Neighbourly Edge Irregularity on Interval-valued Pythagorean Neutrosophic Graph
Main Article Content
Abstract
Interval-Valued Pythagorean Neutrosophic Graph (IVPNG) comprises independent and dependent membership elements of interval entries. This paperdemonstrates some kinds of irregular properties on IVPNG like neighbourly irregular, neighbourly totally irregular, strongly irregular, strongly totally irregular, highly irregular,and highly totally irregular. On certain conditions, neighbourly edge irregular and neighbourly edge totally irregular IVPNG satisfy these irregular properties and vice versa.
Manuscript received: 13 May 2023 | Revised: 28 July 2023 | Accepted: 10 August 2023 | Published: 30 September 2023
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
D. Ajay and P. Chellamani, “Pythagorean Neutrosophic Fuzzy Graphs,” International Journal of Neutrosophic Science, vol. 11, pp. 108–114, Mar. 2020.
DOI: https://doi.org/10.5281/zenodo.4172124.
D. Ajay, P. Chellamani, G. Rajchakit, N. Boonsatit, and P. Hammachukiattikul, “Regularity of Pythagorean Neutrosophic Fuzzy Graphs with an Illustration in MCDM,” AIMS Mathematics, vol. 7, no. 5, pp. 9424–9442, Mar. 2022
DOI: https://doi.org/10.3934/math.2022523.
M. Akram and W. A. Dudek, “Interval-valued Fuzzy Graph,” Computer and Mathematics with Applications, vol. 61, no. 2, pp. 289–299, Jan. 2011.
DOI: https://doi.org/10.1016/j.camwa.2010.11.004.
M. Akram, S. Naz, and B. Davvaz, “Simplified Interval-valued Pythagorean Fuzzy Graphs with Application,” Complex & Intelligent Systems, vol. 5, pp. 229–253, May 2019
DOI: https://doi.org/10.1007/s40747-019-0106-3 .
S. Broumi, M. Talea, A. Bakali, and F. Smarandache, “Interval Valued Neutrosophic Graphs,” Critical Review, XII, pp. 5–33, 2016
URL: https://fs.unm.edu/IntervalValuedNeutrosophicGraphs-CR12.pdf (accessed: 25 July 2023)..
S. Broumi, F. Smarandache, M. Talea, and A. Bakali, “Operations on Interval Valued Neutrosophic Graphs,” in New Trends in Neutrosophic Theory and Applications, edited by F. Smarandache and S. Pramanik, pp. 231–254, 2016.
URL: https://www.researchgate.net/publication/311545273_Operations_on_Interval_Valued_Neutrosophic_Graphs (Accessed: 20 July 2023).
S. Broumi, R. Sundareswaran, M. Shanmugapriya, P. Chellamani, A. Bakali, and M. Talea, “Determination of Various Factors to Evaluate a Successful Curriculum Design Using Interval-Valued Pythagorean Neutrosophic Graphs,” Research Square (preprint), Mar. 2023.
DOI: https://doi.org/10.1007/s00500-023-08996-y.
J. Mohamed and S. Rajamanickam, “Strong Interval-Valued Pythagorean Fuzzy Soft Graphs,” Ratio Mathematica, [S.I.], vol. 46, Mar. 2023
DOI: https://doi.org/10.23755/rm.v46i0.1067.
A. Nagoorgani and K. Radha, “On Regular Fuzzy Graphs,” Journal of Physical Sciences, vol. 12, pp. 33–40, 2008.
URL: https://www.researchgate.net/publication/254399182_On_Regular_Fuzzy_Graphs (Accessed: 5 July, 2023)
A. Nagoor Gani and S. R. Latha, “On Irregular Fuzzy Graphs,” Applied Mathematical Sciences, vol. 6, pp. 517–523, 2012.
DOI: https://doi.org/10.13140/2.1.2226.2409.
S. P. Nandhini and E. Nandhini, “Strongly Irregular Fuzzy Graphs,” International Journal of Mathematical Archive, vol. 5, no. 5, pp. 110–114, 2014.
URL:https://acadpubl.eu/jsi/2017-112-5/9/9.pdf (Accessed: 10 July, 2023)
F. Smarandache, “Neutrosophic Set – A Generalization of the Intuitionistic Fuzzy Set,” in Granular Computing, IEEE International Conference, pp. 38–42, 2006.
DOI: https://doi.org/10.1109/GRC.2006.1635754.
F. Smarandache, “A Geometric Interpretation of the Neutrosophic Set – A Generalization of the Intuitionistic Fuzzy Set,” in Granular Computing, IEEE International Conference, pp. 602–606, 2011
DOI: https://doi.org/10.1109/GRC.2011.6122665.
L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.