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Abstract - Parkinson’s Disease (PD) is a debilitating neurodegenerative disorder that affects a significant portion of aging 

population. Early detection of PD symptoms is crucial to prevent the progression of the disease. Research has revealed that gait 

attributes can provide valuable insights into PD symptoms. The gait acquisition techniques used in current research can be broadly 

divided into two categories: vision-based and sensor-based. The markerless vision-based classification model has become a 

prominent research trend due to its simplicity, low cost and patient comfort. In this study, we propose a novel markerless vision-

based approach to obtain gait features from participants' gait videos. A dataset containing gait videos from normal subjects and PD 

patients were collected, along with a control group of 25 healthy adults. The participants were requested to perform a Timed Up 

and Go (TUG) test, during which their walking sequences were recorded using two smartphones positioned at different angles, 

namely side and front. A multi-person pose estimator is used to estimate human skeletal joint points from the collected gait videos. 

Different gait features associated with PD including stride length, number of steps taken during turn, turning duration, speed and 

cadence are derived from these key point information to perform PD detection. Experimental results show that the proposed solution 

achieves an accuracy of 89.39%. The study's findings demonstrate the potential of markerless vision-based gait acquisition 

techniques for early detection of PD symptoms. 
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I. INTRODUCTION 

Parkinson's disease (PD) is a degenerative brain disorder characterized by motor symptoms such as bradykinesia, 

staggering, rigidity, walking difficulties, and imbalance [1]. It also presents various non-motor complications 

including cognitive impairment, mental issues, sleep disturbances, and pain disorders. Movement disorders like 

involuntary movements and dystonia can further limit speech and movement, leading to high levels of disability. 

Dementia often develops in individuals with PD. While it is the most common movement disorder, other disorders 

like multisystem atrophy, progressive supranuclear palsy, chorea, ataxia, and dystonia exist. These disorders share 

similar symptoms with PD and face similar challenges in terms of diagnosis and treatment access, particularly in low-

income and middle-income countries. 

The onset of PD is associated with several risk factors, including advancing age of individuals, albeit afflicting young 

adults as well. When compared to women, men are more likely to develop Parkinson's disease. The involvement of 

environmental determinants, such as noxious fumes, atmospheric contamination, and industrial solvents, has been 
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posited as contributing to an elevated susceptibility to PD [2]. The precise cause of PD is unknown but is believed to 

result from a complex interaction between genetic and environmental factors, including lifelong exposure to toxic 

substances. 

Dr. Parkinson, a London surgeon, provided the initial comprehensive clinical account of what is now recognized as 

PD. This condition, previously termed tremulous paralysis, can impact individuals irrespective of their race or gender 

[3]. Early detection is critical to mitigate disease progression, and artificial intelligence-based approaches, particularly 

machine learning, have been developed to enhance recognition and diagnosis. Machine learning techniques provide a 

compelling avenue for delivering rapid and precise diagnostic outcomes, with the potential to revolutionize clinical 

decision-making and the diagnostic process. 

For this reason, we aim to develop a novel markerless vision-based classification model that can accurately detect PD 

by analyzing human gait features. To achieve this, participants were recruited and requested to perform a Timed Up 

and Go (TUG) test, a commonly used assessment to assess mobility and balance in individuals with PD. During the 

TUG test, the participants' walking sequences were recorded using two smartphones placed at different angles. A 

multi-person pose estimator was then used to identify and track the locations of key skeletal joint points in human 

bodies from the recorded videos. Various gait features associated with PD were extracted from these estimated skeletal 

joint points. These features include stride length (the distance covered during each step), the number of steps taken 

during turns, turning duration, walking speed, and cadence (the number of steps per minute). These gait features are 

considered important indicators of PD-related abnormalities in motor function and are used as inputs for the PD 

detection process. By training the model on a dataset that includes gait videos from both healthy individuals and PD 

patients, it learns to recognize patterns and identify characteristic differences in gait between the two groups. 

II. RELATED WORK 

A. Conventional machine learning methods 

Several studies had used machine learning techniques to analyse gait data for the detection and classification of PD. 

In one study [4], a random forest algorithm achieved 93.33% accuracy in stride length prediction. Another study [5] 

applied logistic regression on acceleration signals to detect freezing of gait (FoG) in PD patients, achieving a 

classification accuracy of 81.3%. 

Frequency analysis of gait signals has also been explored for the detection of neurodegenerative diseases. One study 

[6] applied artificial neural networks (ANN), support vector machines (SVM), and Naïve Bayes classifiers on gait 

data from patients with amyotrophic lateral sclerosis, Huntington's disease, PD, and healthy control subjects. The 

ANN classifier achieved the highest accuracy of 90.6%, followed by SVM (64.00%) and Naïve Bayes (44.44%). 

Vision-based and sensor-based models have been used for gait data acquisition in PD. A previous study [7] applied 

principal component analysis (PCA) and linear discriminant analysis (LDA) to videos of PD patients' gait, achieving 

95.49% accuracy with LDA-MDC, outperforming PCA-MDC. Another study [8] implemented SVM with a radial 

basis function kernel to classify PD, ALS, and Huntington's disease using force-sensitive resistors, achieving an 

accuracy of 83.33%. 

Vertical ground reaction force (VGRF) data has been utilized to distinguish PD patients from healthy controls. One 

study [9] compared SVM algorithms on VGRF data, with SVM achieving the highest accuracy of 91.6% using a linear 

kernel. 

In an investigation using the Microsoft Kinect V2 vision system, gait data was collected from PD patients and healthy 

subjects. ANN was applied for classification, with ANN, achieving accuracy rates of 89.4%, respectively [10]. 

Another study [11] compared SVM algorithms for classifying PD patients from healthy subjects based on sensor-

based gait data, with SVM achieving the highest average accuracy of 86%. 

Overall, the potential of machine learning in gait data analysis for PD detection and classification was demonstrated 

in these studies. These methods have shown promising results in accurately distinguishing PD patients from healthy 

controls and detecting specific gait abnormalities associated with the disease. However, more research and validation 

are necessary to confirm their effectiveness in real clinical scenarios. A summary of the existing conventional machine 

learning approaches is presented in Table 1. 
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Table 1. Summary of the existing conventional machine learning approaches. 

Authors 
Classification 

technique 
Dataset Accuracy 

Soltaninejad et al. (2018) [4] Random Forest 

15 subjects in the control 

group and 15 in the PD 

group 

93.33% 

Polat (2019) [5] Logistic Regression 
Daphnet Freezing of Gait 

Data Set 
81.3% 

Das et al. (2017) [6] 
ANN, SVM, Naïve 

Bayes 
Physionet database 

ANN: 90.6% 

SVM: 64.00% 

Naïve Bayes: 44.44% 

Cho et al. (2009) [7] PCA, LDA, MDC Self-collected 
LDA-MDC: 95.49% 

PCA-MDC: 77.18% 

Shetty & Rao (2016) [8] SVM Gaitpdb database 83.33% 

Alam et al. (2017) [9] SVM Gaitpdb database 91.6% 

Buongiorno et al. (2019) [10] ANN Self-collected 89.4% 

Trabassi et al. (2022) [11] SVM Self-collected 86% 

 

B. Deep learning methods 

In recent years, researchers have carried out several studies using deep learning (DL) techniques to aid in the early 

diagnosis and classification of PD. These studies have explored approaches such as EEG analysis, gait analysis, sensor 

data, and wearable devices. One particular study [12] focused on using an Artificial Neural Network (ANN) model to 

analyze EEG samples from a dataset of 110 subjects. Impressively this model achieved an accuracy rate of 98% with 

a sensitivity of 97% and specificity of 100% in distinguishing subjects with PD from those without it. Another study 

[13] combined LeNet and Long Short-Term Memory (LSTM) models to enhance PD diagnosis and understand the 

progression of the disease. The models used a dataset consisting of 102 spiral drawings. 

In addition, researchers [14] have optimized Deep Neural Network (DNN) models to outperform traditional algorithms 

like random forests, SVM, XG Boost, and KNN in PD classification tasks. These optimized DNN models achieved 

high accuracy, precision, and F1 scores. For example, one study used a DNN model with three hidden layers trained 

on a dataset of 500 PD patients and 500 healthy controls, achieving an accuracy of 98%. 

In a 2020 study [15], introduced a novel architecture called Bidirectional Long Short-Term Neural Network (BLSTM) 

for PD classification. The BLSTM architecture included 5 layers and incorporated both forward and backward time 

series information. The study involved 64 PD patients and 50 healthy controls who performed 13 motor exercises 

using wearable sensors. The proposed BLSTM model achieved a maximum accuracy of 82.94%, sensitivity of 92.3%, 

and specificity of 76.2%. Although the specificity of the model is relatively low due to the imbalanced disease staging 

in PD subjects, it still shows potential for classifying PD. 

These studies also highlighted the importance of dataset selection and preprocessing in obtaining accurate results. For 

instance, a study [16] using a dataset of 33 participants, including MS patients, PD patients, and healthy older adults, 

applied multi-view vision-based techniques and DL models. The MSResNet model achieved a 100% accuracy in 

classifying the walking dataset. Another study [17] used the Gait in Parkinson's Disease Database (Gaitpdb) and 

achieved a high accuracy of 99.5%, sensitivity of 98.7%, and specificity of 99.1% in PD classification. 

A recent study [18], the application of DL in combination with wearable sensors was examined for early detection of 

PD outside the clinic. They used data from the Parkinson's Progression Markers Initiative (PPMI) study, focusing on 

walk-like events. Their approach involved two main components, which are a dynamic activity detection module and 

a walk-like detection module. The data were fed into a 1D convolutional neural network (CNN) for PD classification. 

The results showed 90% accuracy for single walk-events and perfect accuracy with multiple events. This suggests 

DL's potential for PD detection. 

In summary, these studies emphasize the effectiveness of DL techniques in PD diagnosis and classification. These 

approaches have the potential to enhance early detection, provide insights into disease progression, and contribute to 

personalized treatment strategies for PD. A summary of the DL methods is provided in Table 2. These studies 
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showcase the effectiveness of DL techniques, such as ANN, LeNet, LSTM, DNN, CNN, RNN, and hybrid models, in 

diagnosing and classifying PD. The accuracy, sensitivity, and specificity values vary across different datasets and 

approaches, demonstrating the potential of DL in improving early detection and understanding the progression of the 

disease. 

Table 2. A summary highlighting the state-of-the-art deep learning methods. Note that the "-" entries indicate missing information or unavailable 
results for certain studies. 

Study 
Deep Learning 

Technique 
Dataset Accuracy Sensitivity Specificity 

M. Shaban (2021) 

[12] 

Artificial Neural 

Network (ANN) 

EEG Samples (110 

subjects) 
98% 97% 100% 

M. Sivakumar, A. 

H. Christinal and 

S. Jebasingh 

(2021) [13] 

LeNet and Long 

Short-Term Memory 

(LSTM) 

102 spiral drawings - - - 

Savitha S. 

Upadhya et al. 

(2018) [14] 

Deep Neural 

Network (DNN) 

PD patients and 

controls (500 each) 
98%   

Butt et al. (2020) 

[15] 
BLSTM Self-collected 82.94% 92.3% 76.2% 

Kaur et al. (2022) 

[16] 

Multi-view vision-

based DL models 

MS patients, PD 

patients, and healthy 

older adults (33 

participants) 

MSResNet: 

100% 
- - 

Aşuroğlu and Oğul 

(2022) [17] 

Hybrid DL model 

(CNN and Locally 

Weighted Random 

Forest) 

Gaitpdb (Parkinson's 

Disease Database) 
99.5% 98.7% 99.1% 

Atri et al. (2022) 

[18] 
DL using sensor data 

PPMI dataset (7 PD 

patients, 4 HCs) 
90% - - 

 

III. PROPOSED SOLUTION 

In this study, we propose a markerless vision-based gait analysis system which is based on human pose estimation 

(HPE). The overall process flow of the proposed approach is illustrated in Figure 1. 
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Figure 1. Overall process flow of proposed solution. 

A. Data Collection 

i. Subjects and Locations 

Gait videos were recorded from a total of 38 subjects in this study. Among them, 25 were healthy adults, 11 were 

normal patients, and the remaining subjects were diagnosed with Parkinson's disease (PD). The participant group 

consisted of 18 females and 20 males, with an average age of 40.98 ± 26.51 years. The gait video capture process for 

the healthy adult participants took place at Multimedia University Melaka campus (MMU). These individuals were 

either students or janitors affiliated with MMU. To ensure convenience and accessibility, the gait video collection was 

conducted within the premises of MMU. 

For the normal patients, the gait videos were collected at University Malaya Medical Centre (UMMC) in collaboration 

with a professional specialist at UMMC. With the help of the specialist, the gait videos capture process went smoothly. 

In the case of PD patients, we conducted the video recordings in the comfort of their own homes. This decision was 

made to address the challenges and limitations faced by PD patients, especially in terms of mobility. 

All participants were provided with comprehensive information about the nature of the study, including the methods 

used, potential risks, adverse effects, and possible complications, before participating in the study. They were fully 

informed about the purpose and objectives of the study. Each participant was required to complete an online consent 

form, explicitly stating their willingness to take part in this study and their acknowledgment and acceptance of the 
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study's terms and conditions. Additionally, we requested some basic personal information, such as identity card 

numbers, as well as details about their height and weight. 

ii. Gait Test Task 

In this study, Timed Up and Go test (TUG) [19] was selected for participants to perform during gait video capturing 

to assess their mobility and functional ability. TUG incorporates different gait activities such as standing up from a 

chair, turning around and walking which is more comprehensive compared to other gait tests. A typical TUG 

configuration was used in which subjects were requested to stand up from their chair, walk 3 meters, turn around, 

walk back to their seat, and sit down.  

In order for participants to have a clearer understanding of the proper ways to perform TUG, we prepared a 

demonstration video with detailed instructions clearly written on the screen. In addition, the start and end points of 

the TUG were marked with masking tape to provide visual cues for participants. The following verbal instructions 

were also directed to them: 

1. “When you hear the words “1 2 3 go”, please stand up from your chair.”  

2. “After that, please walk to the marked line on the floor at your normal pace.”  

3. “When you have crossed that line, please turn around and walk back to your chair.”  

iii. Shooting Site Configuration 

A shooting site configuration plan (refer to Figure 2) was outlined to maintain consistency in the captured gait videos. 

For our data collection, two tripod-mounted smartphone cameras were placed in front and the right side of the 

participants. The masking tape used to mark the start and end points is used as a reference to measure the distance 

between the two smartphone cameras and the walking path. During each data collection setup, the length of the 

masking tape will be fixed at 0.6 meters. Then, 1.7 meters is measured from the starting point and the result will be 

used to measure 1.65 meters laterally to place the camera for side angle capturing. While the front view camera will 

be placed at a distance of 2.2 meters from the center of the ending point. The complete shooting site configuration 

plan is sketched in the figure below. 

 

Figure 2. Shooting site configuration plan. 
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            (a) Side-view video                           (b) Front-view video 

Figure 3. Example of captured gait videos 

However, due to the insufficient space, the distance between the camera and the walking path will vary to ensure that 

the complete gait activities of the participants are captured. This occurs mainly when recording gait videos for normal 

patients in the consultation room at UMMC. In this case, the walking path of the TUG is forced to be oriented 

diagonally such that there is enough distance for the camera to be placed in front of the walking path. The camera for 

the side angle will be placed in the corner of the room and adjusted to be able to capture the complete gait cycle for 

the entire gait test (refer to Figure 3). 

iv. Online Dataset 

Due to the insufficient number of gait videos collected in our dataset, we expanded our collection efforts by including 

gait videos sourced from popular video sharing platforms, which are YouTube and Bilibili. We eventually collected 

142 videos of PD patients and 150 videos of normal people. Consequently, our final dataset is composed of gait videos 

of 144 subjects with PD and 186 subjects without PD. 

C. Video Pre-Processing 

As the gait video shooting process was conducted in public places, the presence of passersby in the video was 

unavoidable. The walking pattern and characteristics of these passersby will interfere with each other resulting in 

anomalies in the data. Therefore, we pre-processed the original video to ensure the video consisted of only one subject. 

We achieved this by covering all the passersby in each frame with black boxes using video editing software. 

      

Figure 4. Presence of passer-by causing data anomalies and results after black box coverage of passer-by. 
(Red points indicate the coordinates of the key points selected in the feature extraction) 

For the online video, the presence of multiple people in the video occurs more frequently and the process of covering 

them with a black box becomes trickier. This is due to the uncontrollable nature of the recording conditions of online 

video, which results in the presence of people walking very close to the subject or passing by the camera and blocking 

the view of the camera. In this case, we blocked certain parts of the person who was very close to the subject. In this 

way, although the HPE will still be able to identify the person, the confidence score will be relatively low and can be 

filtered out in comparison with the confidence score of the subject (refer to Figure 4). 

D. Human Pose Estimation 

Although the marker-based gait analysis system could reliably determine the position of markers on the body with a 

precision of approximately 1 millimeter [20] the attached markers on the body often caused discomfort for the subjects, 
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thereby resulting in unnatural movements. The markerless approach has become an attractive trend in gait analysis by 

eliminating the time-consuming subject preparation often associated with marker-based systems, reducing the cost of 

expensive equipment or laborious manual processing of the data involved, improving subject comfort, and promoting 

more natural movements during analysis [21]. To achieve markerless motion capture, we perform human pose 

estimation by using AlphaPose, a real-time multi-person pose estimation software that detects and tracks the poses of 

multiple people in images and videos. 

AlphaPose adopted a top-down approach to perform accurate human pose estimation. Typically, AlphaPose starts by 

detecting individuals in an image or video frame and generating bounding boxes around them. Then, it proceeds to 

estimate their body joint position and pose. For each gait video we collected, AlphaPose outputted a video with pose 

tracking of the person and a JavaScript Object Notation (JSON) file. The JSON file consisted of the coordinates of 

key points in each frame that represent the skeleton joints of the examined persons. A total of 136 key points were 

generated by the AlphPose, 26 of which are related to the human body, 68 to the face and 42 to the hands. Each key 

point consists of three elements, which were in the order of the coordinate on the x-axis, the coordinate on the y-axis, 

and its confidence score. 

E. Features Extraction 

As gait difficulties were one of the main motor symptoms of PD, we extracted five gait-related features from the 

coordinates of the obtained skeletal key points. They were the stride length of the left and right foot, cadence, gait 

speed, duration of turning, and steps taken during turn. We divided the feature extraction process into three consecutive 

parts, which were walking detection, followed by turning detection, and eventually stride segmentation. 

Since the TUG task involved the subject's transition from sitting to walking and back to sitting, it was crucial to 

determine the specific frame numbers in which the subject walked before the stride segmentation process to ensure 

accurate detection of strides. This was because by focusing on the periods in which the subject walked and excluding 

the frames in which the subject sat, we can minimize the detection of spurious or noisy strides that might occur when 

the subject was at rest. In addition, the implementation of walking detection provided the advantage of achieving fully 

automated feature extraction in subject-only shooting environments. This eliminated the need to manually remove the 

initial and final segments of the video because the walking detection algorithm can accurately identify specific periods 

of walking. 

Turning while walking was a common motor symptom observed in patients with PD, characterized by difficulties in 

changing direction [22-24]. The extraction of information about the turning period could be valuable to distinguish 

PD patients from non-PD subjects. Therefore, after walking detection, we applied a turning detection algorithm to 

accurately recognize the frame number corresponding to the beginning and ending of the subject's turning period in 

order to be able to extract valuable features about their turns. 

After determining the frame numbers of subject’s walking and turning, we obtained two walking sequences in opposite 

directions, which are forward and backward as observed from the front view. Specifically, the subject's walking 

sequence was categorized as forward after the starting of walking and before the turning period, while it was 

categorized as backward after the turning period and before sitting back into the chair. We then performed the stride 

segmentation separately on these two sequences. The detected strides were then further used to compute other gait 

features. 

To facilitate walking detection and stride segmentation, we utilized the subject’s side-view video. The side angle 

provided a beneficial perspective for accurate identification and analysis of the subject's walking patterns and strides. 

However, to determine the turn period of the subject, we utilized the subject’s front-view video as the front angle 

provided clearer depiction of hip and shoulder orientation, which was important in turning detection. The detailed 

implementation of the detection and segmentation algorithms would be explained in the following subsections. 

i. Walking Detection 

As the camera for side angle is always positioned on the right side of the subject, we considered the bending degree 

of the subject's right foot to determine the sitting stage. The coordinates of the ankle, knee, and right hip key points 

estimated from the subject’s side-view video were taken and the angle in degrees between them was calculated. Then, 

we defined a threshold value of 150°. If the angle between the ankle, knee, and right hip was greater than the threshold 

for the first time, it indicated that the subject had started walking. Conversely, when the angle was less than the 

threshold, we considered that the subject had sat back down in the chair. Illustrations are given in Figure 5. To ensure 
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accurate detection, we further verified this by comparing the duration of the video with its’ overall time. If the angle 

remained below the threshold and the video had exceeded 80% of its total duration, we interpreted that this indicated 

that the subject had indeed started to sit back in the chair. 

       

  (a) Angle greater than 150° for the first time (b) Angle less than 150° and time exceeded 80% 

Figure 5. Result of walking detection algorithm.  
(a) indicated the subject had started walking. (b) indicated the subject had started sitting back to the chair. 

ii. Turning Detection 

To detect the subject’s turning period, the HPE results of the subject’s front-view video were used. After analyzing 

the video, we observed that the distance between the subject and the camera was the lowest during the subject’s turning 

period. This occurred because the subject was walking toward the camera before they started to turn around. In other 

words, we observed that at the beginning and the end of the turning period, the subjects appeared at their closest 

proximity to the camera, resulting in the largest visual presence. Thus, we exploited this observation to determine the 

subject's turning period. 

We first computed the differences in x-coordinates of two key point pairs, namely right and left hips as well as the 

right and left shoulders. The selection of these key point pairs was based on the observation that when a person 

intended to turn, the movement of the hips and shoulders tended to precede and initiate the turning movement. Then, 

we determined the maximum and minimum differences for the two key point pairs. The maximum difference indicated 

the widest length of the hips and shoulders, while the minimum difference also indicated the widest length due to the 

swapping of the left and right sides of the body during the turn. We took the average of the maximum and minimum 

hip and shoulder length to determine the optimal starting and ending frames of the subject's turning period, respectively. 

 

Figure 6. Results of turning detection algorithm for normal subject and PD patient. 
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Figure  6 illustrates the results of the turning detection algorithm that was applied to two different subjects, i.e., normal 

adult and PD patient. We observed a significant increase in the total number of frames during turning in PD patient, 

approximately five times greater than in normal subject. This significant difference highlighted the impact of PD on 

motor function, which contributed to the extended duration of the turning period, resulting in a higher number of 

frames. This led to our focus on extracting the subjects' turning features as well. The duration of the turning period in 

seconds was computed based on the frame numbers of the starting and ending frames. Specifically, referring to Eq 

(1): 

 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡

𝐹𝑃𝑆
(1) 

 

By subtracting the starting frame number 𝑡𝑠𝑡𝑎𝑟𝑡 from the ending frame number 𝑡𝑒𝑛𝑑, we obtained the total number of 

frames encompassing the turning period. This value was then divided by the frame rate of the video (FPS) to convert 

it into the corresponding duration in seconds. 

iii. Stride segmentation 

The walking sequence of the subjects was divided into two sequences as described in the previous section. The stride 

segmentation process was performed on both feet for both feet in each of these sequences as their opposite directions 

could potentially influence the results. The final gait features were derived by calculating the average value of the two 

sequences, considering both feet. In the following section, our focus was solely on the stride segmentation of the right 

foot in the forward sequences. 

The stride length was defined by the distance from heel contact of one foot to continuous heel contact of the same 

foot. Hence, we focus on the heel key point to segment the stride. Let ℎ = {𝑓𝑡 , 𝑦𝑡} denote the frame numbers and y-

coordinates of the heel key point in frame t. Then, we defined the stride as the local minima of the 𝑦𝑡  with a minimal 

horizontal distance between them, specifically set to FPS of the video. This ensures that the detected strides are at 

least one second apart to avoid considering adjacent local minima that may represent noise. However, we found the 

output data of AlphaPose was very noisy, therefore we smoothed the data by using Low Pass Butterworth Filter before 

the segmentation. The Butterworth filter had a cutoff value of 1, the sampling frequency was set to the FPS of the 

video, and the order of the filter was set to 5. Due to the exclusion of frames in which subjects were at rest and during 

the turning period, there was a possibility that the starting and ending stride could not be accurately segmented. To 

address this issue, a solution was implemented to add one stride at the beginning and end if no stride was detected 

within the first and last 10% of the walking distance. This additional step ensured that the starting and ending strides 

were appropriately captured, even if they were initially missed during the segmentation process. The Figure 7 shows 

the y-coordinate of ℎ𝑟𝑖𝑔ℎ𝑡  before and after smoothing as well as the detected right strides. 

 

 (a) Original data (b) After smoothing (c) Detected strides 

Figure 7. Stride segmentation 

We further derived the stride length, cadence, and gait speed from the detected strides. In terms of stride length, we 

first subtracted the difference of x-coordinate of every two successive detected strides which represents the distance 

in pixels between two strides. Considering that the distance between the subject and the camera changed in some 

videos, as described in section 3.1.3., instead of further converting the distance between the two strides into 

centimeters, we computed the ratio between the distance of the strides and the mean of subject's nose-to-hip height 
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over all frames. After that, we calculated the mean value as stride length of the subject. The computation process of 

the right stride length can be described as depicted in Eq (2) – Eq (6): 

 

(i) First, let 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑖𝑔ℎ𝑡 = {𝑑1, 𝑑2 … , 𝑑𝑛−1} where n equals to the number of the detected strides, and then 

we calculate the distance as:  

 

𝑑𝑖 = |𝑥𝑖 − 𝑥𝑖−1| (2) 

 

(ii) Calculate the of subject's nose-to-hip height, 𝑛𝑡ℎ: 

 

𝑛𝑡ℎ𝑡 =  𝑦𝑡
𝑛𝑜𝑠𝑒 − 𝑦𝑡

ℎ𝑖𝑝 (3) 

 

where t denotes the frame numbers, 𝑦𝑡
𝑛𝑜𝑠𝑒  is equal to the nose key point, and 𝑦𝑡

ℎ𝑖𝑝
 is the hip key point. 

 

(iii)  The mean of subject’s nose-to-hip height, 𝑛𝑡ℎ̅̅ ̅̅ ̅ can be found as: 

 

𝑛𝑡ℎ̅̅ ̅̅ ̅ =  
∑ 𝑛𝑡ℎ𝑖

𝑡
𝑖=1

𝑡
(4) 

 

(iv) Calculate the ratio, 𝑅𝑎𝑡𝑖𝑜𝑟𝑖𝑔ℎ𝑡 = {𝑟1, 𝑟2 … , 𝑟𝑛−1}: 

 

𝑟𝑖 =
𝑑𝑖

𝑛𝑡ℎ̅̅ ̅̅ ̅
(5) 

 

(v) Calculate the mean value of 𝑅𝑎𝑡𝑖𝑜𝑟𝑖𝑔ℎ𝑡, which is 𝑅𝑎𝑡𝑖𝑜𝑟𝑖𝑔ℎ𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ : 

 

𝑅𝑎𝑡𝑖𝑜𝑟𝑖𝑔ℎ𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  

∑ 𝑟𝑖
𝑛−1
𝑖=1

𝑛 − 1
(6) 

 

 The 𝑅𝑎𝑡𝑖𝑜𝑟𝑖𝑔ℎ𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅represent the right stride length of the subject. We repeated the same calculations for the left 

stride to obtain the left stride length, 𝑅𝑎𝑡𝑖𝑜𝑙𝑒𝑓𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

Cadence was defined as the number of steps per minute. In order to compute the cadence, we first need to determine 

the total number of steps taken. We achieved this by counting the strides of both the right and left feet and subtracting 

1 from each count due to the fact that two successive detected heel contacts form a single stride. Subsequently, the 

strides count for both feet were summed to obtain the total number of steps taken. For total time taken for walking, 

we considered the duration of the walking sequences. As the walking sequences were already segmented and 
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categorized, we had the specific frame numbers corresponding to the walking periods. By calculating the difference 

between the starting and ending frames of the walking sequences and then divided by FPS of the video, we obtained 

the total time taken in second for walking. We further converted the units to minutes. Then, we compute the cadence 

by taking the total number of steps divided by the total walking time, which can be written as below, referring to Eq 

(7) – Eq (9): 

𝐶𝑎𝑑𝑒𝑛𝑐𝑒 =  
𝑆𝑡𝑒𝑝𝑠

𝑇𝑖𝑚𝑒
(7) 

where 𝑆𝑡𝑒𝑝𝑠 is total number of steps, 

 

𝑆𝑡𝑒𝑝𝑠 = (𝑛𝑟𝑖𝑔ℎ𝑡 − 1) + (𝑛𝑙𝑒𝑓𝑡 − 1) (8) 

 

and 𝑇𝑖𝑚𝑒 refer to total time taken in minutes, 

 

𝑇𝑖𝑚𝑒 =
𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡

𝐹𝑃𝑆 ∗ 60
(9) 

 

Gait speed was defined as the distance covered per second [25]. As stated earlier, the extracted stride length was 

represented as a ratio between the distance of the strides and the mean of the subject's nose-to-hip height. Therefore, 

we defined the gait speed as the average ratio covered per second. The computation process for gait speed was similar 

to that of cadence. First, we obtained the mean ratio of both feet by averaging the ratios calculated for each foot. Then, 

we divided this mean ratio by the total walking time. The calculation of gait speed can be described as depicted in Eq 

(10) – Eq (12): 

𝑆𝑝𝑒𝑒𝑑 =
𝑅𝑎𝑡𝑖𝑜

𝑇𝑖𝑚𝑒
(10) 

 

where 𝑅𝑎𝑡𝑖𝑜 can be found as, 

𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑎𝑡𝑖𝑜𝑟𝑖𝑔ℎ𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑅𝑎𝑡𝑖𝑜𝑙𝑒𝑓𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

2
(11) 

 

and 𝑇𝑖𝑚𝑒 indicate total time taken in seconds,  

 

𝑇𝑖𝑚𝑒 =
𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡

𝐹𝑃𝑆
(12) 

 

In terms of the steps taken during the turn, we applied the same stride segmentation process to the turning period of 

the subject in order to segment the strides of both feet. After that, we extracted the number of steps using a similar 

approach as in the extraction process for cadence. However, since we did not include an additional stride at the 

beginning and end of the turning period, we did not subtract 1 from the total number of strides for each foot. In other 

words, the number of steps in the turn is equal to the sum of the left and right strides detected during the turn. In 

summary, steps taken during the turn can be found as shown in Eq (13): 
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𝑆𝑡𝑒𝑝𝑠 = 𝑛𝑟𝑖𝑔ℎ𝑡 + 𝑛𝑙𝑒𝑓𝑡 (13) 

iii. Online Dataset 

The gait feature extraction process for the online dataset was adjusted due to the variation in recording conditions 

present in the online video. These variations included differences in recording angles, camera movement, distance 

between the camera and the subject, and availability of turning periods. Therefore, we were unable to develop a general 

algorithm that could accurately detect the subject's turning periods. To address this issue, we manually labeled frame 

numbers indicating when the subject started and finished turning. For the videos that lacked any turning period, we 

assigned a null value to indicate the absence of such periods.  

Additionally, we implemented a different algorithm to calculate the total time taken for walking. Let ℎ𝑖 = {𝑓𝑡 , 𝑦𝑡} 

denote the detected right stride. To determine the total walking time, we first identified the minimum frame numbers 

between the first detected strides of both feet. Then, we determined the maximum frame numbers between the last 

detected strides of both feet. Afterwards, we computed the difference between these values and divided it by the FPS 

of the video to obtain the total walking time in seconds. The computation process can be expressed as in Eq (14): 

 

𝑇𝑖𝑚𝑒 =
𝑎𝑟𝑔𝑚𝑎𝑥(𝑡𝑛−1

𝑟𝑖𝑔ℎ𝑡
, 𝑡𝑛−1

𝑙𝑒𝑓𝑡
) −  𝑎𝑟𝑔𝑚𝑖𝑛(𝑡0

𝑟𝑖𝑔ℎ𝑡
, 𝑡0

𝑙𝑒𝑓𝑡
)

𝐹𝑃𝑆
(14) 

 

Admittedly, certain videos in our collected online dataset, featuring a front-view perspective, had led to inaccuracies 

in the computed stride length. Especially for normal people, their stride length was estimated to be extremely small. 

To address this problem, we considered an alternative approach to compute their stride length. We modified the 

original method of subtracting x-coordinates to instead subtracting y-coordinates. This modification was based on our 

observation that, in certain cases, the y-coordinate movement provided more reliable and informative data for 

estimating stride length. However, this alternative approach did not completely resolve the issue of inaccurate stride 

length. Therefore, we replaced the stride length with the results of the new approach only when the computed value 

exceeded the original stride length. 

IV. EXPERIMENTAL RESULTS 

A. Experiment Setup 

Our dataset comprised 6 gait features extracted from a total of 330 subjects, as detailed in the previous section. In the 

following section, we will use the following terms to denote the extracted gait features, which are ratioR (right stride 

length), ratioL (left stride length), cadence (cadence), mean_speed (gait speed), turning_duration (duration of turning 

period) and turning_steps (number of steps taken during).  

We handled the missing values in our dataset by filling in the median values. Then, we divided our dataset into training 

and testing subsets using a ratio of 80% for training and 20% for testing. To maintain consistency and reproducibility, 

we set a fixed random state value of 42 during the dataset split as well as the subsequent models training in the 

following section. After splitting, the training subset included 264 subjects, while the test subset consisted of 66 

subjects. To address the varying range of values exhibited in our dataset, we performed feature scaling by using the 

standard scaler method to normalize our data. Then, we trained all the models using this dataset. 

B. Overall performance of classification models 

In this study, we implemented seven machine learning algorithms to classify PD patients and non-PD subjects. The 

algorithms used were Logistic Regression (LR), Random Forest (RF), K-Nearest Neighbors (KNN), Decision Tree 

(DT), eXtreme Gradient Boosting (XGB), Support Vector Machine (SVM), and Multilayer Perceptron (MLP). All 

algorithms were trained on the same dataset, and the random state was set to 42. We optimized the algorithms by 

performing hyperparameter tuning using the grid search method with 4-fold cross-validation. The training accuracy 

of all algorithms is summarized in the Table 3 below. 
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Table 3. Training accuracy of every algorithm 

Algorithms Hyperparameters used Accuracy 

LR {'C': 0.01, 'fit_intercept': True, 'max_iter': 1000, 'penalty': 'none', 'solver': 'sag'} 0.834 

RF {'max_depth': 10, 'min_samples_leaf': 5, 'n_estimators': 100} 0.859 

KNN {'leaf_size': 1, 'n_neighbors': 5} 0.826 

DT {'max_depth': 5, 'min_samples_leaf': 10, 'splitter': 'best'} 0.856 

XGB {'booster': 'gbtree', 'gamma': 0.1, 'learning_rate': 0.05, 'max_depth': 7, 'n_estimators': 

500, 'reg_alpha': 1, 'reg_lambda': 0.01} 

0.875 

SVM {'C': 10, 'gamma': 0.1, 'kernel': 'rbf'} 0.841 

MLP {'activation': 'relu', 'hidden_layer_sizes': (200, 1000), 'max_iter': 200, 'solver': 'adam'} 0.844 

 

We observed that the gradient boosting algorithm XGB was outperforming other algorithms in terms of training 

accuracy. Therefore, we used XGB algorithm to perform classification on the testing dataset. The performance of the 

selected algorithm on testing dataset is shown in the following classification report (Table 4). Class 0 indicates the 

non-PD subject while class 1 indicates PD patients. 

Table 4. Classification report of XGB on testing dataset 

Algorithm Accuracy Class Precision Recall F1-Score 

XGB 0.879 

0 0.903 0.848 0.875 

1 0.857 0.909 0.882 

Average: 0.880 0.879 0.879 

 

The XGB algorithm achieved an accuracy of 0.879 when classifying the testing dataset. When considering the class 

of non-PD subjects, it exhibited a precision of 0.903, a recall of 0.848, and an F1-score of 0.875. Regarding PD patients, 

the algorithm attained a precision of 0.857, a recall of 0.909, and an F1-score of 0.882. Taking both classes into 

account, the average precision, recall, and F1-score were 0.880, 0.879, and 0.879, respectively. 

C. Features investigating 

In order to identify the most informative and relevant gait features that contribute to the predictive accuracy of the PD 

classification model, we conducted a features investigation to analyze the characteristics and properties of the gait 

features in our dataset. 
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Figure 8. Box plot of the extracted features 

In Figure 8, we visually represented the distribution and central tendency spread of each extracted gait feature from 

our dataset. It was observed that there was significant overlap in the distribution of data between the two classes. 

Specifically, by observing the median value, for features such as ratioR, ratioL, cadence, and mean_speed, 

approximately 50% of the non-PD subjects' data fell within the same distribution as that of the PD patients' class. We 

believed that this overlap occurred due to limitations in our gait features extraction algorithms, which was affected by 

the uncontrollable recording conditions of the online videos. Factors such as horizontal camera movement or shaking 

resulted in increased distances in the x-coordinates of detected strides, camera shaking in an upward direction led to 

incorrect stride detection. Moreover, many videos in the online dataset only provided front-view perspectives, lacking 

crucial depth information for accurate gait analysis. Although there was a significant overlap in our dataset regarding 

these issues, the non-PD class generally exhibited larger median values, maximum values, and values for the third 

quartile (Q3) compared to the PD class, except cadence. This observation is consistent with the findings of other 

studies in which patients with PD tend to have slower gait speed and shorter stride length.  

In terms of turning_duration and turning_steps, due to a shortage of the videos that showcasing normal subjects turning 

in the online dataset, the majority of data for non-PD subjects was represented by the median value of the dataset. 

Therefore, in our further analysis of turning features, we focused only on the data that does not contain any null values. 
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Figure 9. Box plot of turning features after removing data containing null values. 

After removing the data containing null values, a notable observation is the distinct separation in data distribution for 

the two turning features across the two classes, as shown in Figure 9. For example, the minimum value of 

turning_duration for the PD class exceeded the median value of the non-PD class, while the maximum value of turning 

steps for the non-PD class fell below the first quartile (Q1) of the PD class. We believe that this significant difference 

in the data distribution of turning features could greatly improve the classification performance in PD patients. 

D. Effect of different features on classification performance 

In this section, the impact of the extracted gait features on classification performance will be analysed and compared. 

We retrained the XGB classifier using each single gait feature and recorded its performance on the testing dataset. 

The results are presented in the following Table 5. 

Table 5. Performance of stand-alone gait features. 

Gait features Accuracy Class Precision Recall F1-score 

ratioR 0.773 

0 0.725 0.879 0.795 

1 0.846 0.667 0.746 

Average: 0.786 0.773 0.770 

ratioL 0.788 

0 0.757 0.848 0.800 

1 0.828 0.727 0.774 

Average: 0.792 0.788 0.787 

cadence 0.591 

0 0.583 0.636 0.609 

1 0.600 0.545 0.571 

Average: 0.592 0.591 0.590 

mean_speed 0.818 

0 0.818 0.818 0.818 

1 0.818 0.818 0.818 

Average: 0.818 0.818 0.818 

turning_duration 0.652 

0 0.604 0.879 0.716 

1 0.778 0.424 0.549 

Average: 0.691 0.652 0.633 

turning_steps 0.636 

0 0.582 0.970 0.727 

1 0.909 0.303 0.455 

Average: 0.745 0.636 0.591 

 

In the above Table 5, we found that the classification model trained with mean_speed obtained the highest overall 

performance, while the overall performance was the lowest for the model trained with cadence. This aligns with what 
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was observed in Figure 8, where the data distribution of mean_speed was the most pronounced and the data distribution 

of the cadence was most overlapped. Furthermore, the precision of turning_steps for the PD patients’ class was 

exceptionally high, surpassing even the precision of the original classification model trained on all gait features. This 

result highlighted the significant impact of the turning_steps feature in accurately identifying true PD patients.  

We further experimented with different combinations of gait features to investigate their impact on classification 

performance. The resulting classification accuracy on the testing dataset was recorded and summarized in the 

following Table 6. 

Table 6. Performance of different combinations of gait features 

Gait features 
Accuracy 

ratioR ratioL cadence mean_speed turning_duration turning_steps 

✔ ✖ ✖ ✖ ✖ ✖ 0.773 

✔ ✔ ✖ ✖ ✖ ✖ 0.788 

✔ ✔ ✔ ✖ ✖ ✖ 0.697 

✔ ✔ ✔ ✔ ✖ ✖ 0.803 

✔ ✔ ✔ ✔ ✔ ✖ 0.864 

✔ ✔ ✔ ✔ ✔ ✔ 0.879 

 

As we progressively included more gait features during the training process, we observed a general trend of improving 

accuracy. However, the inclusion of the cadence feature resulted in a drop in accuracy by 0.091. This decrease can be 

attributed to the confusion caused by cadence due to its overlapped data distribution between two classes, as described 

previously. Hence, we exclude the cadence from the model to determine if the accuracy of the classification model 

could be improved without the inclusion of cadence. 

Table 7. Classification performance on testing dataset after excluding cadence. 

Algorithm Accuracy Class Precision Recall F1-Score 

XGB 0.894 

0 0.882 0.909 0.896 

1 0.906 0.879 0.892 

Average: 0.894 0.894 0.894 

 

As shown in Table 7, the accuracy of the classification model improved slightly after removing the cadence in the 

training process. The precision of class 0 and the recall of class 1 were slightly decreased. This means that the number 

of actual PD patients incorrectly classified as non-PD subjects has slightly increased. On the other hand, the precision 

of class 1 and recall of class 0 were improved due to a slight decrease in the number of actual non-PD subjects being 

misclassified as PD patients. As the overall performance improved, we concluded that this modified model would be 

considered as our final classification model. 

V. CONCLUSION 

This paper presents a novel approach to detect neurodegenerative disorders through vision-based gait analysis. To 

collect data for our study, we asked our participants to perform TUG test and their walking patterns were recorded by 

using two smartphones. Then, we used a pose estimation tool called AlphaPose to estimate the human pose of the 

subjects from these videos. Gait features such as stride length, cadence, gait speed, turning duration, and the number 

of steps taken during turning were extracted from the estimated human pose. In our experiment, we trained a variety 

of conventional machine learning classifiers, including K-Neighbors, Random Forest, XGB, SVM, Decision Tree, 

Logistic Regression, and MLP, using the extracted gait features. These classifiers were then evaluated based on their 

training dataset accuracy. Among them, the XGB classifier outperformed others with a training accuracy of 87.5% 

and was selected for classification on the testing dataset, where it achieved an accuracy of 87.87%. To further improve 

the performance, we investigated the extracted features. We observed a significant difference in the data distribution 

of the turning features. However, due to the lack of videos capturing the subjects’ turning movements in our dataset, 
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these turning features did not significantly improve the classification performance of our classifier. Furthermore, our 

findings revealed that gait speed was the most significant feature in classification and including cadence as a feature 

had caused confusion in the classification process of our classifier. By removing cadence from the classification model, 

the XGB classifier achieved the highest accuracy of 89.39%. In conclusion, this study showed the positive potential 

of a markerless vision-based gait analysis system for PD detection. 
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