Performance Evaluation of Capacitive Based Force Sensor for Electroencephalography Head Caps
Main Article Content
Abstract
Accurate electrode signal measurement using EEG head caps can only be achieved through sufficient contact or force. A flexible force sensor is required to obtain accurate force measurement underneath EEG head caps. In this study, we evaluate the performance of a capacitive based sensor including its accuracy, repeatability, hysteresis, and stability. The result shows that accuracy error and repeatability error were 3.03±2.8 % and 3.84±2.92 %, respectively. The stability errors were 2.37±0.15 % (10 gram), 2.54±0.00 % (50 gram), 2.37±0.15 % (100 gram), 5.07±1.16 % (150 gram), 7.27±0.39 % (200 gram). The hysteresis error of the sensor was 4.48±0.47 %. Based on the results, the capacitive based force sensor provides sufficiently low errors in accuracy, repeatability, stability, and hysteresis and is thus suitable for measuring adduction force in EEG cap applications.
Manuscript received: 20 Jun 2020 | Revised: 10 Aug 2020 | Accepted: 23 Sep 2020 | Published: 30 Oct 2020
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
N. Meziane, S. Yang, M. Shokoueinejad, J.G. Webster, M. Attari and H. Eren, "Simultaneous comparison of 1 gel with 4 dry electrode types for electrocardiography," Physiological Measurement, vol. 36, no. 3, pp. 513-529, 2015.
DOI: https://doi.org/10.1088/0967-3334/36/3/513
G. Li, S. Wang and Y. D. Chemical, “Towards gel-free electrodes: A systematic study of electrode-skin impedance,” Sensors Actuators B Chem., vol. 241, pp. 1244–1255, 2017.
DOI: https://doi.org/10.1016/j.snb.2016.10.005
S. Krachunov and A. J. Casson, “3D Printed Dry EEG Electrodes,” Sensors (Basel)., vol. 16, no. 10, 2016.
DOI: https://doi.org/10.3390/s16101635
M. A. Lopez-Gordo, D. Sanchez Morillo and F. Pelayo Valle, “Dry EEG electrodes,” Sensors (Switzerland), vol. 14, no. 7, pp. 12847–12870, 2014.
DOI: https://doi.org/10.3390/s140712847
P. Pedrosa, P. Fiedler, V. Pestana, B. Vasconcelos, H. Gaspar, M.H. Amaral, D. Freitas, J. Haueisen, J.M. Nóbrega and C. Fonseca, "In-service characterization of a polymer wick-based quasi-dry electrode for rapid pasteless electroencephalography," Biomedical Engineering / Biomedizinische Technik, vol. 63, no. 4, pp. 349-359, 2018.
DOI: https://doi.org/https://doi.org/10.1515/bmt-2016-0193
P. Fiedler, R. Muhle, S. Griebel, P. Pedrosa, C. Fonseca, F. Vaz, F. Zanow and J. Haueisen, "Contact Pressure and Flexibility of Multipin Dry EEG Electrodes," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 4, pp. 750-757, 2018.
DOI: https://doi.org/10.1109/TNSRE.2018.2811752
P. Fiedler, A. Hunold, C. Müller, G. Rosner, K. Schellhorn and J. Haueisen, “Novel flexible cap with integrated textile electrodes for rapid transcranial electrical stimulation,” Brain Stimul., vol. 8, no. 2, pp. 405–406, 2015.
DOI: https://doi.org/10.1016/j.brs.2015.01.293
S. Wunder, A. Hunold, P. Fiedler, F. Schlegelmilch, K. Schellhorn and J. Haueisen, “Novel bifunctional cap for simultaneous electroencephalography and transcranial electrical stimulation,” Sci. Rep., vol. 8, no. 1, p. 7259, 2018.
DOI: https://doi.org/10.1038/s41598-018-25562-x
C. Lebosse, P. Renauld, B. Bayle and M. De Mathelin, “Modeling and Evaluation of Low-Cost Force Sensors,” IEEE Trans. Robot., vol. 27, no. 4, pp. 815–822, 2011.
DOI: https://doi.org/10.1109/TRO.2011.2119850
A. Jor, S. Dash, A. S. Bappy and A. Rahman, “Foot Plantar Pressure Measurement Using Low Cost Force Sensitive Resistor (FSR): Feasibility Study,” J. Sci. Res., vol. 11, no. 3, pp. 311–319, 2019.
DOI: https://doi.org/10.3329/jsr.v11i3.40581
J. Pawin, T. Khaorapapong and S. Chawalit, “Neural-based human’s abnormal gait detection using Force Sensitive Resistors,” The Fourth Int. Work. Adv. Comput. Intell., pp. 224–229, 2011.
DOI: https://doi.org/10.1109/IWACI.2011.6160007
C. Castellini and V. Ravindra, “A wearable low-cost device based upon Force-Sensing Resistors to detect single-finger forces,” in 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, 2014, pp. 199–203.
DOI: https://doi.org/10.1109/BIOROB.2014.6913776
J. S. Schofield, K. R. Evans, J. S. Hebert, P. D. Marasco and J. P. Carey, “The effect of biomechanical variables on force sensitive resistor error: Implications for calibration and improved accuracy,” J. Biomech., vol. 49, no. 5, pp. 786–792, 2016.
DOI: https://doi.org/10.1016/j.jbiomech.2016.01.022
S. Parmar, I. Khodasevych and O. Troynikov, “Evaluation of Flexible Force Sensors for Pressure Monitoring in Treatment of Chronic Venous Disorders,” Sensors, vol. 17, no. 8, p. 1923, 2017.
DOI: https://doi.org/10.3390/s17081923
W. Y. Du, Resistive, Capacitive, Inductive, and Magnetic Sensor Technologies, 2014, CRC Press.
DOI: https://doi.org/10.1201/b17685
Pressure Profile Systems, “SingleTact Datasheet,” 2017. URL: https://5361756.fs1.hubspotusercontent-na1.net/hubfs/5361756/SingleTact%20Documents/SingleTact_Datasheet.pdf