Evaluation of The Effect of Spoofing on Dual-Frequency Global Navigation Satellite System (GNSS) Manuscript Received: 19 November 2023, Accepted: 12 December 2023, Published: 15 March 2024, ORCiD: 0000-0001-5549-0420, https://doi.org/10.33093/jetap.2024.6.1.13
Main Article Content
Abstract
This paper aims to assess the impact of Global Navigation Satellite System (GNSS) spoofing on the performance of a Garmin GPSMAP 66sr dual-frequency GNSS receiver. The evaluation is conducted through field assessments under three conditions: 1) single-frequency GPS L1 coarse acquisition (C/A) only, 2) single-frequency GPS L1 C/A and Galileo E1 open service (OS), and 3) dual-frequency GPS L1 C/A and L5, as well as Galileo E1 OS and E5a. The results emphasise the critical role of multifrequency GNSS in mitigating spoofing. In the dual-frequency multi-GNSS mode, spoofing does not occur as the GPS L5 and Galileo E5a signals remain unaffected by spoofing signals in the L1 / E1 band. In the single-frequency multi-GNSS mode, the higher number of observed GNSS satellites contributes to higher minimum spoofing power levels and longer durations between position fix loss and spoofing as compared to the GPS only mode.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
S. Knedlik, Introduction to Satellite Navigation, Inertial Navigation, and GNSS/INS Integration. Berlin, Germany, Springer, 2016.
E. D. Kaplan and C. J. Hegarty, Understanding GPS: Principles and Applications. Norwood, Massachusetts, U.S, Artech House, 2017.
S. Jin, W. Qisheng and G. Dardanelli, “A Review on Multi-GNSS for Earth Observation and Emerging Applications,” Remote Sens., vol. 14, pp. 3930, 2022.
S. Dinesh, “Global Navigation Satellite System (GNSS) Spoofing: A Review of Growing Risks and Mitigation Steps,” Defence S&T Tech. Bull., vol. 6, pp. 42-61, 2013.
A. Ruegamer and D. Kowalewski, “Jamming and Spoofing of GNSS Signals – An Underestimated Risk,” FIG Working Week 2019, 17-21 May 2015, Sofia, Bulgaria.
Y. Liu, L. L. Sihai, Q. Fu and Z. Liu, “Impact Assessment of GNSS Spoofing Attacks on INS/GNSS Integrated Navigation System,” Sensors, vol. 18, pp. 1433, 2018.
L. Meng, L. Yang, W. Yang and L. Zhang, “A Survey of GNSS Spoofing and Anti-spoofing Technology,” Remote Sens., vol. 14, pp. 4826, 2022.
B. O. Hanlon, B. Ledvina, M. L. Psiaki, P. M. Kintner and T. E. Humphreys, Assessing the Spoofing Threat. http://www.gpsworld.com/defence/security-surveillance /assessing-spoofing-threat-3171?page_ id=1. [Accessed 4 November 2009]
P. Montgomery, T. E. Humphreys and B. M. Ledvina, “A Multi-antenna Defence Receiver-autonomous GPS Spoofing Detection,” Inside GNSS, vol. 4, pp. 40-46, 2009.
J. R. van der Merwe, X. Zubizarreta, I. Lukcin, A. Rugamer and W. Felber, “Classification of Spoofing Attack Types,” in Eur Nav Conf 2018, 14-17 May 2018, Gothenburg, Sweden.
J. A. Bhatti and T. E. Humphreys, “Hostile Control of Ships via False GPS Signals: Demonstration and Detection,” Nav., vol. 64, pp. 51-66, 2017.
Above Us Only Stars: Exposing GPS Spoofing in Russia and Syria, C4ADS, Washington D.C., U.S., 2019.
D. Goward, GPS Circle Spoofing Discovered in Iran. https://www.gpsworld.com/gps-circle-spoofing-discovered-in-iran. [Accessed 21 April 2020]
T. Harrison, K. Johnson, T. G. Roberts and T. Way, Space Threat Assessment 2020, Center for Strategic and International Studies (CSIS), Washington, D.C., U.S., 2020.
GPSMAP 66 Owner's Manual, Garmin International Inc., Olathe, Kansas, U.S., 2021.
G. Povero, GNSS Signals Introduction. Links Foundation, Torino, Italy, 2019.
Global Positioning System Standard Positioning Service Performance Standard, Command, Control, Communications, and Intelligence, 5th Ed., Department of Defence (DOD), Washington D.C., U.S., 2020.
European GNSS (Galileo) Open Service Signal-in-Space Interface Control Document. European Space Agency (ESA), Paris, France, 2021.
S. Dinesh, M. M. Faudzi, B. N. I. Shakhira, A. S. Robiah, S. Shalini, I. Aliah, B. T. Lim, M. A. Z. Fitry, A. K. M. Rizal and H. M. Y M. Hasrol, “Evaluation of Global Positioning System (GPS) Performance During Simplistic GPS Spoofing Attacks,” Defence S&T Tech. Bull., vol. 5, pp. 99-113, 2012.
S. Dinesh, M. A. Z. Fitry, S. Esa, E. S. Shahrudin, A. K. A. Firdaus and Z. Zaherudin, “Evaluation of The Vulnerabilities of Unmanned Aerial Vehicles (UAVs) to Global Positioning System (GPS) Jamming and Spoofing,” Defence S&T Tech. Bull., vol. 13, pp. 333-343, 2020.
Avionics GPSG-1000 GPS / Galileo Portable Positional Simulator, Aeroflex Inc., Plainview, New York, U.S., 2010.
A11XLV Digital Variable Gain GPS Amplifier, GPS Source Inc., Pueblo West, Colarado, U.S., 2007.
L1P GPS Antenna, GPS Source Inc., Pueblo West, Colarado, U.S., 2006.
U3741/3751 Spectrum Analyzers, Advantest Corporation, Chiyoda-ku, Tokyo, Japan, 2009.
CNET, GPSDiag 1.0. https://download.cnet.com/GPSDiag /3000-2130_4-10055902.html. [Accessed 9 June 2022]
S. Dinesh, W. H. Wan Mustafa, M. M. Faudzi, M. Kamarulzaman, H. Hasniza, B. N. I. Shakhira, A. S. Robiah, S. Shalini, J. Jamilah, I. Aliah, B. T. Lim, M. A. Z. Fitry, A. K. M. Rizal, B. Azlina and H. M. Y. M. Hasrol, “Evaluation of The Effect of Radio Frequency Interference (RFI) on Global Positioning System (GPS) Accuracy,” Defence S&T Tech. Bull., vol. 3, pp. 100-118., 2010.
S. Dinesh, M. Y. Hafizah, A. K. A. Firdaus, M. D. M. Zuryn and K. Maizurina, “Evaluation of The Effect of Radio Frequency Interference (RFI) on Dual-frequency Global Navigation Satellite System (GNSS),” Defence S&T Tech. Bull., vol. 16, pp. 228-237, 2023.
I. A, Norhisyam, S. Dinesh and M. S. Azman, “Effect of Radio Frequency Interference (RFI) on The Performance of Global Positioning System (GPS) Static Observations,” in 9th IEEE Colloq. Signal Process Appl., 8-10 March 2013, Kuala Lumpur.
S. Dinesh, M. M. Faudzi and M. A. Z. Fitry, “Evaluation of The Effect of Radio Frequency Interference (RFI) on Global Positioning System (GPS) Accuracy via GPS Simulation,” Defence Sci. J., vol. 62, pp. 338-347, 2012.
S. Dinesh, M. A. Z. Fitry and A. H. Shahrudin, “Evaluation of Global Positioning System (GPS) Adjacent Band Compatibility via GPS Simulation,” Defence S&T Tech. Bull., vol. 10, pp. 229 – 235, 2017.
S. Dinesh, M. Y. Hafizah, A. K. A. Firdaus, M. D. M. Zuryn and K. Maizurina, “Evaluation of Multi-GNSS Performance via GNSS Simulation,” Defence S&T Tech. Bull., vol. 16, pp. 13-23, 2023.
Engineer Manual EM 1110-1-1003: NAVSTAR Global Positioning System Surveying, US Army Corps of Engineers (USACE), Washington D.C., U.S., 2011.
O. Pozzobon, C. Sarto, A. D. Chiara, A. Pozzobon, G. Gamba, M. Crisci and R. Ioannides, “Developing A GNSS Position and Timing Authentication Testbed: GNSS Vulnerability and Mitigation Techniques,” Inside GNSS, vol. 8, pp. 45-53, 2013.
G. A. Elango and G. F. Sudha, “Design of Complete Software GPS Signal Simulator with Low Complexity and Precise Multipath Channel Model,” J. Electr. Syst. Inform. Tech., vol. 3, pp. 161-180, 2016.
Y. Bi and J. Yuan, “A Portable GPS Signal Simulator Design Based on ZYNQ,” in 2nd Int. Symp. Comp. Eng. Intell. Comm., 6-8 August 2021, Nanjing, China.
M. Emerick, EUSPA to Hold GNSS Signal Simulator Manufacturers Forum in December. https://www.gpsworld.com/euspa-to-hold-gnss-signal-simulator-manufacturers-forum-in-december. [Accessed 23 November 2022]