A Review of Camouflage Object Detection Techniques
Main Article Content
Abstract
Camouflage Object Detection (COD) is a constantly evolving field that deals with the difficulties of locating items hidden in intricate settings. This review examines the progression of COD techniques, from classical human methods to physical component-based methods such as infrared, LIDAR, multispectral and hyperspectral detection. Key applications of COD span from military reconnaissance to wildlife monitoring, medical imaging, and disaster response, where the ability to detect concealed objects has transformative implications. Future research should prioritize integrating diverse data sources, refining machine learning algorithms, and overcoming deployment constraints to advance the field further.
Manuscript received: 30 Dec 2024 | Revised: 30 Jan 2025 | Accepted: 17 Feb 2025 | Published: 31 Mar 2025
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
S. Merilaita, N. E. Scott-Samuel and I. C. Cuthill, “How camouflage works,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 372, no. 1724, p. 20160341, 2017.
DOI: https://doi.org/10.1098/rstb.2016.0341
C. V. Eck, “Notes on the Prehistory of Camouflage and Mimicry as Cultural Techniques,” West 86th: A Journal of Decorative Arts, Design History, and Material Culture, vol. 30, no. 1, pp. 3-28, 2023.
DOI: https://doi.org/10.1086/728330
N. Rankin, “Notes on the Prehistory of Camouflage and Mimicry as Cultural Techniques,” A Genius for Deception: How Cunning Helped the British Win Two World Wars, Oxford University Press, 2009.
P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I-511-I-518, 2001.
DOI: https://doi.org/10.1109/cvpr.2001.990517
N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Proc. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893, 2005.
DOI: https://doi.org/10.1109/cvpr.2005.177
P. F. Felzenszwalb, R. B. Girshick, D. McAllester and D. Ramanan, “Object Detection with Discriminatively Trained Part-Based Models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627-1645, 2010.
DOI: https://doi.org/10.1109/tpami.2009.167
S. Mangale and M. Khambete, “Camouflaged target detection and tracking using thermal infrared and visible spectrum imaging,” Advances in Intelligent Systems and Computing, pp. 193–207, 2016.
DOI: https://doi.org/10.1007/978-3-319-47952-1_15
T. Troscianko, C. P. Benton, P. G. Lovell, D. J. Tolhurst and Z. Pizlo, “Camouflage and visual perception,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 364, no. 1516, pp. 449–461, 2008.
DOI: https://doi.org/10.1098/rstb.2008.0218
P. Jiang, Z. Li, W. Ye, Z. Qiu, D. Cui and F. Xu, “High-resolution 3D imaging through dense camouflage nets using single-photon LiDAR,” Advanced Imaging, vol. 1, no. 1, pp. 011003, 2024.
DOI: https://doi.org/10.3788/ai.2024.10001
F. Melgani and L. Bruzzone, “Support Vector Machines for classification of Hyperspectral Remote-sensing images,” Proc. IEEE International Geoscience and Remote Sensing Symposium, vol. 1, pp. 506–508, 2005.
DOI: https://doi.org/10.1109/igarss.2002.1025088
E. Bayram and V. Nabiyev, “Classification of camouflage images using local binary patterns (LBP),” Proceeding. 2021 29th Signal Processing and Communications Applications Conference (SIU), pp. 1–4, 2021.
DOI: https://doi.org/10.1109/siu53274.2021.9478040
W. Gross, F. Queck, S. Schreiner, J. Mispelhorn, J. Kuester, W. Middelmann, M. Vögtli and M. Kneubühler, “Experimental Approach to Camouflaged Target Detection and Camouflage Evaluation,” IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, pp. 2149-2152, 2023.
DOI: https://doi.org/10.1109/igarss52108.2023.10282243
D. Zhao, S. Liu, X. Yang, Y. Ma, B. Zhang and W. Chu, “Research on Camouflage Recognition in Simulated Operational Environment Based on Hyperspectral Imaging Technology,” Journal of Spectroscopy, vol. 2021, pp. 1-9, 2021.
DOI: https://doi.org/10.1155/2021/6629661
T. Hupel and P. Stütz, “Adopting Hyperspectral Anomaly Detection for Near Real-Time Camouflage Detection in Multispectral Imagery,” Remote Sensing, vol. 14, no. 15, p. 3755, 2022.
DOI: https://doi.org/10.3390/rs14153755
T. Hupel and P. Stütz, “Measuring and Predicting Sensor Performance for Camouflage Detection in Multispectral Imagery,” Sensors, vol. 23, no. 19, pp. 8025–8025, 2023.
DOI: https://doi.org/10.3390/s23198025
Y. Shen, J. Li, W. Lin, L. Chen, F. Huang and S. Wang, “Camouflaged Target Detection Based on Snapshot Multispectral Imaging,” Remote Sensing, vol. 13, no. 19, p. 3949, 2021.
DOI: https://doi.org/10.3390/rs13193949
R. S. Berns, “Practical UV-VIS-NIR Multispectral Imaging,” Archiving Conference, vol. 15, no. 1, pp. 47–52, 2018.
DOI: https://doi.org/10.2352/issn.2168-3204.2018.1.0.11
S. Barmpas and O. Yakimenko, “sUAS-Based Multispectral Imaging in Support of Detection of Camouflaged Targets and Battlefield Anomalies,” International Conference on Unmanned Aircraft Systems (ICUAS), pp. 705–712, 2024.
DOI: https://doi.org/10.1109/icca62789.2024.10591934
V. Kumar and J. K. Ghosh, “Camouflage Detection Using MWIR Hyperspectral Images,” Journal of the Indian Society of Remote Sensing, vol. 45, no. 1, pp. 139–145, 2016.
DOI: https://doi.org/10.1007/s12524-016-0555-8
Z. He, Y. Gan, S. Ma, C. Liu and Z. Liu, “Evaluation method for the hyperspectral image camouflage effect based on multifeature description and grayscale clustering,” EURASIP Journal on Advances in Signal Processing, vol. 2023, no. 1, 2023.
DOI: https://doi.org/10.1186/s13634-023-00971-x
A. K. Gautam, P. Preet, T. S. Rawat, P. R. Chowdhury and L. K. Sinha, “Detection of Camouflaged Targets in Hyperspectral Images,” Lecture Notes in Mechanical Engineering, pp. 155–161, 2020.
DOI: https://doi.org/10.1007/978-3-981-15-1724-2_15
M. Darwiesh, H. S. Ayoub, A. F. El-Sherif and Y. H. Elbashar, “Airborne hyperspectral detection of underwater camouflaged targets and the effect of target shape and seafloor on image quality,” Journal of Optics, vol. 50, no. 1, pp. 7–27, 2020.
DOI: https://doi.org/10.1007/s12596-020-00669-5
J. Troscianko, J. Wilson-Aggarwal, M. Stevens and C. N. Spottiswoode, “Camouflage predicts survival in ground-nesting birds,” Scientific Reports, vol. 6, no. 1, 2016.
DOI: https://doi.org/10.1038/srep19966
K. Delhey and A. Peters, “Conservation implications of anthropogenic impacts on visual communication and camouflage,” Conservation Biology, vol. 31, no. 1, pp. 30–39, 2016.
DOI: https://doi.org/10.1111/cobi.12834
Y. Niu, M. Stevens and H. Sun, “Commercial Harvesting Has Driven the Evolution of Camouflage in an Alpine Plant,” Current Biology, vol. 31, no. 2, pp. 446–449.e4, 2021.
DOI: https://doi.org/10.1016/j.cub.2020.10.078
P. Toose, A. Roy, F. Solheim, C. Derksen, T. Watts, A. Royer and A. Walker, “Radio-frequency interference mitigating hyperspectral L-band radiometer,” Geoscientific Instrumentation, Methods and Data Systems, vol. 6, no. 1, pp. 39-51, 2017.
DOI: https://doi.org/10.5194/gi-6-39-2017
Q. Li, W. Chen, Z. Chen and X. Xu, “Jamming effect analysis and reticle parameter identification of infrared spin-scan seeker under dynamic engagement environment,” Infrared Physics & Technology, vol. 136, pp. 105068–105068, 2024.
DOI: https://doi.org/10.1016/j.infrared.2023.105068
C. D. Kummerow, “Hyperspectral Microwave Sensors—Advantages and Limitations,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 764–775, 2022.
DOI: https://doi.org/10.1109/jstars.2021.3133382
R. J. Webster, C. Hassall, C. M. Herdman, J. -G. J. Godin and T. N. Sherratt, “Disruptive camouflage impairs object recognition,” Biology Letters, vol. 9, no. 6, p. 20130501, 2013.
DOI: https://doi.org/10.1098/rsbl.2013.0501
B. G. Hogan, I. C. Cuthill and N. E. Scott-Samuel, “Dazzle camouflage, target tracking, and the confusion effect,” Behavioral Ecology, vol. 27, no. 5, pp. 1547–1551, 2016.
DOI: https://doi.org/10.1093/beheco/arw081
B. G. Hogan, I. C. Cuthill and N. E. Scott-Samuel, “Dazzle camouflage and the confusion effect: the influence of varying speed on target tracking,” Animal Behaviour, vol. 123, pp. 349–353, 2017.
DOI: https://doi.org/10.1016/j.anbehav.2016.11.022
H. Lu, X. Bai, Z. Wang, Y. Guo, L. Zhang, X. Weng, J. Xie, D. Liang and L. Deng, “Hyperspectral camouflage coating using Palygorskite to simulate water absorption of healthy green leaves,” Materials Science in Semiconductor Processing, vol. 156, pp. 107293, 2023.
DOI: https://doi.org/10.1016/j.mssp.2022.107293
M. H. Hossain, “Md. Anowar Hossain, Camouflage textiles with technical coloration incorporating illumination, PhD student: 3820066, First milestone for the degree of doctor of philosophy,” Zenodo (CERN), 2023.
DOI: https://doi.org/10.5281/zenodo.7898541
C. J. Lin, C. -C. Chang and Y. -H. Lee, “Evaluating camouflage design using eye movement data,” Applied Ergonomics, vol. 45, no. 3, pp. 714–723, 2014.
DOI: https://doi.org/10.1016/j.apergo.2013.09.012
J. Yu and Z. Y. Hu, “Implementation of Camouflage Tent Cloth Materials and Camouflage Effect Evaluation,” Advanced Materials Research, vol. 578, pp. 166–169, 2012.
DOI: https://doi.org/10.4028/www.scientific.net/amr.578.166
M. Stevens, “Predator perception and the interrelation between different forms of protective coloration,” Proceedings of the Royal Society B: Biological Sciences, vol. 274, no. 1617, pp. 1457–1464, 2007.
DOI: https://doi.org/10.1098/rspb.2007.0220
J. A. M. Galloway, S. D. Green, M. Stevens and L. A. Kelley, “Finding a signal hidden among noise: how can predators overcome camouflage strategies?,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 375, no. 1802, p. 20190478, 2020.
DOI: https://doi.org/10.1098/rstb.2019.0478
A. Li, J. Zhang, Y. Lv, B. Liu, T. Zhang and Y. Dai, “Uncertainty-aware Joint Salient Object and Camouflaged Object Detection,” 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10066-10076, 2021.
DOI: https://doi.org/10.1109/cvpr46437.2021.00994
C. Pulla Rao, A. Guruva Reddy and C. B. Rama Rao, “Camouflaged object detection for machine vision applications,” International Journal of Speech Technology, vol. 23, no. 2, pp. 327–335, 2020.
DOI: https://doi.org/10.1007/s10772-020-09699-7
S. Li, J. Jiao and C. Wang, “Research on the detection algorithm of camouflage scattered landmines in vegetation environment based on polarization spectral fusion,” IEEE Geoscience and Remote Sensing Letters, vol. 21, pp. 1–5, 2024.
DOI: https://doi.org/10.1109/lgrs.2024.3379415
L. Yue, H. Ling, J. Yuan and L. Bai, “A Lightweight Border Patrol Object Detection Network for edge devices,” Electronics, vol. 11, no. 22, p. 3828, 2022.
DOI: https://doi.org/10.3390/electronics11223828
C. Mou, T. Liu, C. Zhu and X. Cui, “WAID: A large-scale dataset for wildlife detection with drones,” Applied Sciences, vol. 13, no. 18, p. 10397, 2023.
DOI: https://doi.org/10.3390/app131810397
B. Ivosevic, Y. -G. Han, Y. Cho and O. Kwon, “The use of conservation drones in ecology and wildlife research,” Journal of Ecology and Environment, vol. 38, no. 1, pp. 113–118, 2015.
DOI: https://doi.org/10.5141/ecoenv.2015.012
A. N. M. Hossain, A. Barlow, C. G. Barlow, A. J. Lynam, S. Chakma and T. Savini, “Assessing the efficacy of camera trapping as a tool for increasing detection rates of wildlife crime in tropical protected areas,” Biological Conservation, vol. 201, pp. 314-319, 2016.
DOI: https://doi.org/10.1016/j.biocon.2016.07.023
S. P. Alagesan, “Wildlife crime prevention measures undertaken in a protected area: a study among conservation stakeholders in the Mudumalai Tiger Reserve, Western Ghats (India),” 2022.
DOI: https://doi.org/10.13140/RG.2.2.25210.36809
E. Panjang, H. Y. Lim, R. J. Thomas, B. Goossens, A. J. Hearn, D. W. Macdonald, J. Ross, S. T. Wong, R. Guharajan, A. Mohamed, P. C. Gardner, S. Koh, C. Cheah, M. Ancrenaz, I. Lackman, R. Ong, R. Nilus, A. Hastie, J. F. Brodie, A. Granados, O. Helmy, O. M. Lapis, D. Simon, G. Davies, S. T. Wong, M. Rampangajouw, H. Matsubayashi, C. Sano, R. K. Runting, S. Sipangkui and N. K. Abram, “Mapping the distribution of the Sunda pangolin (Manis javanica) within natural forest in Sabah, Malaysian Borneo,” Global Ecology and Conservation, vol. 52, pp. e02962, 2024.
DOI: https://doi.org/10.1016/j.gecco.2024.e02962
H. Kaheel, A. Hussein and A. Chehab, “AI-based image processing for COVID-19 detection in chest CT scan images,” Frontiers in Communications and Networks, vol. 2, 2021.
DOI: https://doi.org/10.3389/frcmn.2021.645040
J. He, Y. Zhang, M. Chung, M. Wang, K. Wang, Y. Ma, X. Ding, Q. Li and Y. Pu, “Whole-body tumor segmentation from PET/CT images using a two-stage cascaded neural network with camouflaged object detection mechanisms,” Medical Physics, vol. 50, no. 10, pp. 6151-6162, 2023.
DOI: https://doi.org/10.1002/mp.16438
A. V. Savkin and H. Huang, “Bioinspired bearing only motion camouflage UAV guidance for covert video surveillance of a moving target,” IEEE Systems Journal, vol. 15, no. 4, pp. 5379–5382, 2021.
DOI: https://doi.org/10.1109/jsyst.2020.3028577
X. Yang, Q. Zhang, X. Yang, Q. Peng, Z. Li and N. Wang, “Edge detection in Cassini astronomy image using Extreme Learning Machine,” MATEC Web of Conferences, vol. 189, p. 06007, 2018.
DOI: https://doi.org/10.1051/matecconf/201818906007
K. Mittal, “A Gentle Introduction into the Histogram of Oriented Gradients.” Medium, Analytics Vidhya, 2020. [Online].
URL:https://medium.com/analytics-vidhya/a-gentle-introduction-into-the-histogram-of-oriented-gradients-fdee9ed8f2aa (Accessed:18 January 2025)
B. Wang, K. L. Chan, G. Wang and H. Zhang, “Pedestrian detection in highly crowded scenes using “online” dictionary learning for occlusion handling,” Proc. 2014 IEEE Int. Conf. Image Process. (ICIP), pp. 2418–2422, 2014.
DOI: https://doi.org/10.1109/icip.2014.7025489
P. Bertner, “Camouflage - Paul Bertner,” Smugmug.com, 2022. [Online].
URL: https://rainforests.smugmug.com/Strategies/Camouflage.
(Accessed: 29 Dec. 2024)
N. Kawai and H. He, “Breaking Snake Camouflage: Humans Detect Snakes More Accurately than Other Animals under Less Discernible Visual Conditions,” PLoS ONE, vol. 11, no. 10, p. e0164342, 2016.
DOI: https://doi.org/10.1371/journal.pone.0164342
Z. Y. Lim, T. C. Khim, R. Edwin and K. S. Sim, “Development of augmented reality-based applications for brain memory training,” International Journal on Robotics, Automation and Sciences, vol. 5, no. 1, pp. 13–20, 2023.
DOI: https://doi.org/10.33093/ijoras.2023.5.1.3
W. X. Lim, C. K. Toa and K. S. Sim, “The application of augmented reality platform for chemistry learning,” International Journal on Robotics, Automation and Sciences, vol. 5, no. 2, pp. 101–110, 2023.
DOI: https://doi.org/10.33093/ijoras.2023.5.2.13
W. S. Lim, K. L. D. Ji, S. T. Lim and B. C. Yeo, “Vision-based egg grading system using support vector machine,” International Journal on Robotics, Automation and Sciences, vol. 6, no. 1, pp. 13–19, 2024.
DOI: https://doi.org/10.33093/ijoras.2024.6.1.3
I.F. Warsito, H. Widyaputera, E. Supriyanto, J. Pusppanathan, M. A. A. Taib and M. F. M. Yasir, “Simulation of 500 MHz electromagnetic interference effect on electrical equipment with various RF grids and enclosures,” International Journal on Robotics, Automation and Sciences, vol. 1, no. 1, pp. 18–24, 2019.
DOI: https://doi.org/10.33093/ijoras.2019.1.3
A. J. He and M. T. Soe, “A review on sensor technologies and control methods for mobile robot with obstacle detection system,” International Journal on Robotics, Automation and Sciences, vol. 6, no. 1, pp. 78–85, 2024.