 1, pp. 65–68, 2021, doi: 10.25139/inform.v6i1.3459.
R. G. Prasasti Alam and Y. Everhard, “Optimasi K-means dengan Particle Swarm Optimization (PSO) dalam penentuan titik awal pusat klaster data telekomunikasi,” Techno.Com, vol. 23, no. 1, pp. 96–111, 2024, doi: 10.62411/tc.v23i1.9743.
S. Ramadhani, D. Azzahra, and T. Z, “Comparison of K-means and K-medoids algorithms in text mining based on Davies Bouldin Index testing for classification of student’s thesis,” Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 13, no. 1, pp. 24–33, 2022, doi: 10.31849/digitalzone.v13i1.9292.
M. Sia, K.-W. Ng, S.-C. Haw, and J. Jayaram, “Chronic disease prediction chatbot using deep learning and machine learning algorithms,” Bulletin of Electrical Engineering and Informatics, vol. 14, no. 1, pp. 742–751, Feb. 2025, doi: 10.11591/eei.v14i1.8462.