Neighbourly Edge Irregularity on Interval-valued Pythagorean Neutrosophic Graph

Main Article Content

Mullai Murugappan
Govindan Vetrivel
Grienggrai Rajchakit
G. Madhan Kumar

Abstract

Interval-Valued Pythagorean Neutrosophic Graph (IVPNG) comprises independent and dependent membership elements of interval entries. This paperdemonstrates some kinds of irregular properties on IVPNG like neighbourly irregular, neighbourly totally irregular, strongly irregular, strongly totally irregular, highly irregular,and highly totally irregular. On certain conditions, neighbourly edge irregular and neighbourly edge totally irregular IVPNG satisfy these irregular properties and vice versa.


 


Manuscript received: 13 May 2023 | Revised: 28 July 2023 | Accepted: 10 August 2023 | Published: 30 September 2023

Article Details

How to Cite
Murugappan, M., Govindan, V., Grienggrai, R., & G, M. K. (2023). Neighbourly Edge Irregularity on Interval-valued Pythagorean Neutrosophic Graph. International Journal on Robotics, Automation and Sciences, 5(2), 54–58. https://doi.org/10.33093/ijoras.2023.5.2.6
Section
Articles
Author Biographies

Govindan Vetrivel, Department of Mathematics, Alagappa University (India)

Ph.D. Research Scholar in Department of Mathematics, Alagappa University, Karaikudi, Pin-630003, Tamilnadu, India.

Grienggrai Rajchakit, Department of Mathematics, Faculty of Science, Maejo University (Thailand)

He is working as an Associate Professor in Department of Mathematics, Maejo University, Thailand

G. Madhan Kumar, Department of Mathematics, Alagappa University (India)

Research Scholar in Department of Mathematics, Alagappa University, Tamilnadu, India.

References

D. Ajay and P. Chellamani, “Pythagorean Neutrosophic Fuzzy Graphs,” International Journal of Neutrosophic Science, vol. 11, pp. 108–114, Mar. 2020.

DOI: https://doi.org/10.5281/zenodo.4172124.

D. Ajay, P. Chellamani, G. Rajchakit, N. Boonsatit, and P. Hammachukiattikul, “Regularity of Pythagorean Neutrosophic Fuzzy Graphs with an Illustration in MCDM,” AIMS Mathematics, vol. 7, no. 5, pp. 9424–9442, Mar. 2022

DOI: https://doi.org/10.3934/math.2022523.

M. Akram and W. A. Dudek, “Interval-valued Fuzzy Graph,” Computer and Mathematics with Applications, vol. 61, no. 2, pp. 289–299, Jan. 2011.

DOI: https://doi.org/10.1016/j.camwa.2010.11.004.

M. Akram, S. Naz, and B. Davvaz, “Simplified Interval-valued Pythagorean Fuzzy Graphs with Application,” Complex & Intelligent Systems, vol. 5, pp. 229–253, May 2019

DOI: https://doi.org/10.1007/s40747-019-0106-3 .

S. Broumi, M. Talea, A. Bakali, and F. Smarandache, “Interval Valued Neutrosophic Graphs,” Critical Review, XII, pp. 5–33, 2016

URL: https://fs.unm.edu/IntervalValuedNeutrosophicGraphs-CR12.pdf (accessed: 25 July 2023)..

S. Broumi, F. Smarandache, M. Talea, and A. Bakali, “Operations on Interval Valued Neutrosophic Graphs,” in New Trends in Neutrosophic Theory and Applications, edited by F. Smarandache and S. Pramanik, pp. 231–254, 2016.

URL: https://www.researchgate.net/publication/311545273_Operations_on_Interval_Valued_Neutrosophic_Graphs (Accessed: 20 July 2023).

S. Broumi, R. Sundareswaran, M. Shanmugapriya, P. Chellamani, A. Bakali, and M. Talea, “Determination of Various Factors to Evaluate a Successful Curriculum Design Using Interval-Valued Pythagorean Neutrosophic Graphs,” Research Square (preprint), Mar. 2023.

DOI: https://doi.org/10.1007/s00500-023-08996-y.

J. Mohamed and S. Rajamanickam, “Strong Interval-Valued Pythagorean Fuzzy Soft Graphs,” Ratio Mathematica, [S.I.], vol. 46, Mar. 2023

DOI: https://doi.org/10.23755/rm.v46i0.1067.

A. Nagoorgani and K. Radha, “On Regular Fuzzy Graphs,” Journal of Physical Sciences, vol. 12, pp. 33–40, 2008.

URL: https://www.researchgate.net/publication/254399182_On_Regular_Fuzzy_Graphs (Accessed: 5 July, 2023)

A. Nagoor Gani and S. R. Latha, “On Irregular Fuzzy Graphs,” Applied Mathematical Sciences, vol. 6, pp. 517–523, 2012.

DOI: https://doi.org/10.13140/2.1.2226.2409.

S. P. Nandhini and E. Nandhini, “Strongly Irregular Fuzzy Graphs,” International Journal of Mathematical Archive, vol. 5, no. 5, pp. 110–114, 2014.

URL:https://acadpubl.eu/jsi/2017-112-5/9/9.pdf (Accessed: 10 July, 2023)

F. Smarandache, “Neutrosophic Set – A Generalization of the Intuitionistic Fuzzy Set,” in Granular Computing, IEEE International Conference, pp. 38–42, 2006.

DOI: https://doi.org/10.1109/GRC.2006.1635754.

F. Smarandache, “A Geometric Interpretation of the Neutrosophic Set – A Generalization of the Intuitionistic Fuzzy Set,” in Granular Computing, IEEE International Conference, pp. 602–606, 2011

DOI: https://doi.org/10.1109/GRC.2011.6122665.

L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.

DOI: https://doi.org/10.1016/S0019-9958(65)90241-X.