Performance Evaluation of Capacitive Based Force Sensor for Electroencephalography Head Caps

Main Article Content

Indhika Fauzhan Warsito
Alexander Hunold
Jens Haueisen
Eko Supriyanto


Accurate electrode signal measurement using EEG head caps can only be achieved through sufficient contact or force. A flexible force sensor is required to obtain accurate force measurement underneath EEG head caps. In this study, we evaluate the performance of a capacitive based sensor including its accuracy, repeatability, hysteresis, and stability. The result shows that accuracy error and repeatability error were 3.03±2.8 % and 3.84±2.92 %, respectively. The stability errors were 2.37±0.15 % (10 gram), 2.54±0.00 % (50 gram), 2.37±0.15 % (100 gram), 5.07±1.16 % (150 gram), 7.27±0.39 % (200 gram). The hysteresis error of the sensor was 4.48±0.47 %. Based on the results, the capacitive based force sensor provides sufficiently low errors in accuracy, repeatability, stability, and hysteresis and is thus suitable for measuring adduction force in EEG cap applications.

Article Details