Optical and Structural Properties of V2O5 Electrochromic Thin Films Manuscript Received: 15 April 2024, Accepted: 31 May 2024, Published: 15 September2024, ORCiD: 0000-0003-1076-5034, https://doi.org/10.33093/jetap.2024.6.2.11

Main Article Content

Ming Yue Tan
Kah Yoong Chan
Gregory Soon How Thien
Kar Ban Tan
H. C. Ananda Murthy
Benedict Wen Chen Au

Abstract

The increase in global temperature has led to a significant surge in energy consumption within the air conditioning industry, resulting in environmental deterioration. Electrochromic (EC) windows have emerged as a promising solution to address these challenges. Vanadium pentoxide (V2O5) stands out among all metal oxide materials due to its remarkable EC properties, including substantial Li+ ion insertion capacity and multicolor capabilities. Despite the potential of V2O5, there remains a lack of comprehensive research on the structural and optical properties of V2O5 films with varying thicknesses. Therefore, this study aims to investigate the structural and optical properties of V2O5 thin films with thicknesses ranging from 46 to 344 nm. By employing the sol-gel spin coating method, V2O5 thin films were fabricated and analyzed using X-ray diffraction (XRD) spectroscopy and ultraviolet-visible (UV-Vis) spectrophotometry. The fabricated V2O5 thin films with thicknesses of 46-274 nm demonstrated an average film transparency of 83 %. XRD analysis further revealed that the V2O5 thin films reached their peak crystallinity at a thickness of 344 nm. Moreover, CV analysis revealed that the V2O5 device, with a thickness of 274 nm, exhibited a cathodic peak current of -1.63 mA, indicating its excellent ability to facilitate Li+ ion diffusion. Additionally, CA measurements displayed a high optical modulation of 37.78 %. Ultimately, this research contributes to the development of energy-efficient solutions for sustainable environmental practices.

Article Details

Section
Articles

References

P. S. Hansamali, E. C. Y. Yang and S. Zakaria, “A Short Review: Photocatalysis As An Alternative Method for POME Treatment,” J. Eng. Technol. and Appl. Phys., vol. 6, no. 1, pp. 32–39, 2024.

S. Bilgen, “Structure and Environmental Impact of Global Energy Consumption,” Renew. and Sustain. Ener. Rev., vol. 38, pp. 890-902, 2014.

J. S. Hassan, R. M. Zin, M. Z. A. Majid, S. Balubaid and M. R. Hainin, “Building Energy Consumption in Malaysia: An Overview,” J. Teknol., vol. 70, no. 7, pp. 1-6, 2014.

Y. Xu, C. Yan, S. Yan, H. Liu, Y. Pan, F. Zhu and Y. Jiang, “A Multi-objective Optimization Method Based on An Adaptive Meta-Model for Classroom Design with Smart Electrochromic Windows,” Energy, vol. 243, pp. 122777, 2022.

A. Cannavale, U. Ayr, F. Fiorito and F. Martellotta, “Smart Electrochromic Windows to Enhance Building Energy Efficiency and Visual Comfort,” Energies, vol. 13, no. 6, pp. 1449, 2020.

N. I. Jaksic and C. Salahifar, “A Feasibility Study of Electrochromic Windows in Vehicles,” Solar Ener. Mater. and Solar Cells, vol. 79, no. 4, pp. 409-423, 2003.

R. Mortimer, “Switching Colors with Electricity,” American Scientist, vol. 101, no. 1, pp. 1-38, 2013.

B. Wen-Cheun Au, K. Y. Chan and D. Knipp, “Effect of Film Thickness on Electrochromic Performance of Sol-Gel Deposited Tungsten Oxide (WO3),” Opt. Mater., vol. 94, pp. 387-392, 2019.

T. F. Ko, P. W. Chen, K. M. Li, H. T. Young, C. Te Chang and S. C. Hsu, “High-performance Complementary Electrochromic Device Based on Iridium Oxide As A Counter Electrode,” Materials, vol. 14, no. 7, pp. 1591, 2021.

Y. Yao, Q. Zhao, W. Wei, Z. Chen, Y. Zhu, P. Zhang, Z. Zhang and Y. Gao, “WO3 Quantum-dots Electrochromism,” Nano Ener., vol. 68, pp. 104350, 2020.

W. Zhao, J. Wang, B. Tam, P. Pei, F. Li, A. Xie and W. Cheng, “Macroporous Vanadium Oxide Ion Storage Films Enable Fast Switching Speed and High Cycling Stability of Electrochromic Devices,” ACS Appl. Mater. Interfaces, vol. 14, no. 26, pp. 30021–30028, 2022.

L. Zhao, Z. Cai, X. Wang, W. Liao, S. Huang, L. Ye, J. Fang, C. Wu, H. Qiu and L. Miao, “Constructed TiO2/WO3 Heterojunction with Strengthened Nano-Trees Structure for Highly Stable Electrochromic Energy Storage Device,” J. Adv. Ceramics, vol. 12, no. 3, pp. 634-648, 2023.

Y. Abe, Y. Kadowaki, M. Kawamura, K. H. Kim and T. Kiba, “Two-color Electrochromic Devices Using A Tungsten Oxide and Nickel Oxide Double Layer,” Jpn. J. Appl. Phys., vol. 62, no. 1, pp. 015502, 2023.

D. T. Cestarolli, E. M. Guerra, D. T. Cestarolli and E. M. Guerra, “Vanadium Pentoxide (V2O5): Their Obtaining Methods and Wide Applications,” Transition Metal Compounds – Synthes., Propert., and Appl., IntechOpen, pp. 96860, 2021.

Q. Fu, H. Zhao, A. Sarapulova and S. Dsoke, “V2O5 As A Versatile Electrode Material for Postlithium Energy Storage Systems,” Appl. Res., vol. 2, no. 3, p. e202200070, 2023.

M. Mousavi, A. Kompany, N. Shahtahmasebi and M. M. Bagheri-Mohagheghi, “Characterization and Electrochromic Properties of Vanadium Oxide Thin Films Prepared via Spray Pyrolysis,” Modern Phys. Lett. B, vol. 27, no. 21, pp. 1350152,2013.

D. P. Partlow, S. R. Gurkovich, K. C. Radford and L. J. Denes, “Switchable Vanadium Oxide Films By A Sol-gel Process,” J. Appl. Phys., vol. 70, no. 1, pp. 443-452, 1991.

J. Livage, “Hydrothermal Synthesis of Nanostructured Vanadium Oxides,” Materials, vol. 3, no. 8, pp. 4175-4195, 2010.

N. Arya, D. Verma and V. Balakrishnan, “Fabrication of Vertically Aligned CNT- Vanadium Oxide Hybrid Architecture with Enhanced Compressibility and Supercapacitor Performance,” Nanotechnology, vol. 34, no. 11, pp. 115401, 2023.

K. Y. Chan, B. W. C. Au, M. Z. Sahdan, A. S. I. Chong and D. Knipp, “Realisation of Solid-State Electrochromic Devices Based on Gel Electrolyte,” F1000Res., vol. 11, pp. 1-13, 2022.

Y. J. Park, K. S. Ryu, K. M. Kim, N. G. Park, M. G. Kang and S. H. Chang, “Electrochemical Properties of Vanadium Oxide Thin Film Deposited by R.F. Sputtering,” Solid State Ion., vol. 154–155, pp. 229-235, 2002.

G. Atak and O. D. Coskun, “Effects of Anodic Layer Thickness on Overall Performance of All-Solid-State Electrochromic Device,” Solid State Ion., vol. 341, pp. 115045, 2019.

D. S. Dalavi, A. K. Bhosale, R. S. Desai and P. S. Patil, “Energy Efficient Electrochromic Smart Windows Based on Highly Stable CeO2-V2O5 Optically Passive Counter Electrode,” in Mater. Today: Proc., vol. 43(4), pp. 2702-2706, 2021.

M. B. Sahana, C. Sudakar, C. Thapa, G. Lawes, V. M. Naik, R. J. Baird, G. W. Auner, R. Naik and K. R. Padmanabhan, “Electrochemical Properties of V2O5 Thin Films Deposited by Spin Coating,” Mater. Sci. and Eng.: B, vol. 143, no. 1–3, pp. 42-50, 2007.

J. Kim, K. H. Lee, S. Lee, S. Park, H. Chen, S. K. Kim, S. Yim, W. Song, S. S. Lee, D. H. Yoon, S. Jeon and K. An, “Minimized Optical Scattering of MXene-derived 2D V2O5 Nanosheet-based Electrochromic Device with High Multicolor Contrast and Accuracy,” Chem. Eng. J., vol. 453, pp. 139973, 2023.

A. Abudula, F. Gao, T. Liu, Y. Zhang, M. Song, N. Li, S. Liu and P. Tuersun, “Effect of Ag Film Thickness on The Morphology and Light Scattering Properties of Ag Nanoparticles,” Nanosci. and Nanotechnol. Lett., vol. 6, no. 5, pp. 392-397, 2014.

M. A. Zubair, M. T. Chowdhury, M. S. Bashar, M. A. Sami and M. F. Islam, “Thickness Dependent Correlation Between Structural and Optical Properties of Textured CdSe Thin Film,” AIP Adv., vol. 9, no. 4, pp. 045123, 2019.

G. X. Liang, P. Fan, X. M. Cai, D. P. Zhang and Z. H. Zheng, “The Influence of Film Thickness on The Transparency and Conductivity of Al-doped ZnO Thin Films Fabricated by Ion-Beam Sputtering,” J. Electron. Mater., vol. 40, no. 3, pp. 267–273, 2011.

T. R. Giraldi, M. T. Escote, M. I. B. Bernardi, V. Bouquet, E. R. Leite, E. Longo and J. A. Varela, “Effect of Thickness on The Electrical and Optical Properties of Sb Doped SnO2 (ATO) Thin Films,” J. Electroceramics, vol. 13, pp. 159–165, 2004.

W. L. Kwong, H. Qiu, A. Nakaruk, P. Koshy and C. C. Sorrell, “Photoelectrochemical Properties of WO3 Thin Films Prepared by Electrodeposition,” Ener. Proced., vol. 34, pp. 617-626, 2013.

M. Benmoussa, A. Outzourhit, R. Jourdani, A. Bennouna, and E. L. Ameziane, “Structural, Optical and Electrochromic Properties of Sol-gel V2O5 Thin Films,” Active and Passive Electron. Componen., vol. 26, no. 4, pp. 245–256, 2003.