A Short Review: Photocatalysis As An Alternative Method for POME Treatment Manuscript Received: 31 July 2023, Accepted: 30 August 2023, Published: 15 March 2024, ORCiD: 0000-0003-0619-1103, https://doi.org/10.33093/jetap.2024.6.1.5

Main Article Content

Prathibha Hansamali Sellahewa
Evyan Yang Chia Yan
Sarani Zakaria

Abstract

The liquid waste produced due to palm oil processing is called palm oil mill effluent (POME). It is challenging to manage because of its high production and inadequate treatment. The discharge of raw POME into the environment will result in multiple detrimental effects and environmental pollution. This short review compares the conventional treatment methods in Malaysia, which are the ponding system for the treatment of POME and the open or closed digesting tank. These systems are unable to achieve the standards set by the Department of Environment (DOE) of Malaysia. Photocatalysts, which are well-known as catalysts in the decomposition of organic contaminants, are suggested as an alternative method for POME treatment. The viability of using photocatalytic technology to remediate POME waste is discussed in this short review. The advancement and improvement of the nanoparticle system for POME treatment are identified based on past studies. It is aimed at providing readers with a clear comparison of conventional POME treatment methods and information on photocatalysis as an alternative POME treatment method.

Article Details

Section
Articles

References

A. Ratnasari, A. Syafiuddin, R. Boopathy, S. Malik, M. A. Mehmood, R. Amalia and N. S. Zaidi, “Advances in Pretreatment Technology for Handling The Palm Oil Mill Effluent: Challenges and Prospects,” Bioresource Technol., vol. 344, no. 126239, 2022.

W. H. Saputera, A. F. Amri, R. Daiyan and D. Sasongko, “Photocatalytic Technology for Palm Oil Mill Effluent (POME) Wastewater Treatment: Current Progress and Future Perspective,” Materials, vol. 14, no. 11, pp. 2846, 2021.

W. L. Liew, M. A. Kassim, K. Muda, S. K. Loh and A. C. Affam, “Conventional Methods and Emerging Wastewater Polishing Technologies for Palm Oil Mill Effluent Treatment: A Review,” J. Environ. Manage., vol. 149, pp. 222-235, 2015.

H. Kamyab, S. Chelliapan, M. F. M. Din, S. Rezania, T. Khademi and A. Kumar, “Palm Oil Mill Effluent As An Environmental Pollutant,” Palm Oil, vol. 13, pp. 13-28, 2018.

M. A. Hassan, S. Yacob, Y. Shirai and Y. T. Hung, “Treatment of Palm Oil Wastewaters,” Waste Treat Food Process Ind, pp. 101-17, 2005.

S. S. Mahmod, S. N. Arisht, J. M. Jahim, M. S. Takriff, J. P. Tan, A. A. L. Luthfi and P. M. Abdul, “Enhancement of Biohydrogen Production from Palm Oil Mill Effluent (POME): A Review,” Int. J. Hydrogen Energ., vol. 47, no. 96, pp. 40637-40655, 2022.

K. Muda, W. L. Liew, M. A. Kassim and S. K. Loh, “Performance Evaluation of POME Treatment Plants,” ARPN J. Eng. and Appl. Sci., vol. 11, no. 4, pp. 2153-2159, 2006.

S. Mohammad, S. Baidurah, T. Kobayashi, N. Ismail and C. P. Leh “Palm Oil Mill Effluent Treatment Processes—A Review,” Processes, vol. 9, no. 5, pp. 739, 2021.

A. Aris, B. S. Ooi, S. K. Kon and Z. Ujang, “Tertiary Treatment of Palm Oil Mill Effluent using Fenton Oxidation,” Malaysian J. Civil Eng., vol. 20, no. 1, pp. 12-25, 2008.

H. Z. Nahrul, F. J. Nor, M. Ropandi and A. A. Astimar, “A Review on The Development of Palm Oil Mill Effluent (POME) Final Discharge Polishing Treatments,” J. Oil Palm Res., vol. 29, no. 4, pp. 528-540, 2017.

S. C. Sayuti and A. A. M. Azoddein, “Treatment of Palm Oil Mill Effluent (POME) by using Electrocoagulation As An Alternative Method,” Malaysian J. Analyt. Sci., vol. 19, no. 4, pp. 663-668, 2015.

A. Akhbari, P. K. Kutty, O. C. Chuen and S. Ibrahim, “A Study of Palm Oil Mill Processing and Environmental Assessment of Palm Oil Mill Effluent Treatment.,” Environ. Eng. Res., vol. 25, no. 2, pp. 212–221, 2020.

A. Y. Zahrim, A. Nasimah and N. Hilal, “Pollutants Analysis During Conventional Palm Oil Mill Effluent (POME) Ponding System and Decolourisation of Anaerobically Treated POME via Calcium Lactate-Polyacrylamide,” J. Water Process Eng., vol. 4, pp. 159-165, 2014.

W. H. Saputera, A. F. Amri, R. R. Mukti, V. Suendo, H. Devianto and D. Sasongko, “Photocatalytic Degradation of Palm Oil Mill Effluent (Pome) Waste Using BiVO4 Based Catalysts,” Molecules, vol. 26, no. 20, pp. 6225, 2021.

S. I. Sinar Mashuri, M. L. Ibrahim, M. F. Kasim, M. S. Mastuli, U. Rashid, A. H. Abdullah and T. Y. Yun Hin, “Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society,” Catalysts, vol. 10, no. 11, pp. 1260, 2020.

M. A. Al-Nuaim, A. A. Alwasiti and Z. Y. Shnain, “The Photocatalytic Process in The Treatment of Polluted Water,” Chem. Papers, vol. 77, no. 2, pp. 677-701, 2023.

K. T. Amakiri, A. Angelis-Dimakis and A Ramirez-Canon, “Recent Advances, Influencing Factors, and Future Research Prospects using Photocatalytic Process for Produced Water Treatment,” Water Sci. and Technol., vol. 85, no. 3, pp. 769-788, 2022.

G. Ren, H. Han, Y. Wang, S. Liu, J. Zhao, X. Meng and Z. Li, “Recent Advances of Photocatalytic Application in Water Treatment: A Review,” Nanomaterials, vol. 11, no. 7, pp. 1804, 2021.

C. Oliveira, A. Alves and L. M. Madeira, “Treatment of Water Networks (Waters And Deposits) Contaminated with Chlorfenvinphos by Oxidation With Fenton’s Reagent,” Chem. Eng. J., vol. 241, pp. 190-199, 2014.

J. Hong, K. H. Cho, V. Presser and X. Su, “Recent Advances in Wastewater Treatment using Semiconductor Photocatalysts,” Current Opinion in Green and Sustain. Chem., vol. 36, no. 100644, 2022.

Z. S. Lee, S. Y. Chin, J. W. Lim, T. Witoon and C. K. Cheng, “Treatment Technologies of Palm Oil Mill Effluent (POME) and Olive Mill Wastewater (OMW): A Brief Review,” Environ. Technol. & Innov., vol. 15, no. 100377, 2019.

A. A. Azzaz, S. Jellali, N. B. H. Hamed, A. El Jery, L. Khezami, A. A. Assadi and A. Amrane, A. (2021). Photocatalytic Treatment of Wastewater Containing Simultaneous Organic and Inorganic Pollution: Competition and Operating Parameters Effects,” Catalysts, vol. 11, no. 7, pp. 855, 2021.

F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan, Y. Long and Z. Cai, “Recent Advances and Applications of Semiconductor Photocatalytic Technology,” Appl. Sci., vol. 9, no. 12, pp. 2489, 2019.

S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang and H. Wang, “TiO2 Based Photocatalytic Membranes: A Review,” J. Membrane Sci., vol. 472, pp. 167-184, 2014.

Nasikhudin, M. Diantoro, A. Kusumaatmaja and K. Triyana, “Study on Photocatalytic Properties of TiO2 Nanoparticle in Various pH Condition,” J. Phys.: Conf. Series, vol. 1011, pp. 012069, 2018.

C. Y. Y. Evyan, S. Zakaria, C. H. Chia and T. R. Boku, “Bifunctional Regenerated Cellulose Membrane Containing TiO2 Nanoparticles for Absorption and Photocatalytic Decomposition,” Sains Malaysiana, vol. 4, no. 4, pp. 637-644, 2017.

L. X. Tan, Green Synthesis and Characterization of Copper (II) Oxide Nanoparticles Derived from Lemon Peel Extract for The Photocatalytic Degradation of Palm Oil Mill Effluent (POME), Doctoral Dissertation, Universiti Tungku Abdul Rahman, 2022.

J. Xu, L. Li, Y. Yan, H. Wang, X. Wang, X. Fu and G. Li, “Synthesis and Photoluminescence of Well-Dispersible Anatase TiO2 Nanoparticles,” J. Colloid and Interface Sci., vol. 318, no. 1, pp. 29-34, 2008.

T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter and M. Batzill, “Why is anatase a better photocatalyst than rutile? Model Studies on Epitaxial TiO2 Films,” Sci. Reports, vol. 4, no. 1, pp. 4043, 2014.

T. Zhu and S. P. Gao, “The Stability, Electronic Structure, and Optical Property of TiO2 Polymorphs,” The J. Phys. Chem. C, vol. 118, no. 21, pp. 11385-11396, 2014.

H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He and Y. He, “An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and The Corresponding Countermeasures,” Water Res., vol. 79, pp. 128-146, 2015.

K. H. Ng, L. S. Yuan, C. K. Cheng, K. Chen and C. Fang, “TiO2 and ZnO Photocatalytic Treatment of Palm Oil Mill Effluent (POME) and Feasibility of Renewable Energy Generation: A Short Review,” J. Cleaner Product., vol. 233, pp. 209-225, 2019.

C. Gomez-Solís, J. C. Ballesteros, L. M. Torres-Martínez, L. Juárez-Ramírez, L. D. Torres, M. E. Zarazua-Morin and S. W. Lee, “Rapid Synthesis of Zno Nano-Corncobs from Nital Solution and Its Application in The Photodegradation of Methyl Orange,” J. Photochem. and Photobio. A: Chem., vol. 298, pp. 49-54, 2015.

R. Guan, J. Li, J. Zhang, Z. Zhao, D. Wang, H. Zhai and D. Sun, “Photocatalytic Performance and Mechanistic Research of ZnO/g-C3N4 on Degradation of Methyl Orange,” ACS Omega, vol. 4, no. 24, pp. 20742-20747, 2019.

P. Kuppusamy, S. Ilavenil, S. Srigopalram, G. P. Maniam, M. M. Yusoff, N. Govindan and K. C. Choi, “Treating of Palm Oil Mill Effluent using Commelina Nudiflora Mediated Copper Nanoparticles As A Novel Bio-Control Agent,” J. Cleaner Product., vol. 141, pp. 1023-1029, 2017.

Y. K. Phang, M. Aminuzzaman, M. Akhtaruzzaman, G. Muhammad, S. Ogawa, A. Watanabe and L.H. Tey, “Green Synthesis And Characterization of Cuo Nanoparticles Derived From Papaya Peel Extract for The Photocatalytic Degradation of Palm Oil Mill Effluent (POME),” Sustainability, vol. 13, no. 2, pp. 796, 2021.

F. Fresno, R. Portela, S. Suárez and J. M. Coronado, “Photocatalytic Materials: Recent Achievements and Near Future Trends,” J. Mat. Chem. A, vol. 2, no. 9, pp. 2863-2884, 2014.

M. S. Waghmode, A. B. Gunjal, J. A. Mulla, N. N. Patil and N. N. Nawani, “Studies on The Titanium Dioxide Nanoparticles: Biosynthesis, Applications and Remediation,” SN Appl. Sci., vol. 1, no. 4, pp. 310, 2019.

S. Raha and M. Ahmaruzzaman, “ZnO Nanostructured Materials and Their Potential Applications: Progress, Challenges and Perspectives,” Nanoscale Adv., vol. 4, no. 8, pp. 1868-1925, 2022.

M. E. Grigore, E. R. Biscu, A. M. Holban, M. C. Gestal and A. M. Grumezescu, “Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles,” Pharmaceuticals, vol. 9, no. 4, pp. 75, 2016.

C. Y. Y. Evyan, K. M. Salleh, M. Y. Chong, C. H. Chia and S. Zakaria, “Effect of Dimensionality of Nanosized TiO2 Embedded in Regenerated Cellulose Beads As A Portable Catalyst for Reusable Decomposition System,” Polym. Adv. Technol., vol. 32, no. 9, pp. 3549-3562, 2021.

W. H. Y. Clarissa, C. H. Chia, S. Zakaria and Y. C. Y. Evyan, “Recent Advancement in 3-D Printing: Nanocomposites with Added Functionality,” Prog. Addit. Manufact., vol. 7, no. 2, pp. 325-350, 2022.

M. H. Alhaji, K. Sanaullah, S. F. Lim, A. R. H. Rigit, A. Hamza and A. Khan, “Modeling and Optimization of Photocatalytic Treatment of Pre-Treated Palm Oil Mill Effluent (POME) in A UV/TiO2 System using Response Surface Methodology (RSM). Cogent Eng., vol. 4, no. 1, pp. 1382980, 2017.

D. Kanakaraju, N. L. B. Ahmad, N. B. M. Sedik, S. G. H. Long, T. M. Guan and L. Y. Chin, “Performance of Solar Photocatalysis and Photo-Fenton Degradation of Palm Oil Mill Effluent,” Malaysian J. Analyt. Sci., vol. 21, no. 5, pp. 996-1007, 2017.

M. A. Johar, R. A. Afzal, A. A. Alazba and U. Manzoor, “Photocatalysis and Bandgap Engineering using ZnO Nanocomposites,” Adv. Mat. Sci. and Eng., vol. 2015, no. 934587, 2015.

M. A. A. Mutalib, Photocatalytic Degradation Process of Waste Water Using Titanium Dioxide As Catalyst, Doctoral Dissertation, Universiti Malaysia Pahang, 2009.

T. Baran, A. Visibile, M. Busch, X. He, S. Wojtyla, S. Rondinini and A. Vertova, “Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances,” Molecules, vol. 26, no. 23, pp. 7271, 2021.