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Abstract - Many blind individuals have difficulties in recognizing people’s facial expression which may impact their social 

interaction. With the recognition, the blind individuals can accurately interpret and respond to the emotions. There is a lack in the 

existing application with the combination of face and facial expressions recognition. The blind individuals have to rely on multiple 

applications to accomplish the same task, making it difficult and time-consuming for them to use. The paper aims to recognize 

faces and facial expressions for blind individuals and provides feedback in real-time. Three face detection algorithms of Haar 

Cascade Classifier, Dlib, and RetinaFace are compared. Dlib is chosen to process with Histogram of Oriented Gradients (HOG) 

and Support Vector Machine (SVM). It loads the pre-trained model, computes the HOG features, slide the window scanning at 

different scales, classify the windows using the SVM classifier, generate bounding boxes, and applying non-maximum suppression. 

ResNet50 architecture is employed to recognize face and Convolutional Neural Networks (CNN) is applied to recognize facial 

expression. The training accuracy is 70% and validation accuracy is 60%.  

Keywords— Face Recognition, Facial Expressions Recognition, ResNet50, Dlib, CNN, Model Training 

Received: 13 June 2023; Accepted: 20 August 2023; Published: 16 September 2023 

 

I. INTRODUCTION 

According to current estimates, there are 285 million people globally who are visually impaired, with 39 million being 

blind and 246 million having low vision. Especially blind people, they live a life in darkness and cannot experience 

life like a normal person. Blindness greatly hinders a broad range of daily activities, including recognising faces and 

facial expressions. When blind people do not have the ability to recognise known human individuals, this will make 

it more difficult for them to understand social nuances and minimise their opportunities to acquire appropriate social 

skills.  
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Effective communication is crucial for maintaining relationships. When two sighted people interact, a significant 

amount of information is conveyed through nonverbal cues such as gestures and facial expressions. Facial expression 

is widely linked to emotion and gives insight into the message being conveyed. Without sight, blind people do not 

understand people’s emotion during conversation with them. When there is any silence during the conversation, blind 

people will tend to feel uncomfortable because they cannot see facial expression.  

This paper applies ResNet50 Architecture to perform face recognition. ResNet50 can learn intricate features from 

large datasets and generalize well to unseen data. Its depth enables it to capture complex patterns, and its pre-trained 

weights from image classification tasks aid transfer learning. As compared to existing approaches such as FaceNet 

and VGGFace, Besides, Convolutional Neural Networks (CNN) to perform facial expression recognition. The 

networks use multiple layers of convolutions to extract and learn relevant patterns and features from images. The 

learned features are then to be employed for classification tasks for facial expression recognition. CNNs excel in 

capturing complex and abstract features, making them highly effective in tasks that require high-level feature 

representations like facial expression recognition. As compared to existing approaches such as traditional methods 

like Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) rely on handcrafted features, which 

might not capture the richness of facial expression patterns as effectively as CNN. In terms of generalization, CNN 

has demonstrated better generalization capabilities, enabling them to adapt to various expression variations and unseen 

data. In contrast, HOG and LBP may not generalize well to unseen expressions or diverse facial appearances. 

Next section will look into the literature review of the existing work. Section III is the proposed methodology. Section 

IV is the result generated by this paper. Section V will discuss the result before the conclusion on Section VI. 

 

II. LITERATURE REVIEW 

A. Facial Expressions Recognition Techniques 

In the works done by Islam et al. [1], the authors presented a novel approach for emotion recognition from facial 

expressions. Their method involved a combination of Histogram of Oriented Gradients (HOG) and Local Binary 

Patterns (LBP) to extract features from preprocessed input images. To effectively analyze the facial region, the authors 

proposed a segmentation method that divided it into four expression regions. Feature extraction was performed on 

these segmented regions using a fusion of HOG and LBP techniques. To reduce the feature vector's dimensionality, 

the authors employed Principal Component Analysis (PCA). For classification, a multiclass Support Vector Machine 

(SVM) was utilized. The performance evaluation of their method was conducted on three well-known datasets: JAFFE, 

CK+, and RaFD. 

Joseph  et al. [2] developed a Facial Expression Recognition model using the sequential model in Keras. The model 

comprised 10 convolutional layers, each paired with a corresponding max pooling layer. The number of kernels in 

each pair of convolutional layers increased incrementally, with 16 in the first pair, 32 in the second, 64 in the third, 

128 in the fourth, and finally 256 in the last pair. Training the model on the FER-2013 dataset resulted in an accuracy 

of 67.18% after 150 epochs. The model successfully classified input images into seven categories, which included 

happy, sad, angry, surprise, disgust, fear, and neutral expressions. 

Lin et al [3] proposed a continuous facial expression recognition model that focused on identifying emotion patterns 

over time. They combined Convolutional Neural Network (CNN) for image recognition with an enhanced version of 

Recurrent Neural Networks (RNN) known as Long Short-Term Memory (LSTM) to capture temporal properties in 

the data. The training data, sourced from the FER2013 dataset, underwent preprocessing and was used to train a basic 

facial expression classification model based on the CNN AlexNet architecture. To build the continuous facial 

expression classification model, the author utilized another dataset called RAVDESS from Zenodo, which was also 

preprocessed and fed into the previously trained facial expression classification model. The softmax layer in this model 

generated vectors for all the facial expression image frames. These vectors were then used as input data for the LSTM 

model, which aimed to identify patterns of emotional changes over time, enabling continuous facial expression 

recognition. The results showed that the normal facial expression classification model achieved an accuracy of 43.1%, 

while the their proposed continuous facial expression classification model achieves a significantly improved accuracy 

of 74.07%. 

Liu et al. [4] introduced a novel approach for Facial Expression Recognition (FER) in videos by incorporating a Graph 

Convolutional Network (GCN) layer into a CNN-RNN based model. This method utilized the GCN layer to extract 
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facial expression features that are more relevant and focus on specific regions. The sharing of information between 

the CNN features of different nodes allowed for improved feature extraction. The learned features from the GCN layer 

were then passed through a LSTM layer to capture long-term dependencies and model variations in the video 

sequences. To enhance the classification performance, a weight assignment mechanism was introduced, which 

assigned weights to the output of different nodes based on the intensity of expressions present in each frame. The 

proposed model was evaluated on three datasets: CK+ dataset, Oulu-CASIA dataset, and MMI dataset. 

Supta et al. [5] proposed an automated Facial Expression Recognition (FER) system that relied on Histogram of 

Oriented Gradients (HOG) and Support Vector Machine (SVM). This system was designed to recognize facial 

expressions in both static images and real-time scenarios. The process involved several steps: firstly, the system 

detected the face and its individual facial parts in the input image. Subsequently, preprocessing techniques such as 

histogram equalization and image sharpening were applied to mitigate illumination effects. Then, HOG was utilized 

to extract distinctive features from these facial regions, which were later combined into a single feature vector. Finally, 

the system employed SVM with a polynomial kernel function for accurate expression classification. The proposed 

FER system was evaluated on well-known databases, namely JAFFE and Cohn-Kanade, which contained seven basic 

facial expressions. 

Xu et al. [6] applied Graph Convolutional Neural Network (GCNN) for feature extraction and classification. GCNN 

classifier was implemented using PyTorch deep learning framework. Statistical information of local neighbourhood 

was calculated as a single vertex to reduce the complexity of the model in the output of pool layer. As a result, some 

of the output failed due to similar motion of mouth or facial expressions. 

Ullah et al. [7] conducted a comparative study between two facial landmark detection and feature extraction methods. 

The first approach employed traditional image processing techniques, such as histogram equalization, thresholding, 

color conversion, and morphological operations. The second method utilized the Dlib library for facial landmark 

detection. Both methods were evaluated using two classification algorithms: Support Vector Machine (SVM) and 

Multi-layer Perceptron (MLP). The evaluation was carried out on three facial expression databases: 10k US Adult 

Faces Database, the MUG Facial Expression Database, and a personal database. The main objective was to classify 

three different facial expressions: happiness, surprise, and neutrality. The pros and cons of the existing facial 

expressions recognition methods are summarized in Table 1. 

 

B. Face Recognition Techniques 

Convolutional Neural Network (CNN) was employed in facial recognition, utilizing the VGG16 architecture to create 

an unique set of weights for each face that becomes its representation for recognition purposes. The CNN was trained 

to differentiate between the relevant class for recognition and irrelevant class for artifact modeling in video streams. 

This led to an average accuracy rate of 90%. The training process for the CNN was crucial for the success of network 

training and the final recognition rate [9]. 

Local Binary Patterns Histogram (LBPH) algorithm [10] was further discussed and explored. The Local Binary Pattern 

Histogram (LBPH) algorithm had the capability to identify and classify images of both front and side faces within a 

given dataset. When it came to extracting facial features, the Local Binary Pattern (LBP) operation was employed to 

generate an image that effectively emphasized the distinctive qualities of the original image. 

The EigenFace, Fisher algorithm, and LBP algorithms were employed for face recognition [11]. In OpenCV, there 

were adjustable parameters such as the recognition threshold and feature points that could be set to improve the 

accuracy of face recognition. The EigenFace algorithm demonstrated a higher rate of recognition for standard images. 

When the training data was moderate, both the EigenFace and LBP algorithms exhibited relatively high recognition 

rates. However, if the training data was limited, the accuracy of the EigenFace algorithm might experience a slight 

decrease. 
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Table 1. Pros And Cons For The Existing Facial Expressions Recognition Techniques 

Existing 

Methods 

Pros Cons 

LBP • Low calculation cost 

• Resistance to fluctuations in image gray 

scale values 

• Limited discriminative power 

• Sensitivity to occlusion 

• Lack of interpretability 

HOG • Low false positive rate 

• Relatively fast 

• Low computational complexity 

• Limited to grayscale images 

• Sensitivity to orientation 

• Limited to facial recognition 

GCNN • Able to learn complex relationships 

between facial features and expressions 

• Able to handle large dan high-

dimensional data 

• Can be trained on a large dataset and 

generalize well on unseen data 

• Require significant 

computational resources 

and a substantial volume of 

training data 

• Prone to being affected by 

changes in lighting, pose, 

and other related factors 

• Can be affected by 

overfitting 

CNN • High accuracy in terms of recognition 

• Have the ability to autonomously learn 

and extract features from images. 

• Can be trained on large datasets 

• High computational cost 

• Slow to train for complex tasks 

SVM • Performs well in high-dimensional 

feature spaces, making it suitable for 

complex datasets with many features 

• Performs well even with limited training 

data. 

• Can be computationally 

expensive, especially when 

dealing with large datasets or a 

high number of features 

• May struggle with imbalanced 

datasets 

 

Sarwar et al [12] studied on the use of facial recognition technology to assist visually impaired individuals. The authors 

proposed a face recognition system that used the Local Binary Patterns Histograms (LBPH) algorithm. The authors 

of the paper claimed that their proposed system improved the accuracy of face recognition for visually impaired 

individuals compared to traditional methods, and that it could also be used to help individuals with other disabilities 

such as Down Syndrome, facial paralysis, and aging. The proposed system in the study used the LBPH algorithm for 

face recognition and was tested on two datasets. The first dataset contained images of visually impaired individuals 

and the system achieved an accuracy of 96.15%. The second dataset contained images of people with Down Syndrome, 

and the system achieved an accuracy of 95.5%. These results were promising and indicated that the LBPH algorithm 

might be an effective method for facial recognition for people with disabilities. The authors suggested that this 

technology could be used to improve accessibility and independence for visually impaired individuals in various 

settings, such as in homes, workplaces, and public spaces. 

Naik et al. [13] investigated the application of the LBPH algorithm for facial recognition. The authors proposed an 

implementation of the LBPH algorithm that could be run on a Graphics Processing Unit (GPU) in order to improve 

the speed and efficiency of the face recognition process. The authors of the paper claimed that their proposed 

implementation of the LBPH algorithm on a GPU was able to improve the speed of the face recognition process by 

up to 40 times compared to traditional methods that used a Central Processing Unit (CPU). Additionally, the authors 

claimed that the proposed system was able to achieve high accuracy rates for both frontal and side profile face 

recognition. The study included a dataset that included images of faces captured from both frontal and side profiles, 
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and the results showed that the proposed system had an accuracy of 98.5% for frontal faces and 96.5% for side profiles. 

The study's results were promising and suggested that the LBPH algorithm could be an effective method for facial 

recognition, and that implementing it on a GPU could greatly improve the speed and efficiency of the process. The 

authors suggested that this technology could be used in various applications such as security systems, human-computer 

interaction and biometric identification systems. 

Flores et al. [14] discussed the application of Local Binary Patterns Histograms (LBPH) for real-time face recognition. 

The authors presented a system combining LBPH for feature extraction and k-Nearest Neighbors (k-NN) classification 

to recognize faces in real-time with high accuracy. It handled variations in lighting, pose, and facial expressions and 

performed well with small datasets, making it suitable for practical use. Results from experiments using a 40-person 

dataset showed an accuracy of 98%. The system also achieved high accuracy on ORL and Yale face databases with 

96% and 93% respectively. The study's results were promising and suggested that the LBPH algorithm combined with 

k-NN classifier could be an effective method for real-time facial recognition. 

Wang et al. [15] presented a combination of Fisherface and machine learning techniques for improved facial 

recognition accuracy. The authors proposed using Fisherface with machine learning methods such as SVM and k-NN 

to enhance recognition performance. This combination reduced face image dimensionality while maintaining 

important facial features. The study results showed that the proposed algorithm had an accuracy of 98.26%, compared 

to 96.3% for the traditional Fisherface method. The proposed algorithm also performed well on standard datasets, 

ORL and Yale face, outperforming other state-of-the-art methods. The results suggested that the Fisherface-machine 

learning combination could be effective for facial recognition and had potential applications in security, biometric 

identification, and human-computer interaction. 

Rosnelly et al. [16] presented a study on the use of the Eigenface algorithm for facial recognition using a laptop camera. 

The authors of the paper claimed that their proposed system improved the accuracy of face recognition compared to 

traditional methods when using a laptop camera, which typically had lower resolution and worse lighting conditions 

than other types of cameras. The study focused on using the Eigenface algorithm for facial recognition through a 

laptop camera. The results showed an accuracy of 96.5% using a dataset of face images captured by the laptop camera. 

The Eigenface algorithm, being one of the first and most straightforward methods, represented an image by calculating 

the eigenvectors of the covariance matrix of a set of images. The results were encouraging and suggested that the 

Eigenface algorithm could be an efficient solution for facial recognition using a laptop camera. The authors suggested 

that this technology could be used in various settings, such as in homes, workplaces, and public spaces where the use 

of a laptop camera was common. 

Table 2. Pros And Cons For The Existing Face Recognition Techniques 

Existing 

Methods 

Pros Cons 

CNN • High accuracy 

• Robust to variations 

• Good at handling large and complex 

datasets 

• High computational 

cost 

• Requires large 

amount of data 

LBPH • Good texture descriptor performance 

• Image can be analyzed independently 

• Resistant to single-directional changes 

in the grayscale of an image 

• Has a low computational complexity 

• Able to recognise both side and front 

faces 

• Generates lengthy 

histograms which 

results in a slower 

recognition speed. 

• Not able to recognize 

faces that are rotated 

in the image. 

EigenFace • better 

performance  involving  small  databas

es  or training  sets 

• Prone to variations in 

lighting 
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• Raw intensity data are used directly for 

learning and recognition 

• Vulnerable to 

inaccuracies in pixel 

alignment 

• Susceptible to 

changes in pose and 

facial expressions 

Fisher 

algorithm 
• Able to project high-dimensional data 

onto a lower-dimensional space 

• Simple to implement and 

computationally efficient. 

• Do not require any assumption about 

the underlying data distribution 

• Sensitive to outliers 

and noise in the data 

• Sensitive to the 

scaling of the data 

ResNet50 • High recognition accuracy 

• Can differentiate between individuals 

with high precision 

• Suitable for real-time or near real-time 

face recognition applications 

• Requires significant 

computational 

resources for training 

and inference 

• Can be sensitive to 

the quality of the 

training data 

 

Mohite et al. [17] examined the use of thermal and visual facial recognition technology to enhance the accuracy of 

face recognition in various lighting and environmental conditions. The authors proposed a system that employed 

Eigenfaces and Transfer learning algorithms for face recognition. The authors used a pre-trained model trained on a 

large dataset of facial images, fine-tuning it with thermal and visual facial images to enhance its performance. The 

study claimed that their system led to improved face recognition accuracy compared to traditional methods, especially 

under varying lighting and environmental conditions. The system was tested using a dataset of thermal and visual face 

images, with results showing an accuracy of 99.2%, which was considered high. The study's results were promising 

and suggested that the combination of Eigenfaces and Transfer learning algorithm could be an effective method for 

facial recognition in different lighting and environmental conditions. The authors suggested that this technology could 

be used in various settings such as security, surveillance, and access control. 

Winarno et al. [18] presented a study on the use of facial recognition technology to create an attendance system. The 

authors proposed utilizing a combination of Convolutional Neural Networks (CNN) and Principal Component 

Analysis (PCA) to enhance the accuracy of face recognition. They claimed that by incorporating CNN-PCA, the 

recognition performance could be optimized in real-time camera scenarios where lighting conditions might not be 

optimal. The experiment involved a dataset of student images and yielded an accuracy of 98.87%. The system was 

also tested on a dataset that included images of students in varied lighting situations and achieved an accuracy of 

96.5%. The pros and cons of the existing face recognition methods are summarized in Table 2. 

 

III. RESEARCH METHODOLOGY 

A. Convolutional Neural Network (CNN) 

This paper applies CNN to extract relevant features from facial images. It composes of multiple layers of 

interconnected neurons, which processes the input data and learns to extract features at each layer [8][19]. The feature 

extraction layer is applied to identify specific patterns in the input data. The filters are implemented by performing a 

convolution operation on the input, which slides the filter over the input data and calculates the dot-product between 

the filter and the input data at each position. This process extracts unique features from the image and produces a 

feature map. The convolution operation is defined in Equation (1). 
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                                                       𝑋𝑗
𝑙 = 𝑓 (∑ 𝑋𝑖

𝑙−1 ∗  𝐾𝑖𝑗
𝑙 +  𝑏𝑗

𝑙
𝑖∈𝑀𝑗

)                                                      (1) 

where 𝑋𝑗
𝑙  represents the 𝑗 characteristic pattern of the 𝑙 layer. 𝐾𝑖𝑗

𝑙  is convolution kernel function, 𝑓(∙) is activation 

function, 𝑏𝑗
𝑙 is offset parameters. 

The C1 convolutional layer applies a 5*5 convolution filter to the input image with a size of 96*96 pixels. This results 

in a feature map size of (96-5+1)*(96-5+1) = 92*92, with each neuron covering a 5*5-pixel local sensing area. By 

using 32 different convolution kernels, 32 different local expression features are extracted, resulting in 32 feature 

maps. Each neuron in the same feature map shares the same weight, but is fed with input from different local receptive 

fields. The C2 layer performs convolution on the feature maps produced by the C1 layer, using 5*5 convolution kernels, 

producing 64 feature maps with a size of (92-5+1)*(92-5+1) = 88*88. The C3 convolutional layer then takes the 

feature maps produced by the pooling layer S1 and performs convolution with 128 5*5 convolution filters, resulting 

in 128 feature maps with a size of (44-5+1)*(44-5+1) = 40*40. 

As the number of convolutional layers increases, so does the dimensionality of the learned features. This can cause a 

problem when using all of the features to train the Softmax classifier. To address this issue, a pooling layer is added 

after the convolutional layer to reduce the input data dimensionality. This is achieved through max pooling. The 

pooling layer reduces the complexity of the model, prevent overfitting by reducing the feature dimension, and make 

the model more robust to small changes in the input data by filtering out noise and irrelevant information. The pooling 

process is depicted in Equation (2). 

                                                𝑋𝑗
𝑙 = 𝑓(𝛽𝑗

𝑙𝑑𝑜𝑤𝑛(𝑋𝑗
𝑙−1) +  𝑏𝑗

𝑙)                                                    (2) 

In the pooling layer S1, the feature maps output from convolution layer C2 are reduced in size by using a 2*2 window, 

resulting in feature maps of size 44*44 and a total of 64 feature maps remaining after downsampling. Similarly, in the 

pooling layer S2, the feature maps output from convolution layer C3 undergo downsampling, resulting in 128 feature 

maps with a size of 20*20. 

Next, a dense layer takes the output from the pooling layer and combines the input features using a linear combination 

of learned weights and biases to perform classification. The output from the pooling layer is transformed into a one-

dimensional array, which is then multiplied by a weight matrix to produce a new set of features. A bias term is added 

to the new features and an activation function is applied, resulting in the final output of the fully connected layer. This 

output is then passed onto the softmax layer classify the input data. 

Lastly, the Softmax Classifier evaluates the likelihood of an input belonging to each class. It has neurons that emit a 

score between 0 and 1, which represents the possibility of the input belonging to that specific class. The class with the 

highest probability score is chosen as the final prediction. 

The slight changes in the output of the previous layer caused by the activation function can have a compounding 

impact on the output of subsequent layers during training, leading to a shift in the distribution of both the training and 

test sets. To address this issue, this paper uses batch normalization to normalize the inputs, bringing their distributions 

closer to a standard normal distribution with a mean of 0 and a variance of 1. This effectively combats gradient 

disappearance, improving both the training process and the accuracy of the classifier. 

An Linear Correction Unit (LCU) takes the output of a layer and performs a linear correction on it by adding a bias 

term and scaling the result by a learnable factor. The correction helps adjust the output distribution so that it is better 

suited for the activation function used in the next layer. The bias and scale parameters are learned through 

backpropagation during the training process, allowing the network to adapt to the input data. 

To mitigate overfitting and improve generalization in Convolutional Neural Networks (CNNs), Dropout is employed 

to randomly dropping out a specified percentage of neurons in each layer during each forward pass. The dropout 

probability, which ranges from 0.5 to 0.8, is a tunable hyperparameter that can be adjusted for optimal performance.  
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B. Pre-trained Model using Dlib 

During the initial stages of application development, the Haar Cascade Classifier was utilized for face detection. This 

classifier is well-known and has been used for a long time. However, several issues arose when attempting to import 

cropped videos and apply face detection. The Haar Cascade Classifier tended to generate numerous false positive 

detections, incorrectly identifying non-human faces as human faces. Additionally, it was limited to detecting only 

frontal faces, making it incapable of detecting faces at odd angles. Consequently, it was challenging to identify videos 

where the classifier could accurately detect faces in each extracted frame. To address this problem, alternative face 

detection algorithms were thoroughly studied and examined from various perspectives. Three face detection 

algorithms were compared: Haar Cascade Classifier, Dlib, and RetinaFace. The comparison is shown in Table 3. 

 

Table 3. Comparison on The Three Face Detection Algorithms  

Aspects Haar Cascade 

Classifier 

Dlib 

(HOG + SVM) 

RetinaFace 

Speed (Per Image) 0.19s 0.28s 6.18s 

Work Under Occlusion No Yes (Slightly) Yes 

Accuracy 8/10 9/10 9/10 

Sensitive To Lighting Yes Yes (Slightly) No 

False Positives Yes No No 

 

Overall, the Dlib face detection outperforms the remaining algorithms. RetinaFace was the first to be excluded from 

this project due to its long processing time. Its speed of approximately 6 seconds to process a single image is too slow 

and reduce the effectiveness of the application. Next, the Haar Cascade Classifier was also removed from the choices 

due to its high false positives rate. Also, it is sensitive to lighting and it cannot work well under occlusion such as hand 

covering. This increases the chance of detecting false positives in the real-time videos. Dlib is the best out of the three 

face detection algorithms. Thus, Dlib was chosen as the face detection method in this project. 

 

C. Face Detection process of Dlib Library 

The detection process using the Dlib library with Histogram of Oriented Gradients (HOG) and Support Vector 

Machine (SVM) is a systematic and efficient way of detecting faces in an image. Firstly, a trained HOG and SVM 

face detection model is loaded from the dlib library. This model has been previously trained on a large dataset of 

positive and negative examples to learn the distinguishing characteristics of faces. 

To identify faces in an input image, the process involves several steps. First, the input image is converted to grayscale 

to facilitate efficient processing. Next, the HOG (Histogram of Oriented Gradients) feature descriptor is computed for 

the image. The HOG features capture information about the local gradient orientations, offering insights into the 

image's object shapes and textures. Computation of the HOG features involves dividing the image into small cells, 

computing the gradient orientations within each cell, and constructing histograms based on these orientations. 

Next, a sliding window approach is used to scan the image at different scales and positions. At each window location, 

the HOG features are extracted. These features are then fed into the trained SVM classifier, which determines the 

likelihood of the window containing a face. The SVM classifier has learned to separate face and non-face regions 

based on the HOG features. 

To efficiently process the image, the detection is performed in a pyramid fashion, starting from a smaller scale and 

gradually increasing it. This approach allows for detecting faces at different sizes in the image. The scaling factor and 

window stride can be adjusted to control the size of the sliding window and the step size during the scan, respectively. 

During the sliding window scan, if the SVM classifier predicts a positive detection, indicating the presence of a face, 

a bounding box is generated around that region. Multiple detections may be generated for a single face due to 
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overlapping windows and different scales. To eliminate duplicate detections and refine the final bounding boxes, a 

non-maximum suppression algorithm is applied. This algorithm removes redundant and overlapping bounding boxes 

by keeping only the most confident detection in each region. 

In summary, the face detection process using dlib's HOG and SVM approach involves loading the pre-trained model, 

computing the HOG features, sliding window scanning at different scales, classifying the windows using the SVM 

classifier, generating bounding boxes, and applying non-maximum suppression. This process allows for efficient and 

accurate detection of faces in images using the combined power of HOG features and SVM classification provided by 

the dlib library. 

 

D. Pre-Trained Face Recognition Model Using ResNet50 Architecture 

The face recognition model is being pre-trained by using ResNet50 architecture and Dlib. Firstly, a dataset of labeled 

face images is collected, ensuring diversity in individuals and capturing variations in pose, lighting, and expression. 

These images are then preprocessed to standardize sizes, align faces to a canonical pose, and normalize pixel values. 

Preprocessing helps reduce variations and enhances the model's ability to generalize to unseen data. 

Next, Dlib's face detection and alignment capabilities are utilized to detect and align the faces in the dataset. This step 

ensures that all faces are properly aligned and centered, which is crucial for accurate feature extraction. Afterwards, 

the aligned face images are processed using a pre-trained ResNet50 model, which has been trained on extensive image 

datasets. This model utilizes deep convolutional neural networks to extract comprehensive representations of facial 

features. By leveraging the ResNet50 model, the system can learn and capture intricate characteristics of the face 

images. Each face image is passed through the model, resulting in a high-dimensional feature representation, 

commonly a 128-dimensional embedding. 

The labels associated with each face image are encoded using suitable encoding techniques, converting categorical 

labels into numerical representations. These encoded labels are then used, along with the extracted face features, to 

train a classifier or neural network. The classifier learns to map the high-dimensional face embeddings to their 

respective labels, enabling the model to recognize and differentiate between different individuals. 

When using a distance threshold of 0.6, the ResNet50 with dlib model obtains an accuracy of 99.38% on the standard 

LFW face recognition benchmark. 

 

E. Classification Model Training 

CNN model is designed and implemented, which involves selecting the appropriate layers, filters, and other 

hyperparameters. In terms of batch size which is an important hyperparameter that determines the number of samples 

used in each iteration to update the model’s parameters, a smaller batch size will result in faster convergence and in 

this case, batch size will be 64. Training and validation sets are created using the ImageDataGenerator from Keras 

library, which provides real-time data augmentation to increase the size and diversity of the data in order to avoid 

overfitting and ensure the variation in training data [20]. To construct the model, several 2D CNN Layers which are 

BatchNormalization, Activation(ReLU), MaxPooling and Dropout Layer are added to the model. After 

implementation, the model is compiled using Adam optimizer and trained with the training set by inputting the training 

set into the model and adjusting its weights and biases to lower the error between predicted and actual expressions. 

During the training process, the model's performance will be monitored using various metrics, such as accuracy and 

loss. This can be done by evaluating the model on the test set and comparing the predicted expressions to the true 

expressions. If the model is not performing well, adjustments can be made to the architecture or hyperparameters to 

improve its performance. 

Once the model is trained, it can be tested on the validation set to evaluate its performance on unseen data. If the 

model performs well on the validation set, it can be considered ready for deployment. If not, further training or 

adjustments may be necessary before deploying the model. 

As compared to the existing CNN models in recognizing the facial expressions, the proposed approach utilizes and 

adjusted the 2D CNN layers to be added to the model to obtain higher recognition accuracy. In terms of recognition 
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accuracy, the inclusion of BatchNormalization, ReLU activation and dropout layers further enhances the model’s 

ability to capture complex patterns and representations, leading to improved recognition accuracy. The dropout layer 

acts as a regularization technique, preventing overfitting during training.It randomly drops out some neurons’ 

activations, reducing interdependence among neurons and making the model more robust and less likely to memorize 

noise in the training data. BatchNormalization stabilizes the training process by normalizing the activations, allowing 

for higher learning rates and faster convergence. This can speed up the training process and make the model more 

efficient. In terms of speed and real-time performance, the combination of ReLU activations and max pooling layers 

helps to create a more computationally efficient model. It reduces the spatial dimensions of feature maps and captures 

essential information, making the model suitable for real-time applications.  The proposed model's architecture, which 

includes activation functions like ReLU and max pooling layers, allows for effective feature learning. It can capture 

both local and global features in facial images, providing a holistic representation of expressions and enhancing 

recognition performance. 

 

F. Text to Speech Conversion Using Google Text to Speech API 

In the context of assisting blind to recognize the facial expressions of people, an audio message is generated as the 

output. In this case, once the program captures people’s facial expression and the output is being generated from the 

program, it will convert the output from text to speech. At the same time, the blind people will notice the audio and 

recognize that particular people’s facial expression. The output will be generated based on a certain buffer time which 

is around 20 seconds. In terms of text-to-speech conversion, Google Text to Speech API will be used because it offers 

a wide range of high-quality and natural-sounding voices in different languages and accents. It is also cloud-based 

which means that the text-to-speech processing is handled on Google’s servers. This reduces the computational burden 

and ensures that the TTS service can scale efficiently based on demand. 

 

IV. RESULTS AND DISCUSSIONS 

Figure 1 shows 9 images in grid using the Matplotlib library and the images are 48x48 pixels and are loaded from a 

directory with the expression “disgust”. The images are displayed in 3x3 grid using a loop and the subplot function 

from Matplotlib. 

 

Figure 1. Displaying 9 Images From “Disgust” Directory 

Figure 2 shows the final progress of the model training. It iterates 19 times of the training the model on the entire 

training dataset and shows the completion of processing all 1369 batches in the current epoch. The "loss" and 

"accuracy" are the performance metrics of the model on the training data. The lower the loss and higher the accuracy, 

the better the model is performing. In this case, the loss is 0.6625 and the accuracy is 0.7537, which means the model 

is doing a relatively good job in predicting the labels for the training data. 
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The val_loss and val_accuracy are the performance metrics of the model on the validation data. The model uses these 

metrics to avoid overfitting, which is when the model performs well on the training data but poorly on new unseen 

data. In this case, the validation loss is 1.1403 and the validation accuracy is 0.5986. 

The lr represents the learning rate, which is a hyperparameter that determines how much the model updates its 

parameters in each iteration. A higher learning rate means the model updates its parameters more aggressively, and a 

lower learning rate means the model updates its parameters more slowly. In this case, the learning rate is 1.0000e-04, 

which is a very low value, indicating that the model is making small updates to its parameters. 

 

 

Figure 2. 19th Iteration Of Model Training (Final Iteration) 

 

Figure 3, Figure 4, Figure 5 and Figure 6 display the sample output of the face recognition result and predicted facial 

expressions recognition from the program, including emotions of happy, sad and angry. The face recognition result 

and predicted emotions are demonstrated to be accurate in their representation. 

 

Figure 3. Sample Output Of One Happy Man called Mark 

 

Figure 4. Sample Output Of Three Happy Kids Called Julie, Lily And Angela 
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Figure 5. Sample Output Of A Angry Woman Called Susan 

 

Figure 6. Sample Output Of A Sad Woman Called Sally 

 

Figure 7 shows the loss graph and accuracy graph of CNN model by using Adam Optimizer. From the loss graph, it 

plots the values of the loss function for each training epoch. The loss function measures how well the model is doing 

at predicting the true labels for the training data. The objective of training is to minimize the loss, so a decrease in the 

loss over time indicates that the model is learning and improving its predictions. As shown in the loss graph, training 

loss decreases gradually from 1.65 to 0.79, indicating the model is improving its ability to predict the correct outputs 

based on the inputs over time. This decrease in training loss indicates that the model is learning the correct relationships 

between inputs and outputs, and is reducing the amount of error it makes in its predictions. The gradual decrease in 

loss is a positive sign that the model is being trained effectively, and that the optimization algorithm is effectively 

updating the model parameters to minimize the loss. As for validation loss, it decreases from 1.65 to 1.07 and starts 

to increase to 1.14. The decrease in validation loss from 1.65 to around 1.07 means that the model is becoming more 

and more accurate in its predictions on the validation data. This is a positive sign as it suggests that the model is 

generalizing well to new, unseen data.  

From the accuracy graph, the training accuracy is increasing gradually from 0.34 to 0.70. The increase in training 

accuracy from 0.34 to 0.70 indicates that the model has improved its performance on the training data over the course 

of the training process. This improvement in accuracy is likely the result of the optimization algorithm, such as Adam, 

adjusting the model's weights and biases to minimize the training loss. The fact that the accuracy has increased to 

around 0.70 means that the model is now able to correctly classify or predict around 70% of the training data. As for 

validation accuracy, it increased gradually from 0.33 to 0.6 and start to decrease to 0.59. This indicates that the model 

improved its accuracy in predicting the validation set, reaching a plateau after a certain point. Further analysis and 

adjustments to the model may be necessary to improve its performance. 
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Figure 7. Loss And Accuracy Graph 

In facial expression recognition using a 2D convolutional neural network, various pre-trained models developed by 

others can be utilized for a wide range of image-related tasks. To determine the best-performing model for emotion 

recognition based on facial expressions, a comparison was conducted between a self-built model, VGG16, and 

ResNet50. The implementation process remains similar to the self-built model, except that VGG16 and ResNet50 are 

imported as the initial layer from a library instead of manually defining the layers. The classification layers, also 

known as the FC layers, from the self-built model are employed in all cases. The architecture of two pretrained models 

are shown in Figure 8 and Figure 9. 

 

 

Figure 8. Model Architecture Of VGG16                                          Figure 9. Model Architecture Of ResNet50 

 

The comparison table is shown in Table 4. The low accuracy of 34% achieved by the two pretrained models is 

attributed to the weight setting being set to none. This setting prevents the models from effectively learning the features 

present in the grayscale images of the FER-2013 dataset. While this weight setting is necessary due to VGG16 and 

ResNet50 only accepting color images as input, it ultimately impacts the performance of these models. Consequently, 

the self-built CNN model outperforms the other two models in terms of accuracy. 
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Table 4. Comparison Of Self-build Model And Pre-trained Models 

Aspects 
Self-build 

CNN 
VGG16 ResNet50 

Training Set Size 1369 4096 2048 

Stopped Epoch 19 6 36 

Training Loss (of final epoch) 0.7901 1.3644 1.3597 

Validation Loss (of final epoch) 1.1403 1.3611 1.3619 

Training Accuracy (of final epoch) 0. 7028 0.3429 0.3437 

Validation Accuracy (of final epoch) 0.5986 0.3447 0.343 

 

V. CONCLUSION 

In conclusion, facial expression recognition has made significant progress in recent years, including the advancements 

in computer vision and machine learning techniques. However, it is important to acknowledge certain limitations that 

still exist in this field. One limitation is the dependence of facial expression recognition on well-lit and clear images. 

Poor lighting conditions, occlusions, or low-resolution images can affect the accuracy and reliability of the recognition 

algorithms. Future research should focus on developing robust techniques that can handle challenging imaging 

conditions and improve the performance of facial expression recognition in real-world scenarios. Furthermore, 

existing datasets for facial expression recognition often suffer from biases and limitations in terms of sample size, 

diversity, and representation. Future research should address these issues by collecting larger and more diverse datasets, 

including individuals from various age groups, ethnicities, and backgrounds, to ensure a more comprehensive 

understanding of facial expressions and improve the fairness and inclusivity of recognition systems. 
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