
Journal of Informatics and Web Engineering

https://doi.org/10.33093/jiwe.2024.3.1.6
© Universiti Telekom Sdn Bhd. This work is licensed under the Creative

Commons BY-NC-ND 4.0 International License.

 Published by MMU Press. URL: https://journals.mmupress.com/jiwe

Journal of Informatics and

Web Engineering

Vol. 3 No. 1 (February 2024) eISSN: 2821-370X

Implementation of Grover’s Algorithm &

Bernstein-Vazirani Algorithm with IBM Qiskit
Yang-Che Liu1*, Mei-Feng Liu1
1Xiamen University Malaysia, Malaysia

*Corresponding author: (CST1904731@xmu.edu.my, ORCiD: 0009-0002-6858-5765)

Abstract - Quantum logic gates differ from classical logic gates as the former involves quantum operators. The conventional gates

such as AND, OR, NOT etc., are generally classified as classical gates, however, some of the quantum gates are known as Pauli

gates, Toffoli gates and Hadamard gates, respectively. Normally classical states only involve 0 and 1, whereas quantum states

involve the superpositions of 0 and 1. Hence, underlying principles of algorithm implementation for classical logic gate and

quantum logic gate are indeed different. In this paper, we introduce significant concepts of quantum computations, analyse the

discrepancy between classical and quantum gates, compare quantum algorithms using Qiskit against equivalent classical algorithms

and analyse their performance in terms of runtime.

Keywords—quantum logic gates, quantum states, quantum computations, quantum algorithms, Qiskit

Received: 21 July 2023; Accepted: 05 September 2023; Published: 16 February 2024

I. INTRODUCTION

With the ever-expanding information being exchanged on the Internet, traditional servers processing these data will

be soon hitting an extreme end in the capacity where they be stored. The term "Big Data", referring to large amount

of data, requiring adequate storage and processing capability gives rise to huge challenges as researchers try to find

the resolution. The needs of high-speed computation and more efficient algorithm had led to the concept of quantum

computing [1].

The development of quantum computers has been a popular contemporary topic for decades. In 2019, Google's

Sycamore quantum computer equipped a whopping 53 qubits processor [2]; subsequently, researchers from China

demonstrated in July 2021 that their quantum computer, Zuchongchi 2.1, can achieve even more qubits than Sycamore.

The former is a 56 qubits processor, while Zuchongchi 2.1 is a 66-qubits one [3]. Since a n-qubit quantum computer

is equivalent to a 2𝑛-bit conventional computer, it is expected that quantum computing is a candidate to the solution

of high-speed and high-performance algorithm. In comparison, the fastest supercomputer in 2019, namely the IBM's

Summit, would be expected to take 10 000 years on a task that Sycamore can achieve in just 200 seconds [2].

A classical bit consists of 0 or 1 state only, while a quantum bit or qubit, can be in the state of 0 and 1 simultaneously,

which is known as superposition. In addition, there is a phenomenon called entanglement that in a two-qubit system,

if one of the qubit's state is known, the other must also be known. Although there are other approaches to quantum

computational logics such as multi-level computational unit called qudit, which provides a larger state space to store

and process information, this paper utilizes the conventional 2-level qubit solely [12].

https://doi.org/10.33093/jiwe.2024.3.1.6
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

One of the objectives of quantum computing is to overcome the limitations of processing power. The vast difference

between the operations of classical and quantum bits gives birth to the development of quantum-specific algorithms

[5], [11].

There are various fields of quantum computing such as information security which focuses on potential treats to

existing cryptography [4]. Also, the cloud quantum computer [6] that provides quantum computing services accessible

through internet by the users, such as Qiskit, is utilized in this paper. In addition, physical implementation of quantum

computers and logic gates is another popular field of quantum computing [8]. Meanwhile, quantum simulation that

emphasizes on modelling the quantum properties of microscopic particles applied in quantum chemistry, material

science, and high-energy physics [20], [23] is another example. At the meantime, quantum machine learning is

frequently stated as the most promising application for quantum computing [21], [22].

This paper provides a brief introduction to quantum computing, illustrates implementations of quantum algorithms in

Qiskit, compares the performance with equivalent classical algorithms, and proposes a Qiskit package for

benchmarking quantum algorithms and their classical equivalence.

II. BITS AND QUBITS

A. From Bits to Qubits

Quantum bits can exist as 0 and 1 simultaneously as opposed to classical bits being either only 0 or 1. This phenomenon

is known as superposition. The term superposition is known in wave physics as the interference of two or more waves.

In quantum physics, when a particle is extremely small, the particle starts to behave like a wave; this is called wave–

particle duality, and thus is in a superposition state. However, the difference between the two is that when the quantum

particle is observed or measured, this wave collapse, degenerating from the wave into a classical particle. Even up

until this moment, physicists still could not understand the mechanism and theory behind this phenomenon, which is

referred as the measurement problem of quantum mechanics [16].

B. Dirac Notation

Consider a two 2-dimensional column vectors in Hilbert space with complex entries as shown in Equation (1) where

a, b ∈ ℂ2

𝑎 = (
𝑎1
𝑎2
) , 𝑏 = (

𝑏1
𝑏2
) . (1)

The terms 𝑘𝑒𝑡 𝑎𝑛𝑑 𝑏𝑟𝑎 are defined in Equation (2), and (3)

𝑘𝑒𝑡 ≔ |𝑎⟩ = (
𝑎1
𝑎2
) , (2)

𝑏𝑟𝑎 ≔ ⟨𝑏| = |𝑏⟩
+
= (𝑏1

∗ 𝑏2
∗), (3)

where |𝑏⟩
+

is the complex conjugate transpose of |𝑏⟩.

Consequently, 𝑏𝑟𝑎 − 𝑘𝑒𝑡, 𝑘𝑒𝑡 − 𝑏𝑟𝑎, are derived as in Equation (4) and (5)

𝑏𝑟𝑎 − 𝑘𝑒𝑡 ≔ ⟨𝑏|𝑎⟩ = (𝑏1
∗ 𝑏2

∗) (
𝑎1
𝑎2
) = 𝑎1𝑏1

∗ + 𝑎2𝑏2
∗ = ⟨𝑎|𝑏⟩∗ ∈ ℂ, (4)

Equation (4) is considered as the inner product of ⟨𝑏| and |𝑎⟩; thus, a complex number will be produced from the inner

product

𝑘𝑒𝑡 − 𝑏𝑟𝑎 ≔ |𝑎⟩⟨𝑏| = (
𝑎1
𝑎2
) (𝑏1

∗ 𝑏2
∗) = (

𝑎1𝑏1
∗ 𝑎1𝑏2

∗

𝑎2𝑏1
∗ 𝑎2𝑏2

∗) , (5)

while Equation (5) is considered as the outer product of |𝑎⟩ and ⟨𝑏|, which produces a 2 × 2 matrix.

Equation (6) defines two base quantum states

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

|0⟩ = (
1
0
) , |1⟩ = (

0
1
) , (6)

the two states are orthogonal since ⟨0|1⟩ = 1 ∗ 0 + 0 ∗ 1 = 0, which will be used to describe and measure quantum

states in practice. Although theoretically, there are infinite orthogonal bases, it is simpler to use some common ones,

which will be mentioned later in this paper.

For simplicity of calculations, all quantum states are normalised, such that given a quantum state |𝜓⟩ defined in

Equation (7)

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, (7)

where 𝛼, 𝛽 ∈ ℂ, it is expected to have the property shown in Equation (8)

⟨𝜓|𝜓⟩ = |𝛼|2 + |𝛽|2 = 1, (8)

since the quantum state |𝜓⟩ is described as a linear combination of two base states |0⟩, |1⟩ with the coefficient of

complex numbers 𝛼, 𝛽 where as 𝛼2 is the probability of measuring 0 from the qubit, and 𝛽2 is the probability of

measuring 1 from the qubit, the two probabilities sum up to one [17].

C. Measurement

In almost all practical implementations, orthogonal basis is chosen to describe and measure the quantum states.

This is known as projective measurements. Although the generalisation of this exists in theory, it is not

commonly used in practice, hence the measurement in this study only refer to projective measurement for the

sake of simplicity.

Consider a projective measurement of a quantum state |𝜓⟩ onto the basis {|0⟩, |1⟩. The quantum state |𝜓⟩ will

collapse into either |0⟩ or |1⟩. This is a z-measurement, since the two states are also the eigenstates of 𝜎𝑧, which

is the Pauli-Z gate that will be discussed later. The eigenstate follows the concept of eigenvector.

As mentioned previously, there are infinitely many different orthogonal bases. Here are some common ones

shown in Equation (9), (10), and (11)

|0⟩, |1⟩, (9)

|+⟩ ≔
1

√2
(|0⟩ + |1⟩), |−⟩ ≔

1

√2
(|0⟩ − |1⟩), (10)

|+𝑖⟩ ≔
1

√2
(|0⟩ + 𝑖|1⟩), |−𝑖⟩ ≔

1

√2
(|0⟩ − 𝑖|1⟩), (11)

where the above bases correspond to the eigenstates of 𝜎𝑥 , and 𝜎𝑦 . Equation (9) is also called as the

computational basis, while (10) is known as the Hadamard basis.

Given a quantum state |𝜓⟩ , the probability of it collapsing to a particular state |𝑥⟩ when performing

measurements onto the basis {|𝑥⟩, |𝑥⟩
+
} would be of curiosity. The Born rule defined in Equation (12), is a

postulate that enables the probability to be found

𝑃(𝑥) = |⟨𝑥|𝜓⟩|2,∑𝑃(𝑥𝑖)

𝑖

= 1. (12)

As an illustration shown in Equation (13), for a quantum state |𝜓⟩ =
1

√3
(|0⟩ + √2|1⟩) measured onto the basis

{|0⟩, |1⟩}, the probability of measuring 0 is a third

𝑃(0) = |⟨0|
1

√3
(|0⟩ + √2|1⟩)⟩|

2

= |
1

√3
⟨0|0⟩ +

2

√3
⟨0|1⟩|

2

= |
1

√3
+ 0|

2

=
1

3
. (13)

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

Consequently, the probability of measuring 1 will be two thirds, as shown in Equation (14)

𝑃(1) = 1 − 𝑃(0) =
2

3
, (14)

as another example shown in Equation (15), measuring on a different basis {|+⟩, |−⟩} from a quantum state

|𝜓⟩ =
1

√2
(|0⟩ − |1⟩) results in a certainty for measuring |+⟩

𝑃(+) = |⟨
1

√2
(⟨0| + ⟨1|)|

1

√2
(|0⟩ − |1⟩)⟩|

2

= (
1

4
) |⟨0|0⟩ − ⟨0|1⟩ + ⟨1|0⟩ − ⟨0|0⟩|2

= (
1

4
) |1 − 0 + 0 − 1|2 = 0, (15)

consequently, the probability of measure |– ⟩ is shown in Equation (16)

𝑃(−) = 1, (16)

this is expected, as ⟨+|𝜓⟩ = ⟨+|−⟩ = 0.

The Born rule has not been proven to be mathematically correct. However, no quantum experiments showed

otherwise. Scientists have been following this postulate, whereas physicists cracked their heads to prove Born

rule in a mathematical perspective [18].

D. Bloch Sphere

Quantum computing is closely related to linear algebra, in which they can be illustrated visually using a Bloch

Sphere. Consider a normalized pure state specified in Equation (17)

|𝜓⟩ = cos
𝜃

2
|0⟩ + 𝑒𝑖𝜑 sin

𝜃

2
|1⟩, (17)

where 𝜑 ∈ [0, 2𝜋) is used to describe the relative phase and 𝜃 ∈ [0, 𝜋] is used to derive the probability of

measuring |0⟩ or |1⟩, for example 𝑃(0) = cos2
𝜃

2
, 𝑃(1) = sin2

𝜃

2
.

All normalized pure state defined above can be visualised using a Bloch Sphere. They sit on the surface of the

sphere with radius 1. Consequently, the mixed states reside within the Bloch Sphere. To illustrate the pure state

using the Bloch Sphere, a Bloch vector defined in Equation (18) is used as a representation

𝑟 = (
sin 𝜃 cos𝜑
sin 𝜃 sin𝜑
cos𝜃

) , (18)

this is the general representation of the sphere coordinate system.

Common orthogonal bases in Equation (19)~(24) can thus be illustrated by the Bloch Sphere in Figure 1 to 3

|0⟩: 𝜃 = 0, arbitary 𝜑, 𝑟 = (
0
0
1
) , (19)

|1⟩: 𝜃 = 𝜋, arbitary 𝜑, 𝑟 = (
0
0
−1
) . (20)

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

Figure 1. Visualization of {|0⟩, |1⟩} on Bloch Sphere.

|+⟩: 𝜃 =
𝜋

2
,𝜑 = 0, 𝑟 = (

1
0
0
) , (21)

|−⟩: 𝜃 =
𝜋

2
,𝜑 = 𝜋, 𝑟 = (

−1
0
0
) . (22)

Figure 2. Visualization of {|+⟩, |−⟩} on Bloch Sphere.

|+𝑖⟩: 𝜃 =
𝜋

2
, 𝜑 =

𝜋

2
, 𝑟 = (

0
1
0
) , (23)

|−𝑖⟩: 𝜃 =
𝜋

2
, 𝜑 =

3𝜋

2
, 𝑟 = (

0
−1
0
) . (24)

Figure 3. Visualization of {|+𝑖⟩, |−𝑖⟩} on Bloch Sphere.

Orthogonal bases have angles that are 90° apart from each other. Despite the fact, the above illustration described

them with a 180° angle difference. This is a characteristic of the Hilbert space, where orthogonality could be

defined.

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

This results in the normalised pure state having a division of 2 for the angle theta, as shown in Equation (25)

|𝜓⟩ = cos
𝜃

2
|0⟩ + 𝑒𝑖𝜑 sin

𝜃

2
|1⟩, (25)

where 𝜃 is the angle in the Bloch Sphere and 𝜃/2 is the real angle in Hilbert space.

A z-measurement of a quantum state corresponds to a projection onto the z-axis on the Bloch sphere. If the state

is closer to |0⟩, it is more likely to collapse to a |0⟩ state. This is applicable to both x and y-measurements [13].

III. QUANTUM CIRCUITS

A. Basic Single-qubit Gates

Unitary matrices are used to represent various quantum gates in a mathematical perspective. A unitary matrix will

have the following characteristic specified in Equation (26),

𝑢+𝑢 = I2, (26)

where 𝑢 is the unitary matrix, 𝑢+ is the Hermitian conjugate transform of u, and I2 is the 2 × 2 identity matrix. This

indicates that unitary matrix is reversable [10]. Single qubit gates such as Pauli gate and the Hadamard gate heavily

depend upon unitary matrices.

There are three Pauli gates, namely Pauli X, Pauli Y and Pauli Z. They are simply known as the X-gate, Y-gate and

Z-gate respectively. A Pauli X gate is defined in Equation (27)

𝜎𝑥 = (
0 1
1 0

) = |0⟩⟨1| + |1⟩⟨0|, (27)

suppose a Pauli X gate is applied to the quantum state |0⟩, Equation (28) illustrates the representation

𝜎𝑥|0⟩ = (
0 1
1 0

) (
1
0
) = (

0 ∗ 1 + 1 ∗ 0
1 ∗ 1 + 0 ∗ 0

) = (
0
1
) = |1⟩, (28)

similarly, if the Pauli x gate is applied to the quantum state |1⟩, this results in Equation (29)

𝜎𝑥|1⟩ = (|0⟩⟨1| + |1⟩⟨0|) ∗ |1⟩ = |0⟩(⟨1|1⟩) + |1⟩(⟨1|0⟩) = |0⟩(1) + |1⟩(0) = |0⟩. (29)

Equation (28) is described using the matrix notation, whereas (29) takes the Dirac notation. They illustrate that if the

initial state is |0⟩, the result is |1⟩ and vice versa. This exhibits the characteristic of a NOT gate, as the X-gate performs

an equivalent bit flip operation. In Bloch sphere, this is a rotation around the x-axis by 𝜋.

A Pauli z gate is defined in Equation (30) as follows.

𝜎𝑧 = (
1 0
0 −1

) = |0⟩⟨0| − |1⟩⟨1|, (30)

if the Pauli z gate is applied to the quantum state |+⟩ as displayed in Equation (31)

𝜎𝑧|+⟩ = (
1 0
0 −1

) ∗
1

√2
(
1
1
) =

1

√2
(
1
−1
) = |−⟩, (31)

if the Pauli z gate is applied to the quantum state |– ⟩ as displayed in Eqution (32)

𝜎𝑧|−⟩ = (|0⟩⟨0| − |1⟩⟨1|) ∗
1

√2
(|0⟩ − |1⟩) =

1

√2
(|0⟩ + |1⟩) = |+⟩, (32)

the Z-gate performed a phase flip of the quantum state, this is a rotation around the z-axis by 𝜋.

A Pauli y gate is defined in Equation (33)

𝜎𝑦 = (
0 −𝑖
𝑖 0

) = i ∗ 𝜎𝑥 ∗ 𝜎𝑧, (33)

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

this is a bit-and-phase flip on the input quantum state, and a rotation around the y-axis by 𝜋. Since all quantum gates

are unitary, it is expected that by applying the Pauli gate twice on the quantum state, the output is the same as the

input.

Another frequently used single-qubit gate is the Hadamard gate, defined in Equation (34).

𝐻 =
1

√2
(
1 1
1 −1

) =
1

√2
(|0⟩⟨0| + |0⟩⟨1| + |1⟩⟨0| − |1⟩⟨1|), (34)

if the Hadamard gate is applied to the quantum state |0⟩ as presented in Equation (35)

𝐻|0⟩ =
1

√2
(
1 1
1 −1

) ∗ (
1
0
) =

1

√2
(
1
1
) = |+⟩, (35)

if the Hadamard gate is applied to the quantum state |1⟩ as presented in Equation (36)

𝐻|1⟩ =
1

√2
(
1 1
1 −1

) ∗ (
0
1
) =

1

√2
(
1
−1
) = |−⟩. (36)

The property of changing between x and z made Hadamard gates very frequently used in quantum circuit designs [14].

Qubits are often initialised at |0⟩ state. Applying a Hadamard gate results in a superposition state.

B. Multipartite Quantum States

In practice, many qubits will be manipulated. A tensor product describes a quantum state with multiple qubits, which

is known as multipartite quantum states.

Given a qubit A with quantum state |1⟩𝐴 and a qubit B with quantum state |0⟩𝐵, the total state, in this case bipartite

state is calculated in Equation (37)

|10⟩𝐴𝐵 = (
0
1
) ⊗ (

1
0
) = (

0 ∗ 1
0 ∗ 0
1 ∗ 1
1 ∗ 0

) = (

0
0
1
0

) , (37)

Equation (37) depicts that 2 qubits generate a state vector of 4 entries, 3 qubits generate 8 entries, and n qubits generate

2𝑛 entries. The property of 2𝑛 results in an exponential increase in speed as compared to classical computers [14].

Some states cannot be written in this form. They are known as correlated states, and sometimes entangled when the

correlation between two qubit is strong

|𝜑⟩ =
1

√2
(|00⟩ + |11⟩) =

1

√2
(

1
0
0
1

) , (38)

a correlated state is shown in Equation (38), known as a Bell state. It is used in quantum algorithms which will be

discussed later.

C. Basic Two-qubit Gates

An example of two-qubit gates is Controlled NOT (CNOT) gate. The equivalent classical gate, XOR, takes two

inputs and generate one output, whereas CNOT gate takes 2 inputs and gives 2 outputs. The latter is unitary,

hence reversible.

A CNOT gate is defined in Equation (39)

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

𝐶𝑁𝑂𝑇 = (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) = |00⟩⟨00| + |01⟩⟨01| + |10⟩⟨11| + |11⟩⟨10|, (39)

if a CNOT gate is applied on a bipartite quantum state |00⟩𝑥𝑦 as demonstrated in Equation (40)

𝐶𝑁𝑂𝑇|00⟩𝑥𝑦 = 𝐶𝑁𝑂𝑇 ∗ (

1
0
0
0

) = (

1
0
0
0

) = |00⟩𝑥𝑦, (40)

if a CNOT gate is applied on a bipartite quantum state |10⟩𝑥𝑦 as demonstrated in Equation (41)

𝐶𝑁𝑂𝑇|10⟩𝑥𝑦 = 𝐶𝑁𝑂𝑇 ∗ (

0
0
1
0

) = (

0
0
0
1

) = |11⟩𝑥𝑦. (41)

Table 1 illustrates the truth table for a CNOT gate. When the first qubit is 1, CNOT gate will perform a bit flip

on the second qubit. This gives the gate the name Controlled NOT and is also considered a reversible XOR.

Table 1: Truth table for CNOT gate

Input Output

x y x 𝒙⊕ 𝒚

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

From the CNOT example, it is evident that quantum gates are reversible. Quantum circuits are able to perform

any classical functions, and along with the addition of reversible characteristic, it can bring reversibility for the

irreversible classical functions [14].

IV. ENTANGLEMENT

An important characteristic of quantum computing is entanglement [9], which is defined as a pure state |𝜑⟩𝐴𝐵 on

systems A and B that cannot be expressed as a tensor product of two state, |𝜑⟩𝐴⊗ |𝜙⟩𝐵.

A. Bell States

Bell States are maximally entangled and form on orthogonal basis, the term maximally entangled describe the level

or degree of entanglement between the two quantum states is at its maximum. The four Bell States are defined as in

Equation (42) to (45)

|φ00⟩ ≔
1

√2
(|00⟩ + |11⟩), (42)

|φ01⟩ ≔
1

√2
(|01⟩ + |10⟩), (43)

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

|φ10⟩ ≔
1

√2
(|00⟩ − |11⟩), (44)

|φ11⟩ ≔
1

√2
(|01⟩ − |10⟩). (45)

When a measurement of one qubit is made on a Bell state, the state of the second qubit will be determined without

measuring it. Given a Bell state |φ00⟩, if the first qubit is measured to state 0, the second must be 0. This phenomenon

is known as entanglement. This is widely used in practical quantum circuit design. Equation (46) illustrates a general

expression of Bell States [15].

|φij⟩ = (Ι2⊗σx
jσz

i)|φ00⟩. (46)

B. Creating Bell States

Figure 4 shows a circuit of Bell State, where an Hadamard gate is only applied to the upper qubit i0. The encircled

plus representation is a CNOT gate. The CNOT gate flips i0, known as the target qubit if and only if the j0 is |1⟩,
known as the control qubit.

Figure 4. Circuit to create a Bell State.

The Bell measurement determines which of the four Bell states that the two input qubits are in. The circuit is

constructed by putting CNOT gate first on one of the qubits (control), and then the Hadamard gate after (target) [15].

Table 2 illustrates the truth table of the circuit in Figure 4.

Table 2: Truth table for Figure 4.1

Initial

State|𝒊𝒋⟩
(𝑯⊗ 𝜤𝟐)|𝒊𝒋⟩ 𝑪𝑵𝑶𝑻(𝑯

⊗ 𝜤𝟐)|𝒊𝒋⟩

|00⟩ |00⟩ + |10⟩

√2

|00⟩ + |11⟩

√2

|01⟩ |01⟩ + |11⟩

√2

|01⟩ + |10⟩

√2

|10⟩ |00⟩ − |10⟩

√2

|00⟩ − |11⟩

√2

|11⟩ |01⟩ − |11⟩

√2

|01⟩ − |10⟩

√2

C. Q-sphere

Bloch Sphere allow visualisation of only a single qubit state. For multiple qubits, Q-sphere is used instead.

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

The top or “North pole” of the Q-sphere represents the state where all qubits are in state 0, whereas the bottom or

“South pole” of the Q-sphere represents the state where all qubits are in state 1. If there are n qubits in the system,

thus 2𝑛 basis states, the basis states will be equally distributed as points on the Q-sphere. This is shown in Figure 5.

Figure 5. Visualization of a Q-sphere.

The size of the blob (small sphere at each end) is used to represent the probability of measuring the particular basis

state, while the colour of the blob is used to represent the phase of the particular basis state. By applying a Hadamard

gate for each qubit, we will get evenly distributed state, and by applying rotation around the z-axis for each qubit, the

phase will change, and resulting in a difference in the blob’s colour on each set of lines [15].

In Figure 6, a Hadamard gate is applied to every qubit using circuit.h, and circuit.rz denotes a rotation around the z-

axis thus altering the phase for each state, while the angle of rotation is
2𝜋

2
.

Figure 6. Python code to plot a Q-sphere.

V. ALGORITHMS

A. Phase Kickback

Observe the effects of CNOT gate applied on a two-qubit system where the qubits are in superposition state.

𝐶𝑁𝑂𝑇|+ +⟩ =
1

2
𝐶𝑁𝑂𝑇(|00⟩ + |01⟩ + |10⟩ + |11⟩) =

1

2
(|00⟩ + |01⟩ + |11⟩ + |10⟩) = |+ +⟩, (47)

𝐶𝑁𝑂𝑇|+ −⟩ =
1

2
𝐶𝑁𝑂𝑇(|00⟩ − |01⟩ + |10⟩ − |11⟩) =

1

2
(|00⟩ − |01⟩ + |11⟩ − |10⟩) = |− −⟩, (48)

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

𝐶𝑁𝑂𝑇|− +⟩ =
1

2
𝐶𝑁𝑂𝑇(|00⟩ + |01⟩ − |10⟩ − |11⟩) =

1

2
(|00⟩ + |01⟩ − |11⟩ − |10⟩) = |− +⟩, (49)

𝐶𝑁𝑂𝑇|− −⟩ =
1

2
𝐶𝑁𝑂𝑇(|00⟩ − |01⟩ − |10⟩ + |11⟩) =

1

2
(|00⟩ − |01⟩ − |11⟩ + |10⟩) = |+ −⟩, (50)

which can be further generalized in Equation (51)

𝐶𝑁𝑂𝑇|𝑥 −⟩ = (−1)𝑥|𝑥 −⟩, (51)

this effect is interesting, since it affects the control qubit rather than the target qubit.

This property is extremely powerful in practical applications since classical oracles can be converted to their quantum

equivalent version via this method.

Since the property of CNOT gate shown in Equation (52)

|𝑥 −⟩
𝐶𝑁𝑂𝑇
→ (−1)𝑥|𝑥 −⟩, (52)

Hence the effect of function 𝑓 of the system can be derived in Equation (53)

|𝑥 −⟩
 𝑈𝑓
→ (−1)𝑓(𝑥)|𝑥 −⟩, (53)

where 𝑈𝑓 denotes the unitary matrix of the function 𝑓, illustrated in Figure 7.

Figure 7. Conversion of classical function to its quantum equivalence.

B. Grover’s Algorithm

Grover's algorithm is used for search of a key in databases. In classical algorithms, the algorithm requires O(𝑛) to

search through a database to find a record. Lov Grover, in 1996, constructed an algorithm that uses only O(√𝑛)

evaluations, which is a quadratic speedup.

Given a databased of 𝑁 = 2𝑛 elements, where 𝑛 ∈ ℕ, the goal is to find a single element 𝜔. In Grover’s algorithm,

there are three main steps, namely, state preparation, Grover’s oracle, and diffusion operator. The algorithm works by

constantly increasing the probability of measuring 𝜔, while shrinking the others via the amplitude amplification

procedure.

Figure 8 illustrates the first step, state preparation, the probability of measuring each element is the same. Hence a

uniform superposition |𝑠⟩, is constructed by applying Hadamard gate to all qubits as shown in Equation (54)

|𝑠⟩ = 𝐻⊗𝑛 |0⟩0. (54)

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

Figure 8. Visualization of step 1.

Figure 9 illustrates the second step, the oracle for any input state |𝑥⟩ in the computational basis is defined in Equation

(55)

𝑈𝜔|𝑥⟩ = {
|𝑥⟩

−|𝑥⟩

𝑖𝑓 𝑥 ≠ 𝜔
𝑖𝑓 𝑥 = 𝜔

, (55)

which can be generalized in Equation (56) using the phase kickback trick

𝑈𝜔|𝑥⟩ = (−1)
𝑓(𝑥)|𝑥 −⟩, (56)

a negative phase is added to the solution state so that it can stand out from the rest and be measured.

Figure 9. Visualization of step 2.

The oracle is a diagonal matrix, where the corresponding entry of the solution state will have a negative phase.

Consider a two-qubit system, and 𝜔 = 10, the oracle is constructed in Equation (57)

𝑈𝜔 = [

1 0
0 1

0 0
0 0

0 0
0 0

−1 0
0 1

] . (57)

Finally, figure 10 illustrates the diffusion operator, an additional reflection 𝑈𝑠 = 2|𝑠⟩⟨𝑠| − 𝐼. Consequently, |𝑠⟩ will

be mapped to 𝑈𝜔𝑈𝑠|𝑠⟩. Geometrically, this operation can be interpretated as a reflection about state |𝑠⟩.

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

Figure 10. Visualization of step 3.

By repeating step 2 and 3, state |𝑠⟩ will be rotated toward the target element |𝜔⟩, and after sufficient amount of

iteration, which proves to be √
𝑁

𝑀
, where 𝑀 is the number of elements that are being found, it is guaranteed to measure

the target element |𝜔⟩.

C. Bernstein-Vazirani algorithm

Deutsch-Jouza algorithm illustrates two classes of functions categorised as balanced or constant. Bernstein-Vazirani

algorithm implements upon this algorithm but attempts to find an encoded string in a function.

Within the Oracle, the function 𝑓 takes in a string 𝑥 and outputs either 0 or 1. There is a hidden string 𝑠 to be found.

The function is illustrated in Equation (58):

𝑓(𝑥) = 𝑠 ⋅ 𝑥 mod 2. (58)

where 𝑠 ⋅ 𝑥 = 𝑠0𝑥0⊕ 𝑠1𝑥1⊕…⊕ 𝑠𝑛−1𝑥𝑛−1 denotes the sum of the bitwise product.

In the classical approach, 𝑛 strings will be enquired to the oracle, where each enquires will have a different position

of 1, after 𝑛 attempts, the hidden string can be recovered. As an illustration, 𝑠 is 101001, the hidden string can be

recovered after 6 tries, as shown in Figure 11.

Figure 11. Classical approach to Bernstein Vazirani algorithm.

As opposed to the classical solution, the equivalent quantum algorithm can theoretically output the above just one try.

Suppose the above hidden string is reused. The string is 6 bit long, so the inputs are represented by 6 qubits. In general,

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

for 𝑛-bit long string, the following superposition is presented. Equation (59) is a result of a transformation after

Hadamard gate. Equation (60) shows the transformation when α is 0.

|𝑎⟩ →
1

√2𝑛
 ∑ (−1)𝑎𝑥|𝑥⟩

𝑥∈{0,1}𝑛

, (59)

|00…0𝑛⟩ →
1

√2𝑛
∑ |𝑥⟩

𝑥∈{0,1}𝑛

. (60)

The output is initialised with |−⟩. With a phase kickback trick, the transformation is resulted in Equation (61).

|𝑥⟩ → (−1)𝑠⋅𝑥|𝑥⟩, (61)

Results appearing outside the oracle will undergo another set of Hadamard gates (same number as ones applied to

input) which will then produce the hidden string 𝑠. Figure 12 below shows what is currently in the Oracle. Note that

the hidden string currently is 101001, and that we do not know the value nor how the Oracle is structured.

Figure 12. Illustration of the formation within the Oracle.

Since all inputs are 0, upon contact with the blue lines, these inputs will turn into 1. Once measured, the hidden string

is effectively found. This is done only once, as no iterations are required. Figure 13 illustrates a general idea of the

implementation with three stages: (1) transformation after Hadamard gates, (2) result corresponding to the hidden

string, (3) result which had undergone measurement.

Figure 13. Illustration of the Bernstein-Vazirani implementation.

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

VI. METHODOLOGY

All quantum algorithms will be assisted by the backends of IBM Quantum Computing. As of this paper, there are 7

backends available for use, as shown in Figure 14. Quantum algorithms are heavily involved in probabilities, and all

backends allow a maximum of 8192 runs of a single algorithm, known as shots, for a probability distribution of results.

Every implementation is done through Python v3.9.7, along with Qiskit.

Figure 14. Available IBMQ backends with number of qubits and other information listed.

In Bernstein-Vazirani algorithm, 4 different size of secret binary string is randomly generated, 4 quantum circuits with

various secret string are constructed based on the details mentioned in section V.C. Hence one secret string will be

corresponding to one quantum circuit. The quantum circuits are executed using simulator and real quantum device

from IBM, thus the time taken for each circuit are documented. For the classical approach to this problem, the

execution time is also documented. Three types of execution time are visualized by a time complexity diagram, where

size and time are the x and y axis respectively.

In the Grover's algorithm, a set of values will be taken for searching, namely |10⟩,|100⟩,|1000⟩,|10000⟩, for size of 2,

3, 4 and 5 qubits respectively. For the classical approach, the fastest searching algorithm, binary search is used, using

the same set of numbers, sorted to emphasise only on binary's search time complexity. For each case, the runtime,

measured in seconds will be tabulated and compared. The runtime results will be collected over five experiments with

1024 shots and averaged for a runtime which represents each algorithm. For consistency, the quantum backend

imbq_lima will be used for all Grover's algorithms.

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

VII. DISCUSSION AND RESULTS

Results of the linear search against Grover's algorithm were recorded and tabulated in Table 3. There were two results

tabulated for the latter algorithm: (1) QASM simulator to emulate ideal execution of a quantum circuit, and (2) IBMQ

backend imbq_lima for real execution. All results were taken in seconds.

Table 3: Results of linear algorithm vs. Grover's algorithm

Sample

size

(qubits)

Linear

search

Grover's

algorithm (1)

Grover's

algorithm

(2)

2 0.0005878040 0.0010023117 2.914091825

3 0.0006287839 0.0019998550 4.173945904

4 0.0007690690 0.0020256042 4.698157549

5 0.0010677010 0.0029685497 5.570025584

Visualization of the above results are shown in Figure 15,

Figure 15. Runtime of Grover’s algorithm with different approach

Interestingly, linear search had shown faster results in runtime than both the QASM simulation and IBMQ backend.

Scott explained this in terms of relativity [19]. The proven time complexity of Grover's algorithm, which is √𝑛 is only

applicable for when the oracle is ready to process. However, the algorithm sent to the backend required loading and

prior computation of the experiment, which resulted in the extra duration that was taken.

Hardware used for the linear search algorithm was a system equipped with an Intel i5 10400F with 16 GB RAM,

whereas for the Grover's algorithm, imbq_lima had a maximum potential of 5 qubits only.

Results of both quantum and classical approaches of Bernstein-Vazirani algorithm are tabulated in Table 4. Two

results are produced for quantum approach, where the first result is for simulator, and the second result is for real

quantum computer at IBMQ backend ibmq_belem, it is selected for being the least busy backend. All results were

taken in seconds. Note that we need an auxiliary qubit for this implementation, and since IBM’s backend only provide

maximum of 5 qubits per backend. Thus, secret string with 5 bits is not examine in our project.

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

Table 4: Results of Classical approach vs. Bernstein-Vazirani algorithm

Sample

size

(qubits)

Classical

approach

Bernstein-

Vazirani

algorithm (1)

Bernstein-

Vazirani

algorithm (2)

1 1.73e-6 0.0030066967 3.154468774

2 4.41e-6 0.0029921532 3.617537021

3 8.12e-6 0.0029883385 4.122985839

4 13e-6 0.0020451546 4.183508157

Visualization of the above results are shown in Figure 16.

Figure 16. Runtime of Bernstein-Vazirani algorithm with different approach.

By observation of the diagrams, classical approach has a linear trend as expected from the theoretical time complexity

𝑂(𝑛). While both results from quantum approach show a nearly constant trend, which is also expected due to the

constant time complexity from previously mentioned analysis. Note that if more qubits are allowed for manipulation,

the quantum approach will better fit the constant time complexity model.

Although the theoretical time complexity of the quantum approach is constant, the time taken for quantum computing

is still at a higher cost compared to classical computers, the results showed that quantum computing in practice still

requires large steps of improvements. Hardware for quantum simulation and classical approach is Intel(R) Core(TM)

i5-8250U CPU @ 1.60GHz CPU with 8GB RAM.

VIII. LIMITATIONS

Ibmq backends at the time of this study are equipped with a maximum of 5 qubits. A large dataset, for example 20

qubits or more would have been ideal for the analysis of runtime between both algorithms. A quantum circuit with

more than 4-qubit was impossible due to the limitations of coupling map. Increasing the number of qubits increases

the depth of the circuit in terms of gate manipulations. The error rate for a basis gate of a qubit is small, but the

cumulative errors of many of these gates will raise these error rates to a significant level. The accuracy of execution

time was also limited by the IBM machines running the algorithms. Running 100 experiments or more for accurate

data will be very time consuming due to the nature of time-sharing with other users, where a queue-up is needed.

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

IX. CONCLUSION

In this paper, the concepts of quantum gates are briefly discussed. The runtime of a quantum algorithm as compared

to the classical algorithm was analysed, and results suggest that current hardware is still not suitable for circuits for

higher-qubit quantum circuit implementation.

From Table 5 and 6. we can see that the differences in computing time are in the scale of thousands and even hundred

thousand.

Table 5: Comparison of classical and Grover’s algorithm

Sample

size

(qubits)

Linear

search

Grover's

algorithm (2)

Factor of

time

difference

2 0.0005878040 2.914091825 4957.591

3 0.0006287839 4.173945904
6638.125

4 0.0007690690 4.698157549
6108.89

5 0.0010677010 5.570025584 5216.84

Table 6: Comparison of classical and Bernstein-Vazirani algorithm

Sample

size

(qubits)

Classical

approach

Bernstein-

Vazirani

algorithm (2)

Factor of

time

difference

1 1.73e-6 3.154468774 1823392

2 4.41e-6 3.617537021
820303.2

3 8.12e-6 4.122985839
507756.9

4 13e-6 4.183508157 321808.3

Although the results in Figure 15 and Figure 16 showed a linear trend of the time complexity of the quantum algorithms,

classical algorithms still run much faster due to well-developed performance enhancements techniques, the results

match the conclusions conducted by other papers [7].

On the other hand, a Qiskit package is developed to provide instant access for users that want to perform the same

benchmarking introduced in this paper, with some degree of customizability such as rounds of testing, and number of

qubits. For the time being, the proposed package contains only two algorithms, however, more quantum algorithms

will be added to the package in the future. Detailed instructions and usages can be found in the Github repository

listed in the following section.

Journal of Informatics and Web Engineering Vol. 3 No. 1 (February 2024)

APPENDIX

Source code can be found in the following repository: https://github.com/Youngei402tw/QuantumComputing

ACKNOWLEDGEMENT

The authors are extremely grateful for Qiskit’s platforms and tools. The conclusions discussed in this paper are only

comments from the authors, and do not reflect the opinions of the Qiskit team. This paper was not funded.

REFERENCES

[1] P. Abhishek, and V. Ramesh, "Quantum computing for big data analysis", Indian Journal of Science, 2015, 14(43), pp. 98-104.

[2] A. Frank, A. Kunal, B. Ryan, B. Dave, B. C. Joseph, et al. "Quantum supremacy using a programmable superconducting processor", Nature
574, 2019, pp. 505 - 51.

[3] Y. Wu, W.-S. Bao, S. Cao, F. Chen, M.-C. Chen, et al. "Strong quantum computational advantage using a superconducting quantum
processor", Physical Review Letters, 2019, 127(18).

[4] V. Chamola, A. Jolfaei, V. Chanana, P. Parashari, and V. Hassija, “Information security in the Post Quantum era for 5G and beyond networks:
Threats to existing cryptography, and post-quantum cryptography,” Computer Communications, vol. 176, pp. 99–118, 2021.

[5] G. Acampora, and A. Vitiello, "Implementing evolutionary optimization on actual quantum processors." Information Sciences, 2021, 575,
pp. 542–562.

[6] H. Soeparno, and A. S. Perbangsa, "Cloud quantum computing concept and development: A systematic literature review." Procedia Computer
Science, 2021, 179, pp. 944–954.

[7] L. Gyongyosi, and S. Imre, "A survey on quantum computing technology." Computer Science Review, 2019, 31, 51–71.

[8] G. A. Nemnes and D. Dragoman, “Reconfigurable quantum logic gates using Rashba controlled spin polarized currents,” Physica E: Low-
dimensional Systems and Nanostructures, vol. 111, pp. 13–19, 2019.

[9] A. Pourkia and J. Batle, “Cyclic groups and quantum logic gates,” Annals of Physics, vol. 373, pp. 10–27, 2016.

[10] H. M. Gaur, A. K. Singh, and U. Ghanekar, “In-depth comparative analysis of reversible gates for designing logic circuits,” Procedia Computer
Science, vol. 125, pp. 810–817, 2018.

[11] R. M. Abdullah, R. Basher, A. A. Alwan, and A. Z. Abualkishik, “Quantum Computers for optimization the performance,” Procedia Computer
Science, vol. 160, pp. 54–60, 2019.

[12] M. L. Dalla Chiara, R. Giuntini, G. Sergioli, and R. Leporini, “A many-valued approach to quantum computational logics,” Fuzzy Sets and
Systems, vol. 335, pp. 94–111, 2018.

[13] E. Bäumer, “Qubits and Quantum States, Quantum Circuits, Measurements - Part 1,” in 1. Qubits and Quantum States, Quantum Circuits,
Measurements - Part 1, 2021

[14] E. Bäumer, “Qubits and Quantum States, Quantum Circuits, Measurements - Part 2,” in 2. Qubits and Quantum States, Quantum Circuits,
Measurements - Part 2, 2021

[15] E. Bäumer, “ Qubits and Quantum States, Quantum Circuits, Measurements - Part 3,” in 3. Qubits and Quantum States, Quantum Circuits,
Measurements - Part 3, 2021

[16] C. de Ronde, The (Quantum) Measurement Problem in Classical Mechanics , 2020.

[17] R. G. Littlejohn, “The Mathematical Formalism of Quantum Mechanics,” 2020

[18] L. Vaidman, “Derivations of the born rule,” Jerusalem Studies in Philosophy and History of Science, pp. 567–584, 2020. doi:10.1007/978-3-
030-34316-3_26

[19] S. Aaronson, “Doing my oracle duty,” Shtetl-Optimized, https://scottaaronson.blog/?p=451 (accessed Jul. 15, 2023).

[20] A. J. Daley et al., “Practical quantum advantage in quantum simulation,” Nature, vol. 607, no. 7920, pp. 667–676, 2022. doi:10.1038/s41586-
022-04940-6

[21] M. Schuld and N. Killoran, “Is quantum advantage the right goal for quantum machine learning?,” PRX Quantum, vol. 3, no. 3, 2022.
doi:10.1103/prxquantum.3.030101

[22] M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles, “Challenges and opportunities in quantum machine learning,” Nature
Computational Science, vol. 2, no. 9, pp. 567–576, 2022. doi:10.1038/s43588-022-00311-3

[23] C. W. Bauer et al., “Quantum simulation for high-energy physics,” PRX Quantum, vol. 4, no. 2, 2023. doi:10.1103/prxquantum.4.027001

https://github.com/Youngei402tw/QuantumComputing

