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Abstract - In today's technological landscape, the convergence of the Internet of Things (IoT) with various industries 

showcases the march of progress. This coming together involves combining diverse data streams from different sources and 

transmitting processed data in real-time. This empowers stakeholders to make quick and informed decisions, especially in 

areas like smart cities, healthcare, and industrial automation, where efficiency gains are evident. However, with this 

convergence comes a challenge – the large amount of data generated by IoT devices. This data overload makes processing and 

transmitting information efficiently a significant hurdle, potentially undermining the benefits of this union. To tackle this issue, 

we introduce "Beyond Orion," a novel lossless compression method designed to optimize data compression in IoT systems. 

The algorithm employs advanced techniques such as Lempel Ziv-Welch and Huffman encoding, while also integrating 

strategies like pipelining, parallelism, and serialization for greater efficiency and lower resource usage. Through rigorous 

experimentation, we demonstrate the effectiveness of Beyond Orion. The results show impressive data reduction, with up to 

99% across various datasets, and compression factors as high as 7694.13. Comparative tests highlight the algorithm's prowess, 

achieving savings of 72% and compression factor of 3.53. These findings have significant implications. They promise 

improved data handling, more effective decision-making, and optimized resource allocation across a range of IoT applications. 

By addressing the challenge of data volume, Beyond Orion emerges as a significant advancement in IoT data management, 

marking a substantial step towards realizing the full potential of IoT technology. 
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I. INTRODUCTION  

The convergence between the Internet of Things (IoT) and various industries has brought about significant 

advancements in connectivity and data exchange as defined by [1]. IoT refers to a system of interconnected 

physical devices, vehicles, buildings, and objects that collect and exchange data over the internet [2]. By 

embedding computing devices with sensors, software, and communication technologies, IoT enables seamless 

communication and automation, revolutionizing industries such as smart cities, healthcare, and industrial 

automation [3]. The potential applications of IoT are vast and diverse. In smart cities, IoT enables efficient 

infrastructure management, optimized transportation systems, and enhanced public safety through interconnected 

devices and data driven decision-making. In healthcare, IoT facilitates remote patient monitoring, personalized 
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treatment, and improved access to medical services. Industrial automation benefits from IoT by enabling real-time 

monitoring, predictive maintenance, and enhanced operational efficiency as mentioned by [4]. The immense 

potential of IoT is evident in predictions by [5] which estimates that by 2030, there will be 500 billion connected 

devices worldwide. However, alongside the opportunities presented by this widespread adoption of IoT, there are 

implementation challenges that must be addressed. One of the prominent challenges associated with the 

deployment of IoT devices is the management of large volumes of real-time generated data is what [6] concluded 

in their research. This poses significant computational and bandwidth limitations, which directly impact the 

efficiency of data processing and transmission. In resource-critical scenarios like disaster monitoring and patient 

care, the ability to make instant decisions based on this data becomes crucial. However, the scale of data generated 

poses constraints that need to be addressed for seamless operation and optimal performance of IoT devices.  

Research by [6] also illustrates that, IoT devices face energy wastage due to idle listening, overhearing, packet 

overload, frequent switching, and over-emitting. These factors contribute to unnecessary energy consumption, 

collisions, higher data rates, and information loss. Resolving these issues is crucial for optimizing energy usage 

and improving overall system performance in IoT applications. In this paper, we will review the existing literature 

to provide a comprehensive overview of the current state of research in IoT data processing and compression 

techniques. We will examine the implications and limitations of current approaches, identifying the gaps in the 

literature and establishing the need for innovative solutions. Additionally, we will present the Beyond Orion 

compression scheme, a novel lossless compression algorithm developed from Lempel-Ziv, Huffman, and LZ-

Welch techniques. We will evaluate the performance of Beyond Orion through comprehensive experimentation 

and analysis, demonstrating its impressive data reduction capabilities. Furthermore, we will highlight the potential 

of Beyond Orion in expediting data collection, improving decision-making, and optimizing resource utilization in 

various IoT applications 

 

II. LITERATURE REVIEW  

Data compression serves the purpose of converting original information into a more compact format, facilitating 

efficient transmission and storage. Its origins can be traced back to Samuel Morse’s creation of Morse code in 

1838 as documented by [7]. [7] also states that Morse code utilized dots and dashes to represent letters, employing 

shorter sequences for frequently occurring letters. This ingenious approach minimized message size and 

transmission time. Since then, compression schemes have evolved, falling into two broad categories: lossy and 

lossless. In the existing literature on data compression, two main approaches are commonly discussed: lossless 

compression and lossy compression. Lossless compression techniques aim to reduce the file size while preserving 

all the information required for the reconstruction of the original data. On the other hand, lossy compression 

techniques permanently reduce the file size by eliminating redundant data, but at the cost of irretrievable loss of 

some information. It is important to note that in lossy compression, the removal of redundant data may impact the 

functionality of certain applications.  

Considering the specific context of the Internet of Things (IoT) environment, where data processing and decision 

making rely on the integrity of every bit of information, the use of lossless data compression becomes highly 

desirable. By ensuring that all bits are preserved, lossless compression techniques allow for accurate data analysis 

and reliable decision-making processes within IoT systems. It is worth mentioning that data can be characterized 

in various ways, leading to the development of diverse data compression techniques. Researchers have proposed 

different algorithms and methods to address the specific needs and challenges of IoT data compression. Hence, it 

becomes crucial for future researchers to evaluate and compare the existing methods in order to choose the most 

suitable algorithms that can effectively enhance the efficiency of IoT devices. 

An approach utilizing a simple data compression algorithm, as proposed by [8], addresses the challenges of 

memory usage and computational complexity in IoT devices, specifically focusing on developing a tailored 

lossless compression technique for IoT nodes. The research conducted an analysis on Motiev’s Tmote sensor 

nodes to evaluate the impact of their compression scheme. The findings of the study demonstrated promising 

results in terms of compression ratios. The proposed algorithm achieved compression ratios of 66.69% and 

76.33%, which significantly outperformed other compression techniques such as S-LZW, gzip, and bzip2. These 

results indicate the high performance of the compression algorithm in reducing the memory usage of IoT nodes. 

However, there are certain aspect that require further investigation. First, the research did not extensively explore 

the energy consumption and computational complexity of the proposed algorithm. It is crucial to assess these 

factors to gain a comprehensive understanding of the algorithm’s overall efficiency and feasibility in real-world 

IoT deployments. Moreover, the study did not evaluate the energy consumption during the research, which 

represents an important consideration in IoT environments where energy efficiency is a critical factor. Further 
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research should investigate the energy consumption of the proposed algorithm to determine its impact on the 

overall energy consumption of IoT nodes. Additionally, the study compared the proposed compression algorithm 

with techniques that are not commonly used within IoT nodes due to their computational complexity. To provide 

a more accurate evaluation of compression performance in the IoT domain, future research should focus on 

assessing the performance of compression standards specifically tailored for IoT applications. 

The research conducted [9] developed an adaptive compression scheme using S-LEC (sequential lossless entropy 

scheme) and S-LZW (sensor Lempel–Ziv–Welch) data compression schemes to reduce the total traffic power 

consumption in the cloud-based IoT network. The proposed scheme has the ability to choose the most energy-

efficient data compression method, taking into account factors such as the battery level and processing capability 

of the IoT device. In comparison to a non-compression scheme, the adaptive algorithm demonstrated energy 

savings of 33% and 40%. These savings can be attributed to a decrease in the number of hops and traffic load 

within the network, which enables the system to effectively handle increased traffic demand and prolong the 

lifespan of IoT devices by 50%. In a separate study by [10] conducted an investigation into the performance of an 

algorithm based on the Lempel-Ziv-Welch (LZW) technique. While the statistical variable-length Huffman 

method achieved a compression rate of 20% for text, the LZW algorithm demonstrated a compression range of 

40% to 60% for data. The research highlights the robustness of the LZW algorithm in compression and emphasizes 

the improvement in efficiency with larger codes. Both [9] [10] shed light on the potential of employing adaptive 

compression range. 

The study conducted by [11] focused on the analysis and implementation of the DCT (Discrete Cosine Transform) 

and DWT (Discrete Wavelet Transform) algorithms using the Tiny Operating System on the TelosB hardware 

platform. The experiment aimed to transmit multiple JPEG images between nodes and evaluate the compression 

results when the images were reconstructed during transmission. The performance of the compression techniques 

was assessed based on several metrics, including the signal-to noise ratio (PSNR), throughput, compression ratio, 

end-to-end delay, and battery lifetime. The results indicate that the DWT algorithm outperformed the DCT 

algorithm in terms of speed and energy consumption. This suggests that DWT is a more efficient compression 

technique for image compression. However, when the topology was changed and more intermediate nodes were 

introduced, both algorithms exhibited a deterioration in performance. This finding implies that these algorithms 

may not perform well in large-scale applications. Further investigation is needed to understand the impact of 

changing the topology in greater detail and to identify an algorithm that can deliver efficient data transmission 

regardless of external changes. Moreover, it is recommended to conduct further research in a more realistic 

environment to analyze the performance of the algorithms on a larger scale. Additionally, implementing the 

algorithms on other platforms can provide insights into their performance characteristics and suitability for 

different hardware configurations. These additional investigations can contribute to a more comprehensive 

understanding of the algorithms’ capabilities and limitations. 

The research by [12] conducted a study to explore a computationally lightweight algorithm for IoT devices derived 

from the LZW (Lempel Ziv Welch) scheme. The experiment was performed on a MICAz system, which operates 

on the Tiny Operating System specifically designed for devices with limited resources. The study utilized 

temperature readings collected over a period of 7 days from sensors. The performance evaluation of the algorithm 

focused on two key metrics: compression ratio and data communication energy. The results demonstrated that the 

algorithm achieved an energy efficiency of up to 85%, indicating its potential for reducing energy consumption 

in IoT devices. This highlights the effectiveness of the LZW algorithm as a lossless compression scheme for IoT 

applications. However, it is important to note that the study primarily focused on a specific dataset and operating 

conditions. Additional research is required to evaluate the algorithm's robustness and effectiveness in various 

scenarios, such as different data volumes and transmission frequencies. 

The algorithm known as Robust Information-Driven Architecture (RIDA), proposed by [13] aims to enhance 

compression by identifying correlations among data from groups of sensors. The authors of the algorithm make 

the assumption that if two nodes within the same cluster need to communicate, only a single hop will be required. 

RIDA comprises three main components: information-driven logical mapping, resiliency mechanism, and 

compression algorithm. In the information-driven logical mapping phase, nodes within the cluster exchange their 

readings and collectively learn patterns from the entire cluster. Once a pattern is identified, the resiliency 

mechanism detects any faulty nodes and isolates them from the rest of the nodes. The compression algorithm is 

then applied to the data. The researchers conducted tests on publicly accessible real-world datasets, utilizing both 

the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT) in the architecture. The results 

demonstrated that in ordinary multi-hop data networks, RIDA achieved energy savings of 30% and bandwidth 

savings ranging from 80% to 95%. Furthermore, after decompression, the original data could be restored with a 

low error rate of approximately 3%. However, it is important to note that these results may not be directly 

applicable to networks of mobile sensors, and the effectiveness of this approach in high data rate compression for 
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audio and video data remains unclear. Further research and experimentation would be necessary to evaluate the 

performance of RIDA in such scenarios. 

In the study presented in [14] the authors proposed a dynamic lossy compression method called Senscompr. Their 

approach involved reconstructing various sensor data using the Chebyshev approximation model. The Chebyshev 

approximation model helps eliminate redundant data. Additionally, the algorithm introduced dynamic block sizes 

as a solution to the limitations of fixed block sizes commonly used in compression methods. In another research 

work by [15], the focus was on addressing storage and precision issues in video streams. The authors employed a 

metric called Structural Similarity Index Measure (SSIM) to evaluate the redundancy of video frames. Only the 

frames that differed significantly from each other were stored, while redundant frames were discarded. The results 

of their study showed a 40% reduction in video size compared to the original uncompressed video. These studies 

highlight the effectiveness of dynamic compression techniques in reducing data size and eliminating redundancy.  

The Senscompr algorithm proposed in [14] leverages the Chebyshev approximation model, while the study in [15] 

utilizes the SSIM metric for video compression. To accurately assess energy efficiency in data compression, 

factors such as battery consumption rate and battery life need to be considered. These criteria provide insights 

into the energy consumption patterns of devices or nodes within an IoT network. By implementing data 

compression at the end nodes of the network, it is possible to improve battery consumption across the entire 

network, distribute the computational load between devices, and extend the overall battery life. A more 

comprehensive evaluation of data compression standards should include an analysis of energy consumption 

patterns, battery consumption rates, and the impact of compression algorithms on the battery life of IoT devices. 

By considering these factors, researchers can provide a more detailed understanding of the energy efficiency 

implications of different data compression techniques. This, in turn, can contribute to the development of more 

energy-efficient IoT systems and enhance the overall sustainability of IoT deployments. In conclusion, the 

literature review highlights the challenges associated with selecting the appropriate compression technique for 

low bandwidth IoT devices. The conventional approaches such as Huffman coding, Entropy coding, bit plane 

coding, and run-length coding exhibit limitations in terms of memory usage and computing power, making them 

unsuitable for resource-constrained IoT networks. The Z standard and dictionary-based techniques such as LZO, 

LZW, and LZ4 offer promising solutions due to their trade-offs between compression rates and ratios, as well as 

their computational efficiency. However, to address the limitations and enhance compression performance, a more 

comprehensive evaluation of these algorithms is required. Additionally, adopting a hybrid approach that combines 

the benefits of multiple compression techniques can offer a versatile tool for efficient data compression in low-

bandwidth IoT environments. 

 

III. RESEARCH METHODOLOGY  

The Beyond Orion algorithm, also known is a data compression technique that combines the concepts of Lempel-

Ziv77 compression, Huffman Coding, and Lempel-Ziv-Welch (LZW) compression. The algorithm aims to 

efficiently compress data by identifying repeated sequences, encoding them using variable-length codes, and 

further compressing the resulting code dictionaries. To begin with, the algorithm utilizes the Lempel-Ziv77 

approach to discover repeated sequences within the data stream. These sequences are represented as triplets, 

following the format. The” offset” denotes the number of steps required to traverse back in the data stream to 

locate the beginning of the current sequence. The” length” indicates the number of steps to progress from the 

current position to encompass the identified repeated sequence. Lastly, the” literal” refers to the value that 

immediately follows the repeated sequence. 

Upon the construction of these triplets, the algorithm proceeds to employ Huffman Coding to encode the shorter 

lists that represent the data stream. Huffman Coding generates code dictionaries, which contain mappings between 

the sequences and their respective variable-length codes. This step facilitates the compression of the data by 

assigning shorter codes to frequently occurring sequences and longer codes to less frequent ones, thereby 

achieving an optimal balance between compression efficiency and decoding complexity. To further compress the 

data, the LZW algorithm, specifically the lzw compress function, is employed. This phase compresses the code 

dictionaries generated by Huffman Coding, reducing their size and enhancing the overall compression ratio. The 

compressed data is subsequently stored as a tuple consisting of three integers (offset, length, and literal) and a 

dictionary featuring three keys (offset, length, and literal). By utilizing integer representations for the values, 

instead of string-based representations, the algorithm achieves better space-saving capabilities.  

Suppose the Beyond Orion algorithm is employed to compress the phrase “The cat chased the cat in the garden.” 

The algorithm utilizes the Lempel-Ziv77 approach to identify repeated sequences within the data stream. These 

sequences are represented as triplets in the format. The “offset” signifies the number of steps required to traverse 
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back in the data stream to locate the beginning of the current sequence. The “length” denotes the number of steps 

needed to progress from the current position to encompass the identified repeated sequence. Lastly, the “literal” 

refers to the value that immediately follows the repeated sequence. For example, one of the triplets in the 

compressed dictionary could be . Here, the ”10” indicates that the sequence” cat” was encountered 10 steps back 

in the data stream. The ”3” signifies that the sequence spans 3 steps, including the current position. The” in the 

garden.” represents the literal that follows the repeated sequence. To perform LZW compression, unique codes 

are assigned to each dictionary entry. For instance, the compressed dictionary could include the following entries: 

Compressed Dictionary:  

• Code: 1, Triplet: <10,3, “in the garden.”> 

• Code: 2, Triplet: < 4,3, “chased the”> 

• Code: 3:Triplet: <0,3, “The”> 

In this example, the dictionary entries are assigned numeric codes. The compressed data consists of the triplets 

and the compressed dictionary. The compressed data for the given phrase includes the triplets representing the 

repeated sequences along with the compressed dictionary. The triplet <10,3, “in the garden.”> can be represented 

by the code ”1”, < 4,3, “chased the”> by ”2”, and < 0,3, “The”> by ”3”. By using these codes, the original phrase 

is effectively represented and compressed, resulting in improved storage efficiency. By employing the Beyond 

Orion algorithm and subsequent LZW compression, the original phrase “The cat chased the cat in the garden.” 

can be efficiently compressed using triplets and a compressed dictionary, achieving enhanced storage efficiency.  

Note: The actual codes assigned to the dictionary entries may vary depending on the implementation and specific 

compression scenario. The Beyond Orion compression algorithm maps codes to values in a dictionary as it reads 

data from the stream. It constructs phrases and character sequences, assigning them codes in the dictionary. The 

algorithm can rebuild the dictionary during decompression. Beyond Orion is well-suited for compressing data 

streams due to its character-by character approach. During decoding, the dictionary is recreated using ASCII codes, 

and compressed data is translated back to its original text representation using the code dictionary. 

A. Performance Metrics 

i. Saving Percentage 

Saving percentage is a metric that measures the percentage reduction in file size achieved after compression. It 

provides an indication of space savings resulting from the compression operation. A higher saving percentage 

implies better algorithm performance. The calculation for the saving percentage according to [17] is as follows: 

Saving percentage = (
Uncompressed file size − Compressed file size

Uncompressed file size
) × 100 

ii. Compression Factor 

It represents the ratio between the size of the original data and the size after compression. A higher compression 

factor indicates more efficient compression. The calculation for compression factor according to [18] is as 

follows: 

Compression factor =
Uncompressed file size

Compressed file size
 

iii. Compression and decompression time 

Compression time is the duration of compression and decompression time is the duration of decompression. The 

time library in Python will serve as a reliable measurement tool to gauge the elapsed time for these operations. 

 

B. Testing Scenarios 

In this section, we outline the testing scenarios conducted to evaluate the performance of the Beyond Orion 

compression algorithm. The tests assess the robustness and reliability of the algorithm when compressing data of 

varying sizes. Two testing scenarios, the Standalone Test and the Comparative Test, were performed.In the 

Standalone Test, the Beyond Orion algorithm was independently tested in three iterations to measure its 

performance. Data frames of varying sizes were created, ranging from 12 Megabytes (MBs) in the first iteration 

then 120 megabytes in the second iteration and 1.2 Gigabytes (1200 MBs) in the third iteration. The data frames 
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were compressed, saved to text files, and then decompressed. Various metrics, including compression and 

decompression times, compression and decompression speeds, saving percentage and compression factor were 

calculated and analyzed. The results obtained from these calculations provided insights into the performance of 

the Beyond Orion algorithm.  

The Comparative Test aimed to compare the performance of the Beyond Orion algorithm against three other 

commonly used compression algorithms: LZ4, Zlib which is an abstraction fo the deflate algorithm, and LZMA 

an algorithm that is part of the Lempel Ziv family (Lempel-Ziv-Markov chain). The dataset used for this test 

comprised patient readings obtained from various hospitals worldwide, with a total size of 174 MBs. The results 

obtained from each compression algorithm were carefully examined and compared. By conducting these testing 

scenarios, we aimed to thoroughly evaluate the performance of the Beyond Orion compression algorithm in terms 

of compression and decompression times, speed, saving percentage and compression factor. The results obtained 

from these tests will provide insights into the effectiveness and efficiency of the Beyond Orion algorithm 

compared to other widely used compression algorithms. 

 

IV. RESULTS AND DISCUSSION  

When comparing the compression sizes relative to the original file size of 174.43 MBs, the Zlib algorithm 

achieved a compressed file size of 65.29 MBs, resulting in a compression factor of 2.67 which is highlighted in 

figure 1. LZMA had a compressed file size of 50.28 MBs, with a compression factor of 3.47. LZ4 resulted in a 

compressed file size of 113.22 MBs, corresponding to a compression factor of 1.54. Lastly, Beyond Orion 

achieved a compressed file size of 49.40 MBs, yielding a compression factor of 3.53. These compression factors 

provide an indication of the level of compression achieved by each algorithm in relation to the original file size. 

The findings comparing the compression sizes relative to the original file size of 174.43 MBs are summarized in 

figure 1 below. 

 

 

Figure 1. Performance of Compression Algorithms relative to Original 

 

The results of figure 2 reveal the saving percentage, Zlib achieved a 63% reduction in size, LZMA achieved 71%, 

LZ4 achieved 35%, and Beyond Orion achieved 72%. These percentages reflect the amount of space saved by 

each compression algorithm. The bar graph in figure 3 indicate the compression factor. Zlib was 0.37, for LZMA 

it was 0.29, for LZ4 it was 0.65, and for Beyond Orion it was 0.28. These ratios provide an indication of the 

effectiveness of the compression algorithms in reducing the file size. When assessing the compression and 

decompression time, figure 4 reveals that Zlib had a compression time of 13.43 seconds and a decompression time 
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of 4.34 seconds. LZMA had a compression time of 95.66 seconds and a decompression time of 26.55 seconds. 

LZ4 had a compression time of 5 seconds and a decompression time of 2.8 seconds. Beyond Orion had a 

compression time of 68.75 seconds and a decompression time of 118.17 seconds. These times reflect the speed at 

which the algorithms perform compression and decompression operations. 

 

 

Figure 2. Saving Percentage of the Algorithms 

 

 

Figure 3. Compression Factor of the algorithms 
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Figure 4. Compression and Decompression time of each algorithm 

In summary, the Zlib algorithm achieved a good compression factor and saving percentage, with relatively fast 

compression and decompression times. LZMA provided higher compression and saving percentages but at the 

cost of longer compression and decompression times. LZ4 had lower compression and saving percentages, but 

faster compression and decompression times. Beyond Orion achieved the highest compression factor and saving 

percentage, but with longer compression and decompression times. These results demonstrate the trade-offs and 

performance characteristics of each compression algorithm. Commencing the initial iteration in the standalone 

test, which entailed a data frame size of 12 MBs, the compressed file size achieved was a mere 0.00156 MBs as 

noted by figure 7. Notably, the compression process was completed in 0.48 seconds, while the subsequent 

decompression step required 0.17 seconds as shown in figure 6. Figure 6 also demonstrates a remarkable 

compression factor of 7694.13, these results indicate a significant level of compression attained. Furthermore, the 

saving percentage reached an impressive 99.98%, underscoring the substantial reduction in file size achieved. 

Advancing to the second iteration, involving a larger data frame size of 120 MBs, the compressed file size 

remained unchanged at 0.00156 MBs. 

 

 

Figure 5. Compression Factor of each iteration 
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However, the compression time extended to 4 seconds as shown in figure 6, whereas the decompression time 

decreased to 0.09 seconds. These adjustments resulted in a higher compression factor of 76924.90, signifying a 

further enhancement in the compression achieved when compared to the first iteration shown in figure 5. 

Impressively, the saving percentage remained consistent at 99.98%, affirming the continued substantial reduction 

in file size. Correspondingly, the compression factor increased to 1.29, reflecting the compressed file size relative 

to the original size. In the final iteration, the data frame size surged to 1200 MBs, while the compressed file size 

persisted at 0.00156 MBs, underscoring the algorithm’s efficiency in maintaining compression size consistency 

across varying data frame sizes. Nevertheless, the compression time notably increased to 67 seconds, reflecting 

the greater computational requirements for larger file sizes. Similarly, the decompression time was extended to 

1.3 seconds. Notably, the compression factor demonstrated a significant boost, reaching 769232.59, highlighting 

the algorithm’s remarkable ability to achieve higher levels of compression as the file size increases. The saving 

percentage depicted in figure 8 remained exceptionally high at 99.99% and these results demonstrate that the 

compression algorithm effectively reduces the file size across different data frame sizes, achieving high 

compression factors and saving percentages. 

 

 

Figure 6. Compression and decompression time 

In the standalone compression test, a notable finding emerged regarding the Beyond Orion algorithm’s 

performance. Figure 7 showed a clear trend that indciated the compressed file size remained consistent across 

different file sizes. For instance, when compressing a 12 MB file, the resulting compressed file size was 1.56 

kilobytes, which is approximately a thousand times smaller. This pattern persisted as the original file size 

increased to 120 MB and 1.2 Gigabytes (GBs), with the compressed file sizes becoming a thousand times and one 

hundred thousand times smaller, respectively. This consistency suggests that the Beyond Orion algorithm 

demonstrates remarkable resilience and effectiveness in handling large volumes of data. 
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Figure 7. Compressed file size and original file size for each iteration 

Similar conclusions can be drawn from the comparative test, where the Beyond Orion algorithm achieved the 

smallest compressed file size of 49 MBs, followed by LZMA at 50 MBs which is presented in figure 1. This 

finding indicates that the Beyond Orion algorithm outperforms other compression algorithms in terms of 

efficiency. An intriguing observation relates to the saving percentage observed in both tests. In the standalone test, 

a consistent saving percentage of 99% was achieved, while in the comparative test, the saving percentage reached 

71%, as illustrated in Figure 2 and 8. This implies that as the file size increases, the saving percentage also 

increases. This behavior can be attributed to the effective utilization of dictionary encoding and statistical 

techniques employed by the algorithm, which excel at identifying and compressing redundancies. Consequently, 

larger datasets exhibit higher saving percentages as more redundant data can be compressed together. 

 

 

Figure 8. Saving percentage for each iteration 
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Considering the compression factor, the Beyond Orion algorithm attained a factor of 3.53 in the comparative test 

and an impressive value of 7496.13 in the standalone test as shown in figure 3 and 5. Notably, lossy compression 

algorithms can introduce data reconstruction errors and computational complexity. Moreover, the Beyond Orion 

algorithm showcased superior performance by avoiding reconstruction errors, employing lossless compression 

techniques that preserve all data, and maintaining manageable computational complexity compared to other 

algorithms. These findings demonstrate the significant advantages and potential of the Beyond Orion algorithm 

in the field of data compression, especially when operating with large datasets and low-power IoT environments. 

 

V. CONCLUSION  

Despite the promising performance of the Beyond Orion compression algorithm, there are a few limitations and 

areas for further investigation that should be acknowledged. One notable limitation is the relatively slow 

compression time exhibited by the Beyond Orion algorithm. In the standalone test, the compression time increased 

by 733.33% from the second to the third iteration, and by 1575% from the second to the third iteration as visualized 

in figure 4 and 6. From the data in figure 4, the algorithm took 186 seconds to perform compression and 

decompression. These results indicate that as the file size increases, the compression and decompression time also 

increases. In IoT environments where real-time data transmission and processing are crucial, a compression time 

of 3 minutes is impractical and would introduce significant delays. To overcome this limitation, a possible solution 

could involve implementing a hierarchical architecture wherein nodes are organized in clusters and relay nodes 

are used to perform compression and decompression tasks. 

By overcoming the compression and decompression tasks to relay nodes, sensors would only be responsible for 

taking readings, thus reducing the overall compression and decompression time. Research by [19] and [20] 

suggests that the implementation of relay nodes can improve energy efficiency and data collection by acting as 

load balancers in the network, making them suitable for low-power IoT nodes. Furthermore, according to a study 

by [21], the optimal placement of relay nodes is found to be in the central position between the source and 

destination. The research also indicates that increasing the number of relay nodes can amplify the received signal 

and effectively retransmit it to the destination node. This amplification provided by relay nodes proves highly 

advantageous in reducing error rates. Additionally, these relay nodes can incorporate larger buffers, allowing for 

the compression and decompression of packets in a sequential manner, resulting in reduced overall network load 

and improved network performance. Further investigation is needed to address various questions raised by this 

research. For instance, it is important to determine the extent to which compression algorithms influence energy 

saving and energy usage. While it is assumed that compressing data leads to energy savings due to reduced data 

transmission, the implementation of energy-efficient algorithms does not guarantee an extended battery lifetime 

of a device [9] argues.  

Therefore, it is essential to measure the battery consumption with and without compression to quantify the energy 

efficiency gained from using a compression algorithm. Furthermore, conducting real-world experiments would 

provide more tangible results and validate the proof of concept. However, it should be noted that real-world 

experiments may not fully replicate all aspects of the real-world scenario, and the datasets used in this study may 

not fully represent real-world conditions. In summary, the Beyond Orion compression scheme is introduced as an 

innovative solution for IoT devices, offering superior compression factor and saving percentage compared to 

established algorithms like Zlib, LZMA, and LZ4. The algorithm demonstrates consistent performance across 

datasets of different sizes, indicating its potential application in IoT devices. However, it is necessary to address 

limitations related to compression time and explore opportunities for investigating energy efficiency. These areas 

present avenues for future research and improvement in this domain. 
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