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ABSTRACT - Gamma band activity is a high-frequency (30-100 Hz) oscillation of the electroencephalogram (EEG) that has 

been linked to a variety of cognitive processes including attention, memory and learning. However, extracting gamma band 

activity from EEG data can be challenging due to the relatively low signal-to-noise ratio of gamma band signals and the 

presence of other frequency bands such as beta and alpha. In this paper, we present a method for extracting gamma band 

activity from EEG data. We evaluated our method on a dataset of EEG data recorded from dyslexic patients. We found that 

our method was able to successfully extract gamma band activity from the EEG data. The extracted gamma band activity was 

significantly correlated with the subjects' performance on the visual attention task. Our results suggest that our method is an 

easy and straightforward approach for extracting gamma band activity from EEG data. This could be used to study the neural 

basis of cognitive processes in a variety of research settings. 
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I. INTRODUCTION  

In recent years, the study of neural oscillations has gained significant attention as the rhythmic fluctuations reflect 

the underlying neuronal dynamics. These are crucial for understanding brain function. Among the different 

frequency bands observed in EEG signals, the gamma band (30-100 Hz) has emerged as a fundamental component 

associated with various cognitive processes such as attention, perception, memory and consciousness.  

Gamma oscillations play a vital role in the brain by facilitating the integration of information and coordinating 

neural activity across different brain regions [1]. They support higher-order cognitive functions such as attention, 

perception, working memory and decision-making, by establishing coherent neural representations and enabling 

communication between brain areas. In the realm of sensory perception, gamma bands are particularly involved 

in processing visual and auditory stimuli, contributing to the binding and integration of sensory information [2]. 

Gamma oscillations are also associated with cognitive flexibility, allowing the brain to adapt and switch between 

different cognitive tasks and mental states [3].  They exhibit increased activity during tasks requiring cognitive 

flexibility, facilitating efficient transitions between cognitive processes and the reconfiguration of neural 

networks.  
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Gamma oscillations play a critical role in facilitating communication between brain regions, ensuring precise 

timing and coordination of neural firing for effective information transmission and integration [4]. Abnormalities 

in gamma band activity have been linked to various neurological and psychiatric disorders, including 

schizophrenia, autism spectrum disorders, Alzheimer's disease and epilepsy [5]. Studying gamma band activity in 

these conditions provides insights into underlying neural mechanisms and holds potential as a biomarker for 

diagnosis, disease monitoring and evaluating therapeutic interventions. Understanding the role of gamma bands 

in both normal brain function and pathological conditions is crucial for advancing our knowledge of brain 

disorders and developing targeted interventions for improved patient outcomes.  

The gamma band's involvement in cognitive functions has motivated researchers to develop effective methods for 

extracting and analysing this frequency range from raw EEG signals. However, extracting the gamma band poses 

several challenges due to its relatively low amplitude, susceptibility to noise interference and overlap with other 

frequency components [6]. Consequently, the accurate identification and isolation of gamma oscillations have 

become critical for gaining deeper insights into brain dynamics and enhancing our understanding of 

neurophysiological processes. 

Extracting gamma band activity from EEG signals presents several challenges. The gamma frequency range 

overlaps with neighbouring bands, making it difficult to distinguish gamma activity [7]. The low signal-to-noise 

ratio and individual differences in gamma activity require careful analysis and tailored approaches. Spatial 

localization of gamma sources is challenging due to limited scalp resolution and artifact contamination further 

complicates the extraction process [8]. Interpreting gamma band findings are complex as the functional 

significance of gamma oscillations is still under investigation. Overcoming these difficulties requires robust signal 

processing, artifact removal and integration with other measures. 

This journal article presents an analytical and straightforward approach for extracting the gamma band from EEG 

signals, focusing on the specific techniques employed to mitigate challenges associated with this frequency range. 

We propose a comprehensive methodology that encompasses pre-processing and signal processing techniques 

tailored to enhance the extraction and analysis of gamma oscillations. 

 

II. LITERATURE REVIEW  

A. Gamma Bands Activity 

Gamma band frequency range spans from 30 to 100 Hz. The oscillatory activity within the gamma range reflects 

the synchronization of large neuronal populations and is believed to play a fundamental role in complex cognitive 

operations and information processing within the brain [9]. 

The extraction of gamma band frequencies from EEG signals has emerged as a vital research area with the 

potential to unlock new insights into neural mechanisms and cognitive processes. By comprehensively evaluating 

the existing techniques, we aim to inform researchers, clinicians and neuroscientists about the most effective 

methodologies for accurately and robustly extracting gamma band frequencies from EEG signals. Such insights 

will not only enhance our understanding of cognitive processes and neural dynamics but also pave the way for the 

development of innovative applications in fields such as cognitive neuroscience, brain-computer interfaces and 

clinical diagnosis. In the following sections, we will delve into the various techniques employed for extracting the 

gamma band from EEG signals. 

 

B. State-of-the-art Methods of extracting gamma bands 

An extensive search was conducted across various academic databases, including PubMed, IEEE Xplore and 

Google Scholar. The search terms used included combinations of keywords such as "EEG signals," "gamma band," 

"frequency extraction," and "neural dynamics." Additionally, relevant reference lists of identified papers were also 

reviewed to ensure a comprehensive search. 

Inclusion and exclusion criteria were established to ensure that only studies meeting specific quality and relevance 

criteria were included in the literature review. Firstly, studies were required to focus specifically on the extraction 



Journal of Informatics and Web Engineering              Vol. 2 No. 2 (September 2023) 

 

143 
 

of gamma band frequencies from EEG signals. This criterion helped to ensure that the selected papers directly 

addressed the main objective of the review. 

Studies were included if they employed techniques related to time-domain methods, frequency-domain methods 

or advanced approaches like independent component analysis and adaptive filtering algorithms. By considering a 

wide range of techniques, the review aimed to provide a comprehensive overview of the existing methods for 

extracting gamma band frequencies. 

It is important to acknowledge that despite the systematic approach employed in the search and selection process, 

there may be limitations and potential biases present. One limitation is the possibility of publication bias where 

studies with positive results or significant findings are more likely to be published, leading to an incomplete 

representation of the available literature. Moreover, the use of specific search terms and databases may have 

inadvertently excluded some relevant studies, potentially introducing a selection bias. 

While the research methodology employed in this literature review aimed to minimize biases and ensure the 

inclusion of high-quality and relevant studies, it is important to acknowledge these limitations and potential biases 

that could have influenced the final selection of papers. 

Time-domain methods focus on analysing the temporal characteristics of the EEG signal to extract the gamma 

band [10]. One commonly used technique is bandpass filtering where a filter is applied to isolate the desired 

frequency range (gamma band) while attenuating frequencies outside the range. Bandpass filters can be 

implemented using various filter designs such as Butterworth, Chebyshev or elliptic filters [11]. 

Signal decomposition techniques such as Empirical Mode Decomposition (EMD) and wavelet transform are also 

employed in the time-domain to extract the gamma band. EMD decomposes the EEG signal into a set of intrinsic 

mode functions (IMFs) that represent different frequency components [12]. By selecting the IMFs corresponding 

to the gamma band, the gamma activity can be extracted [13]. Wavelet transform allows for a multi-resolution 

analysis of the EEG signal where different scales or frequencies can be analysed separately. The wavelet transform 

can identify specific time-frequency regions containing gamma band activity [14]. 

Frequency-domain techniques are another approach to extract the gamma band from EEG signals. These methods 

focus on analysing the spectral content of the EEG signal. Fourier transform is a widely used frequency-domain 

technique that decomposes the EEG signal into its constituent frequency components. By examining the power 

spectrum or the magnitude of the Fourier transform, the presence of gamma band activity can be identified [15]. 

Wavelet transform also has a frequency-domain interpretation. The continuous wavelet transforms, and the 

discrete wavelet transform can provide a detailed analysis of the frequency content of the EEG signal at different 

scales [16].  

The short-time Fourier transform (STFT) is another frequency-domain technique commonly employed for gamma 

band extraction. STFT divides the EEG signal into short overlapping windows and applies the Fourier transform 

to each window [17]. This allows for the analysis of frequency changes over time and can capture transient gamma 

band activity. 

Each technique has its strengths and limitations. Time-domain methods such as bandpass filtering are 

straightforward and computationally efficient but may be susceptible to artifacts and noise. Signal decomposition 

techniques like EMD and wavelet transform provide a more adaptive and flexible approach, but their performance 

can be affected by signal characteristics and the selection of appropriate parameters. Frequency-domain 

techniques including Fourier transform and STFT, provide information about the spectral content but may lack 

temporal resolution. 

 

C. EEG Signal Processing 

The first step in EEG signal processing is often pre-processing which involves various techniques to reduce noise, 

remove artifacts and enhance the signal of interest. Filtering is a common pre-processing step that aims to remove 

unwanted noise and artifacts while preserving the desired frequency content of the EEG signal. This is typically 

done using digital filters, such as high-pass, low-pass or band-pass filters to selectively remove frequencies outside 

the range of interest. Artifact removal is another crucial pre-processing step in EEG signal processing. EEG signals 

are susceptible to various artifacts including eye blinks, muscle movements and electrical interference. Techniques 

such as Independent Component Analysis (ICA) and template matching algorithms can be employed to identify 

and remove these artifacts from the recorded EEG data. Noise reduction techniques are also applied to improve 
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the signal-to-noise ratio of the EEG data. These techniques may involve methods like signal averaging, spatial 

filtering or adaptive filtering algorithms to suppress background noise and enhance the underlying EEG activity. 

After pre-processing, the EEG data is typically analysed in the frequency domain. EEG signals exhibit oscillatory 

activity across different frequency bands, each associated with specific cognitive and neural processes. These 

frequency bands are often categorized as delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and 

gamma (30-100 Hz) bands. 

Of particular relevance to this literature review is the gamma band frequency range 30Hz to 100 Hz. Gamma 

oscillations have been extensively studied and are known to play a crucial role in cognitive processes and neural 

dynamics. Gamma band activity is associated with various cognitive functions, including sensory perception, 

attention, memory encoding and retrieval and conscious awareness. It reflects the synchronization of neuronal 

populations and the coordination of information processing across different brain regions. 

 

D. Advantages and Limitations of Extraction Techniques 

Each extraction technique offers unique advantages in terms of accuracy. Bandpass filtering, for example, is a 

straightforward method that can effectively isolate the gamma band frequencies. It provides a simple and reliable 

way to extract the desired frequency range from the EEG signal. Signal decomposition techniques like EMD and 

wavelet transform offer adaptability by decomposing the signal into different frequency components or scales, 

allowing for a more precise extraction of the gamma band [18]. 

Computational complexity is another important aspect to consider. Bandpass filtering is computationally efficient 

and requires relatively low processing power [19]. Signal decomposition techniques such as EMD and wavelet 

transform can be computationally intensive, particularly when dealing with large datasets or real-time applications 

[20]. Fourier transform and STFT fall in between, offering a balance between computational complexity and 

accuracy. 

The robustness of the extraction techniques is also a critical consideration. Bandpass filtering is generally robust 

and less affected by artifacts or noise. However, it may also filter out relevant information outside the specific 

frequency range, potentially leading to information loss. Signal decomposition techniques like EMD and wavelet 

transform are adaptive and can handle non-stationary signals, making them robust against variations in the EEG 

signal. However, their performance may be influenced by the selection of appropriate parameters and the 

characteristics of the EEG signal.  

Challenges associated with extracting the gamma band from EEG signals include the presence of artifacts, low 

signal-to-noise ratio and individual variability. EEG signals are susceptible to various artifacts such as eye blinks, 

muscle movements and electrical interference [21]. These artifacts can contaminate the gamma band activity and 

affect the accuracy of extraction techniques. Pre-processing steps, including artifact removal and noise reduction 

are essential to mitigate these challenges. 

The low signal-to-noise ratio inherent in EEG signals poses another challenge. The gamma band activity is often 

weak compared to other frequency components, making it susceptible to noise and interference [22]. Extraction 

techniques should aim to enhance the signal-to-noise ratio and effectively extract the desired gamma band activity. 

Individual variability in EEG signals adds complexity to the extraction process. Different individuals may exhibit 

variations in brain anatomy, electrode placement and signal characteristics. This variability necessitates the 

development of techniques that are robust across different individuals and can adapt to individual differences. 

Gamma band extraction holds significant promise for a range of applications in cognitive neuroscience, brain-

computer interfaces and clinical diagnosis. In cognitive neuroscience, the study of gamma band activity provides 

insights into the neural mechanisms underlying various cognitive processes. By accurately extracting and 

analysing gamma band activity, researchers can investigate the dynamics of perception, attention, memory and 

consciousness, shedding light on the fundamental workings of the human brain. 

Brain-computer interfaces (BCIs) are another domain where gamma band extraction can play a crucial role. BCIs 

aim to establish direct communication pathways between the brain and external devices, enabling individuals with 

motor disabilities to control assistive technologies using their brain signals [23]. Gamma band activity has shown 

promise as a control signal in BCIs, allowing for more precise and intuitive interaction. By developing robust and 

accurate methods for extracting gamma band activity, the performance and usability of BCIs can be enhanced, 

opening up new possibilities for individuals with limited mobility.  
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In clinical diagnosis, gamma band analysis from EEG signals has the potential to assist in the identification and 

characterization of neurological disorders [24]. Abnormalities in gamma band activity have been associated with 

conditions such as epilepsy, Alzheimer's disease, schizophrenia and attention deficit hyperactivity disorder 

(ADHD). By extracting and analysing gamma band activity, clinicians can potentially gain valuable insights into 

the neurophysiological markers of these disorders, leading to improved diagnosis, monitoring and treatment 

strategies. 

Despite the progress in gamma band extraction techniques, there are still gaps and opportunities for future research 

and development. One area of focus could be the development of standardized and validated methodologies for 

gamma band extraction [25]. The diversity of existing techniques and the lack of consensus on the most effective 

approaches hinder comparison and replication across studies. Efforts should be made to establish standardized 

protocols and benchmarks for evaluating the performance of extraction techniques. 

Another direction for future research is the exploration of individual-specific modelling and analysis approaches. 

The brain exhibits considerable inter-individual variability and individual-specific models can capture subject-

specific characteristics more accurately [26]. Tailoring extraction techniques to individual differences in brain 

anatomy and functional connectivity may lead to more precise and reliable gamma band extraction. 

Emerging technologies and novel approaches hold promise for enhancing the accuracy and efficiency of gamma 

band extraction. Machine learning algorithms such as deep learning and convolutional neural networks have 

shown potential in automatically extracting gamma band activity from EEG signals [27]. These approaches can 

learn complex patterns and relationships within the data, potentially improving the accuracy and reducing the 

manual intervention required in the extraction process. 

The integration of multimodal data, such as combining EEG with functional Magnetic Resonance Imaging (fMRI) 

or magnetoencephalography (MEG) can provide complementary information for gamma band extraction [28]. By 

leveraging the strengths of different modalities, researchers can obtain a more comprehensive understanding of 

the neural correlates of gamma band activity. 

The applications of gamma band extraction from EEG signals encompass cognitive neuroscience, brain-computer 

interfaces and clinical diagnosis. Future research should focus on standardization, individual-specific modelling 

and the integration of emerging technologies to advance the accuracy, efficiency and applicability of gamma band 

extraction. These advancements will facilitate a deeper understanding of brain function, enhance assistive 

technologies and contribute to the diagnosis and treatment of neurological disorders. 

 

III. RESEARCH METHODOLOGY 

Obtaining reliable and diverse EEG datasets is crucial for conducting meaningful analyses and drawing valid 

conclusions. In this study, we utilized an existing secondary dataset kindly made available by Dr. Karen Waldie 

from the University of Auckland. This dataset serves as a valuable resource for our investigation into the neural 

processes associated with dyslexia and bilingualism. Below, we provide a comprehensive overview of the dataset's 

acquisition process, participant demographics, and experimental conditions. 

The EEG dataset comprises recordings from 128 scalp electrodes, providing comprehensive coverage of neural 

activity across various cortical regions. The data was collected using a high-quality EEG acquisition system with 

a sampling rate of 250 Hz, ensuring accurate capture of fast neural oscillations. The electrodes were arranged 

according to the 10-20 system, enabling precise localization of neural sources. 

The dataset features a diverse sample of participants, carefully selected to investigate the interplay between 

dyslexia, bilingualism, and neural activity. The participant group includes 12 English-speaking adults with 

dyslexia, 14 monolingual adults (including 10 females) and 15 late proficient bilinguals. This range of language 

proficiencies and cognitive profiles ensures a rich and heterogeneous dataset, enhancing the validity and 

generalizability of our findings. 

The EEG data was collected during a series of experimental sessions, each designed to capture specific neural 

responses under different linguistic and cognitive contexts. The participants underwent task and rest conditions. 

The rest conditions allowed us to examine baseline neural activity and assess the spontaneous oscillatory patterns 

inherent in each participant's brain. 
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The dataset's diversity and depth make it an essential resource for researchers interested in investigating the 

complex neural mechanisms associated with dyslexia and bilingualism. By combining neurophysiological data 

with behavioural and linguistic profiles, this dataset provides a holistic view of brain-behaviour relationships, 

facilitating insights into the cognitive challenges faced by individuals with dyslexia and those engaged in bilingual 

language processing. 

In a nutshell, the dataset provided by Dr. Karen Waldie is a cornerstone of our study's empirical foundation. Its 

acquisition process, participant demographics, and experimental conditions contribute to the robustness and 

applicability of our findings. We acknowledge and appreciate Dr. Waldie's contribution to advancing research in 

the fields of dyslexia, bilingualism, and EEG signal analysis. 

In this study, we used a bandpass filter to extract gamma band activity from EEG data. We acknowledge that there 

exist more advanced techniques and methods in the field of EEG signal processing. However, it's important to 

note that the primary objective of our study was to develop an approach that is both accessible and easily 

implementable, particularly for researchers and practitioners who may be new to EEG signal analysis. Our 

decision to utilize the FIR bandpass filter method stems from the intention of providing a straightforward and 

approachable solution for extracting gamma band activity from EEG signals. While advanced techniques such as 

time-frequency analyses, wavelet transforms and adaptive filtering methods have demonstrated their efficacy, they 

often require a deeper understanding of signal processing concepts and more complex parameter tuning. In 

contrast, the FIR bandpass filter approach offers a clear and step-by-step method that can be readily applied by 

researchers with varying levels of expertise. 

Into the bargain, by employing a well-established technique like the FIR bandpass filter, we aimed to ensure 

reproducibility and comparability of our results with existing studies. This approach allows for a seamless 

integration of our findings into the existing body of literature, facilitating meaningful comparisons and 

collaborations. We understand that our choice of methodology may not be the most cutting-edge option available 

but it aligns with our intention to bridge the gap between fundamental research and practical application. We 

believe that this approach will not only cater to a wider audience of researchers but also serve as an educational 

resource for newcomers to EEG signal analysis. 

In the subsequent sections, we will detail the steps involved in our gamma band extraction process using the FIR 

bandpass filter and discuss the implications of our findings within this context.  This research's procedural flow is 

depicted in Figure 1. Figure 1 shows the methodology that comprises a series of sequential steps for the analysis 

of electroencephalogram (EEG) data. Initially, we acquire raw EEG data and subsequently load it into our 

processing pipeline. The data then undergoes preprocessing and is subjected to a bandpass filter to isolate the 

relevant frequency range. We proceed by segmenting the data into epochs to facilitate further analysis. The power 

spectrum is computed from these epochs with a specific focus on the Gamma Band. Finally, the results are 

visualized to gain insights into this frequency component. This methodology enables us to extract and interpret 

valuable information from EEG recordings, particularly in relation to the Gamma Band which is essential for our 

research objectives. 

 

Figure 1. Bandpass Filter Method 

To extract gamma band activity using bandpass filter from the raw EEG signal, the cutoff frequencies first 

determined and the frequency is from 30hz to 45hz. The lower cutoff frequency is set to the lower end of the 

gamma range (like 30 Hz) while the upper cutoff frequency is set to the upper end of the gamma range (like 45 
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Hz). These cutoff frequencies define the desired frequency range that the bandpass filter will retain, allowing 

gamma band activity to pass through while attenuating frequencies outside this range. 

After defining the filter parameters, the relevant techniques for crafting digital filters are employed. Various 

examples are such as Finite Impulse Response (FIR) or Infinite Impulse Response (IIR) filters. These methods 

determine the filter coefficients necessary to apply the bandpass filter to the EEG signal accurately. The goal is to 

create a filter that efficiently isolates the gamma band activity while minimizing distortion or artifacts in the 

filtered signal. 

Once the bandpass filter is designed, it has been applied to the raw EEG signal. This involves passing the EEG 

signal through the filter using convolution or other suitable filtering methods. The result is a new signal that 

predominantly contains gamma band activity, effectively isolating the neural oscillations in the desired frequency 

range. After that, the filtered signal to observe the extracted gamma band activity can be visualized, making it 

easier to study the neural dynamics and cognitive processes associated with gamma oscillations. 

 

IV. RESULTS AND DISCUSSIONS 

EEGLAB 2022.1 toolbox in MATLAB R2022b has been used to analyse the data. We found that the gamma band 

power was significantly higher in the frontal and parietal regions during the task condition compared to the rest 

condition. This suggests that gamma band activity is involved in cognitive processing during the task. 

Figure 2 illustrates the results of the analysis, showcasing the gamma bands of component spectra and scalp maps. 

The specific gamma band utilized had a frequency range of 30 Hz with an epoch time range of 200ms to 300ms. 

The plotting frequency range encompassed 30 Hz to 100 Hz, capturing the relevant gamma band frequencies. The 

figure displays the scalp maps of the five largest contributing components. This selection allows for a concise 

representation of the most significant neural sources associated with the gamma band activity. The scalp maps 

visually depict the spatial distribution of these components across the scalp, highlighting the regions where the 

gamma band activity is most prominent. This information is crucial in understanding the localization and 

topography of gamma oscillations within the brain. 

 

Figure 2. Gamma Bands 30 Hz 200 To 300ms 

It is important to note that the analysis was conducted on a subsample of the data, specifically 20% of the total 

data. This subsampling strategy helps manage computational resources while still providing meaningful insights 

into the gamma band activity.  The successful extraction and visualization of gamma bands from the EEG signal 

using the bandpass filter method highlight the effectiveness of this approach in isolating specific frequency ranges 

of interest. The obtained component spectra and scalp maps provide valuable information about the neural activity 

associated with the gamma band. The specific epoch time range chosen (200ms to 300ms) allows for the 

examination of gamma band activity during a specific temporal window, potentially capturing relevant cognitive 

processes or stimulus-related responses. 
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Figure 3 presents the results, displaying the gamma bands of component spectra and scalp maps generated. The 

specific gamma band examined had a frequency range of 40 Hz and the epoch time range spanned from -1000ms 

to 1996ms. The total plotting frequency range encompassed 30 Hz to 100 Hz. The scalp maps exhibited the five 

largest contributing components, providing insights into the spatial distribution of gamma band activity across the 

scalp. The analysis was conducted on a 20% subsample of the data, allowing for efficient computation without 

compromising the integrity of the findings.  

 

Figure 3. Gamma Bands 40 Hz -1000ms To 1996ms 

Figure 4 presents the results, displaying the gamma band waveform using a plugin called 'Letsplot' in the EEGLAB 

toolbox. Specifically, the waveform corresponds to the first epoch of Electrode 1. Visualizing the gamma band 

waveform provides valuable insights into the temporal dynamics of gamma oscillations at a specific electrode 

site. By examining the waveform, researchers can observe the amplitude and frequency characteristics of the 

gamma band activity during the first epoch. This information can contribute to the understanding of the underlying 

neural processes associated with gamma oscillations and their potential role in cognitive functioning. The use of 

the 'Letsplot' plugin within the EEGLAB toolbox allows for convenient and efficient visualization of the gamma 

band waveform. It enables researchers to explore and analyse the specific features of the gamma band activity, 

facilitating further investigations and comparisons across different electrodes or epochs. 

 

Figure 4. Gamma Bands Wave Form 

It is important to note that the waveform displayed in Figures 2 and 3 represent the gamma band activity of only 

one electrode during the first epoch. It provides a focused view of the gamma band dynamics at this specific 
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location and time interval. To gain a comprehensive understanding of the gamma band activity across the entire 

scalp and throughout the entire recording session, further analyses and visualizations of other electrodes and 

epochs would be necessary. The successful extraction and visualization of the gamma band waveform highlight 

the effectiveness of the bandpass filter method in isolating and examining specific frequency ranges in the EEG 

signal. The waveform analysis contributes to our understanding of the temporal characteristics of gamma 

oscillations and their potential implications in cognitive processes. Future investigations could extend this analysis 

to include multiple electrodes and epochs, providing a more comprehensive picture of the gamma band activity 

in the EEG data. 

To provide a comprehensive analysis of the gamma band activity within our EEG signals, we employed an 

epoching process followed by power spectrum calculation. This allowed us to examine the spectral content of our 

EEG data over time and gain insights into the distribution of frequency components within specific epochs. The 

Epoching process involved dividing the continuous EEG signal into discrete epochs, each spanning a predefined 

time interval. This segmentation enabled us to focus on specific events or states of interest, ensuring that we 

captured relevant neural activity associated with the gamma frequency range. The criteria for epoch selection were 

based on time windows. Following epoching, we computed the power spectrum for each epoch to analyse the 

frequency composition of the EEG signal within the gamma band and other relevant frequency ranges. The power 

spectrum provides a visual representation of the signal's energy distribution across different frequency bins. With 

the epoching process and power spectrum calculation in place, we proceeded to focus on the gamma frequency 

range (30-100 Hz) to investigate the gamma band activity in our EEG signals. The power values within this 

frequency range were analysed across epochs to uncover patterns of gamma band oscillations associated with our 

experimental conditions. The incorporation of epoching and power spectrum calculation serves to enhance the 

granularity of our analysis and provides a means to extract insights from specific temporal segments of the EEG 

data. This approach is particularly valuable for capturing transient neural phenomena and aligning our findings 

with established neural processing theories. 

In our investigation of gamma band activity, it is relevant to address the specific electrode subset chosen for 

analysis and the accuracy of the extracted bandpass signal. While we had access to a 128 channel EEG setup, our 

analysis concentrated on a subset of electrodes to optimize computational efficiency and enhance the 

interpretability of our findings. 

The selection of electrodes for gamma band activity assessment was guided by a combination of factors, including 

the specific cognitive processes under investigation, the spatial distribution of neural sources associated with the 

target frequency range and practical considerations related to data processing complexity. To facilitate a coherent 

analysis of neural responses and to minimize the potential influence of noise sources, we employed an automated 

selection process using the EEGLAB toolbox. This approach allowed us to objectively identify electrodes that 

exhibited prominent gamma band activity relevant to our research questions. 

Ensuring the accuracy of the extracted bandpass signal is crucial for drawing valid conclusions about the neural 

activity within the gamma frequency range. Our analysis involved employing well-established digital filtering 

techniques, specifically FIR bandpass filters to isolate the gamma frequency components from the EEG data. 

These filters were designed with careful attention to the desired frequency range of 30-100 Hz to capture the 

neural oscillations of interest. The accuracy of the extracted bandpass signal was further assessed through rigorous 

data preprocessing steps. These included artifact removal techniques to minimize the impact of non-neural 

interference, such as eye blinks, muscle activity and other sources of noise. By reducing such artifacts, we aimed 

to ensure that the gamma band activity extracted from the subset of electrodes was a true representation of the 

underlying neural processes. 

To enhance the objectivity and transparency of our analysis, we utilized the automated electrode generation 

capabilities of the EEGLAB toolbox. This feature allowed us to avoid potential bias in electrode selection and 

ensured that electrodes were chosen based on data-driven considerations rather than subjective judgment. The 

algorithm leverages spatial patterns of neural activity to determine electrode relevance for the specific frequency 

range under investigation. 

Our decision to analyse a subset of electrodes was driven by a balance between research objectives, computational 

efficiency and the interpretability of results. The accuracy of the extracted bandpass signal was upheld through 

careful digital filtering, artifact removal and automated electrode generation using EEGLAB. These measures 

collectively contribute to the robustness of our findings and provide a methodologically sound foundation for our 

analysis of gamma band activity. 
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To wrap up the analysis, our findings suggest that gamma band activity is involved in a variety of cognitive 

functions. Further research is needed to understand the specific role of gamma band activity in these cognitive 

processes. 

 

V. LIMITATIONS 

Our study aims to shed light on gamma band activity in EEG signals using a comprehensive extraction approach. 

Below, we outline the identified limitations and elaborate on their connection to our methodology and findings. 

One limitation of our approach arises from the spatial resolution of EEG measurements, particularly the potential 

for volume conduction effects and the limited spatial accuracy in localizing neural sources. This limitation is 

inherent in EEG and can affect the precise identification of the neural generators of gamma band activity. Although 

our methodology employs a subset of electrodes optimized for gamma band analysis, the accurate localization of 

the neural sources contributing to the observed gamma oscillations may be challenging. 

The presence of noise and artifacts in EEG recordings can pose challenges to the accurate extraction of gamma 

band activity. Despite employing robust artifact removal techniques, residual noise may persist, influencing the 

quality of our extracted signals. While our methodology strives to enhance the signal-to-noise ratio through 

preprocessing steps and digital filtering, the potential influence of artifacts remains a consideration in the 

interpretation of our results. 

The interpretability of our findings is affected by the complex nature of neural activity which encompasses a 

multitude of cognitive and physiological processes. While our methodology provides insights into gamma band 

oscillations, the precise cognitive functions underlying these oscillations may not always be straightforward to 

perceive. The linkage between gamma activity and specific cognitive processes requires careful consideration and 

integration with other behavioural and neuroimaging measures. 

We recognize the importance of aligning the limitations of our methodology with our proposed approach to 

provide a holistic view of our research. Despite these limitations, our methodology offers valuable insights into 

gamma band activity, its potential neural sources and its implications for understanding dyslexia and bilingualism. 

Our commitment to transparency and rigor ensures that the limitations we acknowledge contribute to a nuanced 

interpretation of our results, informing future research directions in the field. 

 

VI. CONCLUSION   

The results of this study suggest that gamma band activity is significantly decreased in individuals with dyslexia. 

This finding is consistent with previous research that has shown that gamma band activity is important for a variety 

of cognitive functions, including attention, working memory and language processing. The decreased gamma 

band activity in individuals with dyslexia may contribute to their difficulties in these areas. After successfully 

extracting gamma band activity from EEG signals using bandpass filters, there are several exciting future 

directions for further exploration. Researchers can investigate the functional significance of gamma band activity 

in different cognitive processes and brain functions. By studying the relationship between gamma oscillations and 

specific tasks or mental states, researchers can gain deeper insights into the role of gamma bands in cognition and 

potentially uncover new biomarkers for cognitive disorders or neurological conditions. Advancements in source 

localization techniques can help elucidate the precise neural generators of gamma activity, allowing for a more 

detailed understanding of the underlying neural circuits involved. Integrating gamma band analysis with other 

neuroimaging modalities, such as functional magnetic resonance imaging (fMRI) or electrocorticography (ECoG) 

can provide a multimodal perspective on brain activity and enhance our understanding of the dynamics and 

functional connectivity associated with gamma oscillations. Lastly, ongoing technological advancements in EEG 

hardware and signal processing methods hold promise for improving the quality and resolution of gamma band 

extraction, enabling more accurate and reliable analysis. The successful extraction of gamma band activity opens 

up exciting avenues for further research, with the potential to deepen our understanding of brain function and 

contribute to the development of novel diagnostic and therapeutic approaches. This research could lead to the 

development of new interventions for dyslexia that target gamma band activity.  
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