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Abstract – The heart is a very crucial organ of the body. Concerted efforts are constantly put forward to provide adequate 

monitoring of the heart. A heart disorder is reported to cause a lot of hidden ailments resulting in numerous deaths. Early heart 

monitoring using an electrocardiogram (ECG) through the advancement of computer-aided diagnostic (CAD) systems is widely 

used. Meanwhile, the use of human reading of ECG results are faced with many challenges of inaccurate and unreliable 

interpretations. Over two decades, studies provided artificial intelligence (AI) technique using machine learning (ML) algorithms 

as a fast and reliable technique for ECG heartbeat classification. Moreover, in recent times, deep learning (DL) techniques have 

been focused on providing automatic feature extraction and better classification performance. On the other hand, the challenge 

with the ECG data is its imbalance nature. Therefore, this paper proposes a cost-based dual convolutional attention transfer DL 

model for ECG classification. The proposed model uses PhysionNet-MIT-BIH and Physikalisch-Technische Bundesanstalt (PTB) 

Diagnostics datasets. The first part uses the MIT-BIH for ECG categorization, while representations learned from the first 

classifier are used for PTB analysis through transfer learning (TL). The proposed model is evaluated and compared with well-

performing conventional ML models based on their F1-score and accuracy scores. Our experimental finding show that the 

proposed model outperformed the well-performing ML models as well as competitive with past studies for both the classification 

and TL part, having obtained 98.45% for both F1-score and accuracy. The proposed model is applicable to real-life trials and 

experiments for ECG heartbeat and other similar domains. 
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I. INTRODUCTION 

Heart arrhythmia (Ha) is a major condition of the heart rate in which there is an irregular or one of the following 

appearances: too slow, too early, or too rapid. It is a series of abnormalities in the heartbeats depicted as electrical 
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impulses. Individuals with shortness of breath, hypertension, palpitations, coronary artery disease, dizziness, and 

fainting are likely at risk of Ha. In as much as many diagnosed Ha reported are not harmful, there exist very 

dangerous, progressive, and often-diagnosed-too-late types leading to most cardiovascular disorders (CaDi), 

including stroke. Large numbers of deaths are recorded yearly as a result of CaDi. In 2019, reports showed 17.9 

million death occurrences alone for CaDi, amounting to 32% of death globally [1–3]. Therefore, it is advantageous 

to constantly pursue early detection mechanisms of CaDi to provide timely control and prevention of its cases 

leading to perennial death.  

Many medical diagnoses are based on accuracy and precision, where measurement and experiments are error-free 

and reliable. Hence, over the past two decades, ECG, a non-invasive, low-cost technology, has spurred much 

research interest in CaDi diagnosis. A typical 12-led ECG, is a process where receptive-signal objects (electrodes) 

are placed on different parts of the body to help detecting recurrent heartbeats. Figure 1 illustrates a signal reflect of 

the detected heartbeats. However, the complexity associated with accurate interpretation of the ECG necessitated the 

use of CAD to capture and annotate ECG data digitally. Reliability of CAD results for early diagnosis requires a 

long-term monitoring-more than 24 hrs [4, 5]. Not only does CAD speed up the collection process, but it also 

ensures that it is error-free and useful for further processes [1]. 

Advancements in AI and decision support systems have consistently provided engaging, innovative thoughts and 

ideas for analyzing medical data like the ECG with much precision and accuracy [6, 7]. Numerous intriguing models 

have been put forth in the literature for the automated categorization of ECG signals. These models comprise diverse 

ML and DL techniques or the hybrid of the methods to solve the categorization task, including DT, NB, KNN, SVM, 

and recent DL models [8, 9]. Researchers have recently created a variety of cardiac classification methods for 

detecting Ha using ECG data, largely depending on the growing learning capabilities of DL-based classifiers. The 

DL classifiers can convert the ECG signal to an image and then use two-dimensional convolutional neural networks 

(2D-CNN) [10] or one-dimensional CNN [11, 12] to learn the necessary features from the ECG signal. Long-term, 

short-term memory (LSTM) [13] is another DL technique frequently used for ECG signal analysis. Moreover, using 

1D-CNN in several ECG classification domains has been extensively researched [11]. 

Meanwhile, the automatic classification of ECG heartbeat is a difficult undertaking often characterized by three core 

problems. The nature of the dataset comes first. Depending on the patient's physiological processes and emotional 

state, the ECG waveform's morphological properties always change from patient to patient. Hence, the intervals (RR, 

QRS) and ECG waveform segments (PR, ST) are affected by the physiological functions and autonomic nervous 

system activities. In light of this, the arrhythmia detection model may not work well for other patients if it was 

created using hand-crafted characteristics for a certain group of patients. Additionally, utilizing traditional ML 

models may not be reliable enough because they rely heavily on hand-crafted feature selection [14]. Consequently, 

preventing the classification model from having improved generalizability. In this case, DL models have the 

competitive advantage of providing automatic feature extraction coupled with the non-linear relationship learning 

ability inherent in them.  

The second issue is about the class imbalance of the ECG data. It is widely known that ML/DL models perform well 

based on the data quality used as much as the learning algorithms applied. In this case, the ECG dataset's target class 

has a skewed distribution. It is, therefore, essential to provide a model that can learn with and through the 

imbalanced data in such a way that the minority class(es) is(are) significantly represented. 

The third issue focuses on the Arrhythmia database [15], which consists of MIT-BIH and PTB diagnostic for ECG 

heartbeat classification. Reducing the cost and burden of training a reusable model from scratch necessitated 

developing a classifier on one dataset (in this case, MIT-BIH) and exploring such a classifier on the other (i.e., PTB) 

without retraining the classifier from scratch. The merits, no doubt include single-model-multiple tasks, reduction in 

cost and time for building a new model, and expanding re-usability of models in the same domain. Hence, a TL 

approach, resulting from an interesting pattern learned from a particular task and reusable in a similar study to boost 

model performance, is desirable [16, 17]. 

Therefore, this paper proposes a cost-based dual 1D-CNN attention (CB-DuConvNetA) transferable classifier that 

efficiently categorizes ECG heartbeat and adequately provides for automatic feature extraction. In addition, 

increases model performance and better generalizability of the minority classes following the AAMI standard for 

categorizing ECG MIT-BIH data. This paper's contribution may be summed up as follows: 
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i. Developing a dual 1D-CNN with an integrated attention mechanism in each convolutional block to boost 

the overall model performance via block-level performance and use the same as a pre-trained model. 

ii. Developing a cost-based approach to solving the imbalance data problem associated with the ECG datasets. 

The method uses class-imbalance-ratio-weight, which leverages the proposed model loss function without 

additional overhead, to penalize the minority class, thereby achieving model generalizability. 

iii. Using the pre-trained model as a transferable learning representation for PTB heartbeat classification. 

 

The remainder of the paper is structured as follows. Section II offers a summary of related works. Section III 

discusses the methodology, including the data description, preprocessing, exploratory analysis, and the proposed 

CB-DuConvNetA model. Section IV provides the suggested method's classification results and performance 

comparisons. Section V presents the conclusion. 

 

 

Figure 1. An example of ECG heartbeat impulse. Reproduced from [44]. 

II. RELATED WORKS 

The fundamental steps to compute-diagnose Ha symptoms or its related abnormalities using ECG signal include: 

processing ECG signal, segmentation of heartbeat, feature extraction, and categorization. Identified in the literature, 

methods for ECG signal are but not limited to continuous wavelet transform (CWT), Empirical Mode 

Decomposition (EMD), Discrete wavelet Transform (DWT), Empirical Wavelet Transform (EWT), and Signal 

Energy Thresholding (SET) coefficients [2, 14, 18, 19]. In segmentation, an ECG signal based on an R-peak is 

utilized to detect the waves, segments, and intervals and compare them with well-known patterns using their 

temporal and morphological properties [12, 20, 21]. At the same time, Essa & Xie [13] discussed frequent feature 

extraction techniques to include wavelet, morphological, and n-order statistical features. 

For the classification of ECG Ha, conventional ML models are widely used, including Gradient-Boosted Tree 

(GDBT) and random forest (RF) [14], KNN [9], [20], SVM, and multi-layer perceptron (MLP) MLP [22]. 

Meanwhile, recent studies focus on DL models for ECG classification [23, 24]. It may be due largely to the 

automatic feature, huge data handling, and the non-linear transformation capability inherent in most DL models [11]. 

The study of ECG classification is divergent and widely studied. One approach is converting the ECG data to an 

image and then using 2D-CNN or its variant as the classifier. Ahmad et al. [10] proposed variant multimodal fusion 

techniques for transforming ECG heartbeat classification. Three different images were first generated based on three 

other image-generating methods. The authors then performed image fusion on the three images to produce one 

image as input into the CNN. Similarly, Xie et al. [25] presented a feature enhancement framework to exploit the 

benefits of the CNN classifier. The authors introduce a time-frequency process to convert the ECG signal into 

images and feed it as input to CNN. Similarly, a time-frequency 2D-based approach was studied by Zhang et al. [11] 

to utilize the image-CNN technique by including a residual neural network (ResNet-101) TL for the PTB 
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categorization. Other studies that implemented image-CNN using scalogram include [26, 27] and [28], where the 

classifier's learning on the PTB data is fine-tuned using weights collected during the initial training process. 

In another vein, the 1D variant of CNN is widely accepted and exploited for ECG classification, focusing on TL 

rather than training models for individual ECG classification problems. Kachuee et al. [29] suggested 1D-CNN for 

heartbeat classification to diagnose five distinct arrhythmias in the AAMI standard. A data augmentation technique 

was used in the study to balance the datasets. Additionally, they proposed a strategy for applying the information 

learned from the previously trained model to the myocardial infarction (MI) classification problem by utilizing 

PhysionNet-MIT-BIH and PTB Diagnostics datasets. Findings show that the proposed CNN and its transferable 

representation can classify arrhythmias and MI with average prediction accuracies of 0.934 and 0.959, respectively. 

In another research, the authors categorize six distinct types of physiological signals using a deep neural network 

(DNN) of CNN and LSTM. They provided examples of applying the TL method and stressed effectively exploiting 

the suggested DNN and other areas [30]. Pham et al. [3] investigated 1D-CNN for ECG classification. The 1D-CNN 

is enhanced with three techniques: evolving normalization–activation, squeeze-and-excitation, and gradient clipping. 

To solve the imbalance data problem, a variant of 5-fold and 10-fold cross-validation (CV) was implemented. 

Despite a lot of hyperparameter tuning required for their proposed model, it surpasses other models, including the 

PhysioNet Challenge 2017 dataset, with an amazing F1-score of about 86.71%. 

One of the critical challenges with the ECG classification is its data imbalance nature. An imbalanced data problem 

happens when the class distribution in a dataset is skewed. In this instance, there is the presence of the majority 

(with higher class numbers) and the minority (with fewer class numbers). In most cases, the majority is the negative 

class (-ve), and the minority is the positive class (+ve). The problem with this skewness is that it compels the 

classifier to be biased in favor of the majority class during training due to the high representation of the majority 

class [31, 32]. As a result, the model will not provide a true reflection of the underlying problem. Many real-life 

applications fall into this category, including medical [33], fraud detection [34], and Employee retention [35]. Either 

as a multi or binary class classification task, less frequent instances are significant and of paramount interest. It is 

cost-expensive and life-endangering to diagnose a patient's heart condition as normal when it is not. As a result, 

many imbalanced data techniques are proposed in the literature, including data resampling, algorithm-based, and 

hybrid [32, 36]. In order to have a greater detection rate for irregular heartbeats, it is important for a heartbeat model 

to manage the issue of unbalanced data. 

Ahamed et al. [8] presented ensembles of ML techniques, including using artificial neural networks (ANN) and 

LSTM. Owning to the highly imbalanced nature of the ECG (MIT-BIH and PTB) dataset, the authors proposed 

penalizing the loss of an ANN by assigning class weights. The ensemble outperforms conventional ML to obtain 

0.9806% and 0.9766% accuracies. Similarly, Zubair & Yoon [37] proposed a cost-sensitive loss function (LF) of 

1D-CNN. A LF ensures that deep representations of the classes are not skewed, helping to boost the model's ability 

to generalize and perform better in terms of discrimination. However, the LF used may result in computational 

overhead for the classifier since it is a custom LF based on a quadratic mean. Liu et al. [38] proposed a loss 

optimization ECG classifier based on dynamic task prioritization. The method adjusts task loss weights based on 

how different tasks affect learning. Nevertheless, the approach results in task bias (where few tasks get more 

attention or resources than others), abrupt changes in task importance (causing instability), and computational 

overhead. In another paper, stacked-denoising autoencoders (SDAE) and bidirectional (Bi-LSTM) were presented to 

learn the semantic encoding of heartbeats automatically without any tedious feature extraction. The authors used the 

Bi-LSTM for heartbeats categorization with semantic encoding, whereas used the SDAE as a noise-reduction 

mechanism. To relieve impacts from unbalanced data, the authors employed a cost-matrix LF. The MIT-BIH 

Arrhythmias Database and Noise Stress Test Database (NSTDB) were used to evaluate the proposed model [39]. 

Likewise, Khan et al. [40] suggested a cost-matrix technique for imbalanced data. Meanwhile, the cost-matrix 

technique is prone to design issues thereby increasing the model complexity and parameter tuning.  

Also, Romdhane et al. [12] proposed an optimization step for 2-sequential 1D-CNN blocks using focal LF. A LF 

emphasizes minority pulse classes by giving them more weight. The authors used MIT-BIH and INCART datasets 

to evaluate the proposed model. Findings show that the focal LF enhanced the classifier's accuracy for the positive 

classes and the overall metrics. Pham et al. [3] also used focal LF as the cost-sensitive technique in the proposed 

ECG classification model. However, focal LF may be faced with high computational cost, potential gradient 

perturbation, too much emphasize on difficult samples. In another view, Khan et al. [4] used a synthetic minority 
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oversampling technique (SMOTE) approach to solve the imbalance problem of ECG. The authors further implement 

a 1D convolutional ResNet to classify the balanced datasets. To evaluate the model's performance, the authors used 

a 10-fold CV, and the findings indicate that the suggested ResNet outperforms other 1D-CNNs. Further studies of 

heartbeats categorization include but are not limited to, a fall-detection using ECG [19], Belief networks application 

[41], Neuro-Fuzzy System [42], smart-decision based model [6]. 

III. METHODOLOGY 

A. Dataset 

The ECG dataset widely used in research is the MIT-BIH Arrhythmia Dataset. It consists of 5 classes following the 

AAMI standard and the PTB, with 2 classes considered for the proposed transferable CB-DuConvNetA. The MIT-

BIH Arrhythmia Dataset ECG is sourced from heartbeat recordings [43]. The dataset incorporates significant events 

that are well represented by a small random sample of the recordings comprising Twenty-Three observations 

(randomly picked from One-Hundred to One-Hundred Twenty-Four, inclusive, again with some numbers missing) 

and Twenty-Five observations (Two-Hundred to Two-Hundred Thirty-Four with some missing numbers). The first 

record group is intended to be a typical sample of the waves and artifacts that might be observed during a clinical 

study. In contrast, the second record group comprises complex ventricular, supraventricular, and junctional 

arrhythmias and other defects. A large diversity in QRS shape makes nearly all selected recordings usable. 

Therefore, the adjusted limb lead-II (MLII) is preferably used. 

The digitization process of MIT-BIH includes the “bandpass-filtered” impulses digitalized at 360Hz per signal, the 

sampling frequency set at 60Hz to identify arrhythmia, and likely noise peaked at 30Hz. The 11-bit samples were 

originally captured in a first-difference-format (FDF) of 8-bit. The analog-to-digital range used is roughly 

±225𝑚𝑉/𝑠. A comprehensive annotated list of the heartbeats classes is presented in Table 1 below. It comprises 20 

different overlapping classes. To make ECG classification, AAMI provided five distinct classes from the list in 

Table 1, detailing fifteen relevant categories as presented in Table 2. 

Table 1. Heartbeat Symbols and Explanation [15] 
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Table 2. Arrhythmia heartbeats in the MIT-BIH database based on five classes [29] 

 
 

In the PTB ECG, the collections were obtained based on a16 input-channel (14-ECGs, 1-respiration, 1-line voltage), 

±16 mV input, ± 300 mV offset, 100 Ω (DC) resistance, and 0 to 1kHz bandwidth. The PTB ECG comprises 290 

records, 148 as myocardial infarction (MI), 18 as Cardiomyopathy/Heart failure, and seven other types. PTB is 

generally classified into two classes: normal and abnormal. 

This paper, therefore, uses the ECG datasets sourced from a Kaggle site1 consisting of a collection of both the MIT-

BIH and PTB. Both MIT-BIH and PTB consist of two separate files. Using DNN technique, both datasets have been 

utilized to investigate the categorization of heartbeats and to examine some of the possibilities of TL. The normal 

and MI cases are carefully preprocessed and segmented so that a record can adequately represent a heartbeat. The 

classes are encoded from 0 to 4. The MIT-BIH training and test sets consist of 87,554 and 21,982 observations, each 

with 188 features, including the class label. Also, the PTB consists of 10506 and 4046, classified as abnormal and 

normal observations, respectively, with the same number of features. The detailed descriptions of the two datasets 

are presented in Figure 2.                                                                    

B. Preprocessing 

Preprocessing provides an initial understanding of the dataset under study. It is a vital stage in the lifecycle of 

building a successful ML model. Pham et al. [3], in preprocessing ECG heartbeat, highlighted fundamental steps to 

extract meaningful beats from ECG waves shown in Figure 3. Meanwhile, this paper relies on the ECG datasets 

mentioned on the Kaggle site. A missing value process was performed on the four datasets; none contained any 

missing values. The PTB "normal" and "abnormal" datasets were combined and shuffled so that there is a good 

representation of the 'normal' and 'abnormal' when it is split into train, validation, and test sets for the TL model. The 

two datasets were further preprocessed by reshaping them to fit the proposed approach. 

C. Exploratory Data Analysis 

According to Kersey et al. [44], using feature schemes inherent in the ECG data can provide gainful insight into 

better understanding the underlying problem in a heartbeat. The paper considered some EDA techniques for this 

purpose. The ECG data is known for its imbalanced nature. The extent and details of the class distribution are shown 

in Figure 2. In Figure 2, subfigure (a), the normal beat is 82.77% in the entire MIT-BIH training set, followed by an 

Unclassifiable beat at 7.35%, Ventricular 6.61%, Supraventricular 2.54 and the least Fusion beat at 0.73%. The same 

trend is observed for the test set, as shown in subfigure b. It shows that normal is average, 1000 ×
𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑙𝑎𝑠𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  indicating a densely skewed class distribution. The implication is that a 

developed model for ECG classification will be 100% biased toward the normal beats. The interest of this paper is to 

see how significantly the minority classes can be adequately represented in the classification task. The imbalance in 

the PTB data is also shown in subfigure c, representing a 2.5965:1 ratio of normal to abnormal beats. 

 
1 https://www.kaggle.com/datasets/shayanfazeli/heartbeat 
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(a) MIT-BIH train set               (b) MIT-BIH test set                                                       (c) PTB dataset 

Figure 2. Class distribution of MIT-BIH and PTB Diagnostics datasets 

 

Figure 3. ECG data preprocessing stages 

After carefully preprocessing and segmenting ECG data, an instance of the observation therein should provide an 

adequate representation of a typical heartbeat. Figure 4 illustrates such a regular heart from plotting a record in the 

dataset. Compared with Figure 1, it shows clearly that Figure 4 resembles a typical heartbeat. It further indicates that 

the raw ECG data is well-preprocessed and segmented. 

 

Figure 4. A typical heartbeat from the already processed and segmented ECG data 

Another gray area begging for clarity is how distinguishable is the normal heartbeat to other classes. Figure 5 

provides vivid clarity of normal heartbeat comparison with the other four categories. 
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Figure 5. Comparison of the normal heartbeat with the four other classes 

D. 1D-CNN 

Vast studies of heartbeat classification using CNN outperforms conventional models of ML. Many of these studies 

have showcased the strength inherent in 2D-CNN, where ECG image data is fed to the 2D-CNN. Meanwhile, 1D-

CNN remains competitive with its 2D counterpart in as much as the underlying data can be reshaped to 1D or a 

sequence-like format. Also, using 1D-CNN removes the overburden of converting ECG waveforms to an image 

without hampering the expected accuracy of the model. However, recent advances in vision transformer DL models 

showed impressive improvement in image classification, which applies to ECG image data or ECG waveform-image 

data, thereby removing any envisaged bottlenecks in ECG waveform-to-image classifiers [45, 46]. 1D-CNN 

convolution has also been investigated for temporal data to capture data patterns. Generally, CNN models comprise 

automatic feature extractors, complex non-linear relators, and classifier parts. High-level feature and pattern 

representation are carried out in the feature extraction process, coupled with complex non-linear transformation to 

learn meaningful patterns. The CNN model comprises an input channel and a series of convolutional and pooling 

layers (used for feature extraction and complex non-linear learning). The other part is the dense layers which 

classify the learned features. The concept of CNN is expressed in Equation (1) – (5): 

𝐶𝑜𝑛𝑣:   𝑍𝑖
𝑘,𝑙 = 𝑐𝑙 + ∑ 𝜔𝑑

𝑙𝐷
𝑑 𝑥𝑖+𝑑−1

𝑚𝑙                   (1) 

𝑀𝑎𝑥 − 𝑝𝑜𝑜𝑙𝑖𝑛𝑔:  ℎ𝑖
𝑘,𝑙 = max

𝑠∈𝑆
(𝑍𝑖𝑥𝑇+𝑠

𝑘,𝑙 )                 (2) 

𝐷𝑒𝑛𝑠𝑒 𝑙𝑎𝑦𝑒𝑟: 𝑍𝑖 = 𝜔𝑖 ∗ ℎ𝑖                   (3) 

𝑅𝐸𝐿𝑈(𝑍𝑖) = max (0, 𝑍𝑖)                   (4) 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑖) = 𝑒𝑍𝑖

∑ 𝑒𝑍𝑙𝑙
⁄                   (5) 
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Where c is the bias constant, 𝜔 is the weight, S is the pooing size, and T is the stride rate. The convolution and 

pooling can be stacked as required, but care must be taken not to overburden the model with too many trainable 

parameters. The function of the pooling, then, is to decrease the feature's map size and model distortion. Equations 

(1) to (5) explicit the feature mappings through to classification, a series of convolutional and pooling layers (in the 

forward direction during training), activation layer-rectifier linear unit (RELU), dense layer, and of course, the 

output layer embellished with Softmax function for a multi-class task (or sigmoid for binary classification). A cost 

function is used to compute the loss at the output, and the result is propagated back to update the weights. The type 

of cost function implemented in the proposed model as one of the contributions in the paper is explained in detail in 

the later section. This process is repeatedly performed until the halting requirements or several epochs are satisfied. 

In the proposed model, two additional techniques were considered to impact the model's generalizability and better 

performance, including attention mechanism and Pooling in each block. 

E. Cost-Based Approach to Data Imbalance 

As mentioned earlier, imbalanced data negatively impacts the true performance of any ML model. It is further stated 

that different methods have been studied to solve data imbalance problems in classification tasks. One method, as 

mentioned above, is the data-level approach of resampling. The use of oversampling is to increase samples of 

minority labels to the number of the majority. At the same time, the down-sampling reduces majority class(es) 

samples to the number of the minority class. It is expected the method would generate balanced data. However, 

resampling may lead to over-fitting or underfitting [37], whereas computational overhead is identified with the cost-

sensitive learning techniques reviewed in the literature. Therefore, this paper presents a novel class imbalance ratio 

weight penalty (CIRWP) to use the inherent DL classifier’s LF call. A DL model uses an in-built LF to compute the 

loss at the output, and the result is propagated back to update the weights (these weights are the weight of each 

class). The LF in DL is classified into two: categorical cross-entropy (CCE) (SparseCategoricalCrossentropy is 

applicable also) for multi-class and binary cross-entropy (BCE). The CCE is expressed as in Equation (6) – (8): 

𝐶𝐶𝐸 = − log (
𝑒𝑠+𝑣𝑒

∑ 𝑒𝑠𝑘𝑀
𝑘

)                    (6) 

Where 𝑠+𝑣𝑒 represents the +ve class, 𝑠𝑘 represents the score of the +ve class and M as the class   

𝐵𝐶𝐸 = −
1

𝑚
∑ (𝑦𝑘 ∗ log �̂�𝑘 + (1 − 𝑦𝑘) ∗ log(1 − �̂�𝑘))𝑚

𝑘=1                (7) 

 

The class imbalance ratio (CIR) is expressed as: 

𝐶𝐼𝑅 =
max

𝑘
{|𝑀𝑘|}

min
𝑘

{|𝑀𝑘|}
                    (8) 

It is expected that max
𝑘

{|𝑀𝑘|} and min
𝑘

{|𝑀𝑘|} returns maximum and minimum class number in all k classes. For 

instance, if a dataset's maximum class is 400 samples and its minimum class only contains 25, then CIR is 16. It 

means the +ve class will be penalized 16 times the negative class. There is, therefore, the need to formulate a class 

weight function from equation 8, which is expressed as in Equation (9): 

𝐶𝑊𝑘 =
𝑀𝑇

𝑘×𝑀𝑘
                    (9) 

Where k is the number of classes. 𝑀𝑇 represents the total observations, and 𝑀𝑘 is the samples in each class k in the 

dataset. 

Since the focus is not on the majority class, then the weight penalty can be obtained by penalizing the majority class 

by 1 and the rest of the minority classes with the magnitude, 𝐶𝑊𝑘 of the majority class. The penalty is expressed as 

in Equation (10): 

𝐶𝐼𝑅𝑊𝑃𝑘 =
𝐶𝑊𝑘

𝐶𝑊𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑘

                 (10) 
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Where 𝐶𝑊𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑘
 represents the CW of the majority class 

So, the penalty can be used as a cost list of the form, refer Equation (11): 

[
𝐶𝑊𝑗

𝐶𝑊𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑘

,
𝐶𝑊𝑗+1

𝐶𝑊𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑘

, … ,
𝐶𝑊𝑘

𝐶𝑊𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑘

]               (11) 

Where 𝑗 = 1, … , 𝑘 

The cost list is then assigned to the loss_weights parameter in the compile function of the proposed CB-

DuConvNetA model to adjust the CCE or BCE during training dynamically. 

F. Proposed Classifier Architecture 

The proposed CB-DuConvNetA model comprises two parts. One part is the classifier, and the second is the 

transferable part. The classifier part consists of a dual 1D-CNN in parallel. The first convolutional block has three 

stacked convolution layers with 64 filters, 3 kernel sizes, and a RELU activation function. In addition, each 

convolution layer includes a Batch Normalization and Dropout rate = 0.2 layers. GlobalMaxPooling was used in the 

pooling process. The pooling output was reshaped to fit into the attention mechanism. 

In contrast to Zubair & Yoon [37] and Kachuee et al. [29], the attention technique was introduced to improve the 

model's performance by focusing on the important part of the ECG data and drastically reducing persistent noise 

inherent in the data. Furthermore, the attention technique benefits the TL proposed in the paper by its improved and 

better generalizability to new or unseen instances. Attention is more robust to input variations and adept at 

extracting important features to provide informative patterns [47]. The output of the attention is, after that, flattened.  

The second convolutional block consists of the same layer components as in block one but with some changes, 

including changing the filter and kernel size to 128 and 6, respectively (thereby improving the block 2 capacity and 

feature extraction) and using GlobalAveragePooling. Using different pooling in the two convolutional blocks allows 

each block flexibility and robustness and increases the benefits of each pooling technique. GlobalMaxPooling is 

known for dimensionality reduction by aggregating maximum activation value from the convolution layer, better 

invariance translation, and important feature encapsulation. In contrast, GlobalAveragePooling is known for 

dimensionality reduction by averaging feature map value within each pooling region, noise-variations adaptiveness, 

and better computational efficiency [48].  

The filter, 64, used in the first convolutional block, allows for capturing low-level features in the ECG data, and the 

kernel size, 3, provides for local feature extraction in the low-level region. Making the first convolution a 

lightweight. Whereas the filters, 128, and the kernel size, 3, used in the second convolutional block ensure the model 

seeks a deeper high-level abstraction and discriminative representations of the data, leading to better model 

performance. A dropout rate of 0.2 is employed in the two convolutional blocks, including the fully-connected 

layers, to reduce the over-fitting of the model to an unseen validation set. In contrast, batch normalization was 

employed to lessen the shift within the complex non-linear interaction [37]. 

The flattened attention output from each convolutional block was then concatenated. The concatenated output is fed 

into three consecutive fully-connected layers, each with 64, 32, and 16 neurons, respectively. The output layer 

consists of 5 units each for the 5 classes of ECG classification and Softmax activation function. The 2 convolutional 

blocks used the same source of input data. The class weight penalty described in Section III (E) solves the 

imbalanced problem during the model training. 

The second part of the proposed model is the TL. The classifier in the first part is trained and saved as a pre-trained 

model. After that, the import of the weights of the pre-trained model is performed. Subsequently, a layer freezing 

technique is performed to make the initial task trained on the model non-trainable but retain the valuable knowledge 

learned from it. To further adjust the model to the new target task, in this instance, the PTB, the layer-freezing 

approach only permits changing the weights of the last layers (usually the top layers). This process achieves the 

transferable representation on the second dataset for MI prediction. The TL model also used the proposed CIRWP. 

The overall architecture is shown in Figure 6, while the detail of the dual 1D-CNN attention is shown in Figure 7. 
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Figure 6. The overall framework of the proposed ECG transferable model 

 

Figure 7. The proposed cost-sensitive dual 1D-CNN with Attention Network 
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G. Experiment setups 

The proposed model is developed using Python 3.9, TensorFlow, and the Keras library [49]. Categorical 

cross_entropy loss with Softmax activation was used for the classifier part, while binary cross_entropy and sigmoid 

were used for the TL part. The Adam optimization method was used to train the classifier with a batch size of 128 

for 30 epochs, while the TL runs with 100 epochs. Before the training, the MIT-BIH train set is split into a separate 

training and validation set with a ratio 0f 80:20. The test set is already provided. In the same approach, the PTB data 

was combined and shuffled. After that, it was split into three: training, validation, and test sets (train-test:80:20 and 

again train-validation:80:20). Earlystopping and Modelcheckpoint were implemented to obtain the best accuracy by 

monitoring the 'validation loss' and allow for saving the model as a pre-trained model. The model summary and 

hyperparameters are presented in Table 3. 

Table 3. The proposed model summary and hyperparameters 

CNN+Attention Model 1st 1D-CNN block 2nd 1D-CNN block FC 
Output 

Layer 

Parameters 
Conv 

layer 1 

Conv 

layer 1 

Conv 

layer 1 

Conv 

layer 1 

Conv 

layer 1 

Conv 

layer 1 
1st 2nd 3rd  

Input shape (187,1) (187,1) (187,1) (187,1) (187,1) (187,1)     

Filters 64 64 64 128 128 128     
Kernel size 3 3 3 6 6 6     

BatchNormalization Y     

Dropout 0.2  
Pooling GlobalMaxPooling GlobalAveragePooling     

Attention Y Y     
AF Relu    softmax 

Units       64 32 16 5 

IV. RESULTS AND DISCUSSION 

A. Cost-Based Approach  

The proposed CIRWP for a cost-sensitive approach allows the classifier to use its inherent LF by assigning the 

weight penalty obtained from equations 9, 10, and 11. The computed weight penalty for both MIT-BIH and PTB 

datasets is presented in Table 4. 

Table 4. Weight penalty computation for the cost-based model 

MIT-BIH+ PTB Diagnostics++ 

Classes Category Counts Class weight Penalty Classes Category Counts 
Class 

weight 
Penalty 

0 N 72471 0.24162 1 0 Normal 4046 1.79831 2.5965 

1 S 2223 7.8771 32.6005 1 Abnormal 10506 0.6926 1 

2 V 5788 3.02536 12.5209      

3 F 641 27.3179 113.0593      

4 Q 6431 2.72287 11.2690      

Total  87554     14552   

+ for Class 0 Penalty: (87554/(5x72471) = 0.24162/0.24162=1  ++for Class 0 Penalty: (14552/(2x4046) =1.79831/0.6926=2.5965) 
 

B. Performance Metrics  

In evaluating the proposed model performance, the paper considered the confusion matrix and other metrics 

obtainable from it, including recall, precision, F1-score, and accuracy expressed as in Equation (12) – (15): 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝+𝑇𝑛

𝑇𝑝+𝐹𝑛+𝑇𝑛+𝐹𝑝
                 (12) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛
                  (13) 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝
                 (14) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                (15) 

Where 𝑇𝑝  is true +ve, 𝑇𝑛  is true -ve, 𝐹𝑝  is false +ve, and 𝐹𝑛  is false -ve. Because accuracy considers all classes 

equally, a model trained using imbalanced data can be biased, yielding high classification accuracy; therefore, 

attention is placed more on recall, precision, and F1-Score. 

C. MIT-BIH ECG Classification 

The proposed model was trained using a batch size of 128 over 30 epochs. Earlystopping and Modelcheckpoint were 

implemented to obtain the best accuracy by monitoring the 'validation loss' and allowing for saving the model as a 

pre-trained model. The proposed model performance for the 5 categories of ECG is presented in Table 5, indicating 

the cost-based approach implemented within the classifier provided a fair representation of the minority classes to 

obtain an F1-score and accuracy of 98.08% and 98.14%, respectively. The model accuracy and loss are shown in 

Figure 8. It shows that the model’s overfitting is well reduced, and the best accuracy is obtained. 

Furthermore, the performance of the proposed model is compared with well-performing ML algorithms, including 

RF, classification and regression tree (CART), KNN, NB, SVM, XGBOOST, and LightGBM. Some of the ML 

implemented are built with the capability to automatically handle imbalanced data, such as XGBOOST and 

LightGBM, while SVM can be trained as a cost-sensitive model. SMOTE was used to balance the data for the rest 

of the ML model with no inherent ability to handle imbalanced data. Therefore, the proposed model was also trained 

with SMOTE-balanced ECG data.  

Table 5. The proposed model performance for the 5 classes of MIT-BIH ECG data 

Classes Precision Recall F1-score Support 

N 0.99 0.99 0.99 18118 

S 0.89 0.75 0.82 556 

V 0.96 0.94 0.95 1448 

F 0.81 0.65 0.72 162 

Q 0.99 0.98 0.99 1608 

 

 

Figure 8. The proposed model accuracy and loss 

The models' performances are presented in Table 6. It is observed that RF obtains F1-score of 89.45% to outperform 

other models in the same category, while XBOOST and LightGBM obtain 88.89% and 88.56%, respectively, 

showing their natural ability to make good predictions for imbalanced data. Meanwhile, DuConvNetA+SMOTE 

obtains a 97.78% F1-score outperforming the conventional models. It indicates that the DuConvNetA base classifier 
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has a significant performance. The proposed model obtains an F1-score of 98.08% outperforming all the other 

models. The performance of the proposed model is also validated by the positive predictions in the confusion matrix 

in Figure 9 compared to other models. 

Table 6. Comparison of the proposed model with conventional ML models 

Models Precision Recall F1-score Accuracy 

RF 0.9149 0.8756 0.8945 0.9800 

CART 0.7203 0.8425 0.7692 0.9374 

KNN 0.7505 0.8984 0.8061 0.9517 

NB 

(Multinomial) 
0.2883 0.5195 0.2370 0.3733 

SVM 0.6958 0.9154 0.7516 0.9302 

XGBOOST 0.9527 0.8416 0.8889 0.9790 

LightGBM 0.9334 0.8490 0.8856 0.9781 

DuConvNetA+SMOTE 0.9788 0.9778 0.9782 0.9778 

Proposed Model 0.9807 0.9814 0.9808 0.9814 
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Figure 9. Confusion matrix of models considered in the paper 

D. Ablation Study 

Meanwhile, an ablation study was performed to show the effect of varying the batch size of the base pre-trained 

model as a manual approach to hyperparameter tuning. The result shows both the accuracy and F1-score of the base 

pre-trained improve to a certain point, stabilize and decrease as the batch size increases. It typically indicates that the 

model performs better than the unseen data for batch sizes 8, 16, 32, and 64. but sharply declines at batch sizes equal 

to 256, while accuracy reaches its best point of 0.9814 at batch sizes equal to 128, the highest among all batch sizes, 



Journal of Informatics and Web Engineering        Vol. 2 No. 2 (September 2023) 

 

 

105 

 

as shown in Figure 10. The variations observed here may be due to various factors, including the characteristics of 

ECG data, the proposed model’s complexity, and the optimizer used during training. Moreover, the scope of the 

paper did not extensively cover some well-known hyperparameter tuning such as random, grid, Bayesian and 

genetic search algorithms [50], [51] aside from the manual approach implemented.  

 

Figure 10. Comparison of batch sizes with base classifier’s performance 

 

E. Transfer Learning: PTB Diagnostics 

The TL described in the last part of Section III (F), comprising the layer-freezing method, was implemented to allow 

the transferable representation on the PTB dataset for MI prediction. Adam optimizer, batch size 32, and binary 

cross_entropy parameters were implemented in the TL and ran for 100 epochs. The prediction result is presented in 

Table 7. Normal obtains an F1-score of 97%, while abnormal has 99%. It shows that the proposed classifier as a pre-

trained model has a greater transferable representation on the PTB. The accuracy and loss of the TL model are 

shown in Figure 11, indicating better generalization to the unseen PTB data. The TL on PTB obtains F1-score and 

accuracy of 98.45% and 98.45%, respectively. The confusion matrix in Figure 12 further validates the model's 

robust performance indicating a reduced 𝐹𝑛 rate compared to 𝐹𝑝 rate (meaning practitioners are more interested in 

cases predicted as normal heartbeats but are actually unhealthy ones). 

 

Table 7. TL results on the PTB data 

Classes Precision Recall F1-score Support 

Normal 0.97 0.97 0.97 809 

Abnormal 0.99 0.99 0.99 2102 
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Figure 11. The proposed TL model accuracy and loss 

 

Figure 12. Confusion matrix showing the performance of the TL model on the PTB dataset 

In addition to comparing the proposed model with convectional ML models, a comparison with existing works in 

the literature is carried out. The result is presented in Tables 8 and 9, indicating the proposed model's 

competitiveness with past studies. 

 

Table 8. Comparison of classifier for MIT-BIH ECG classification 

Work Approach Accuracy (%) F1-score (%) 

[29] 
Augmentation+ Deep residual 

CNN 
93.4 - 

[8] Class weight+ANN 98.06 - 

[3] 
Focal loss+CNN (squeeze-and-

excitation) 
98.56 - 

[18] 

Exponential-political optimizer 

trained+Deep quantum neural 
network 

91.40 - 

This work CIRWP+DuConvNetA 98.14 98.08 
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Table 9. Comparison of TL approach on PTB 

Work 
Accuracy 

(%) 
F1-score (%) Precision (%) Recall (%) 

[29] 95.9 - 95.2 95.1 

[39] 98.25 - - 96.32 

[8] 97.66 - 96.90 97.06 

[12] 98.41 98.38 98.37 98.41 

[38] 96.5 77.7 - - 

[3] 98.28 - 99.9 97.72 

[18] 90.9 - - 91.7 

This work 98.45 98.45 98.45 98.45 

V. CONCLUSION 

This paper explored the cost-sensitive approach of the DL model for ECG classification. A CIRWP approach that 

allows the base classifier to use its inherent loss function by assigning class weight was proposed and implemented. 

The CIRWP overcomes computational overhead common to most cost-sensitive techniques. In addition, a dual 1D-

CNN with an attention mechanism with each block of the convolution exploring different pooling techniques was 

developed to implement the CIRWP. It also noted that the attention and varying pooling techniques contributed 

immensely to the model performance. Two ECG datasets (MIT-BIH and PTB Diagnostics were used in all the 

experiments). Furthermore, the advantage of TL was advanced in this paper, and a practical experiment 

demonstrated that a well-performing classifier could provide optimal transferable representation on another task 

(unseen data). To compare the proposed model performance, well-performing conventional ML algorithms were 

used. 

In all experiments, the proposed model obtains an outstanding performance compared to other models with an F1-

score and accuracy of 98.08% and 98.14% on the MMIT-BIH data, while the TL model obtains 98. 45% for both 

F1-score and accuracy. 

A comparison of CIRWP with other cos-sensitive techniques in terms of complexity and stability is suggested for 

future work. Also, future research can explore well-known hyperparameter tuning such as random, grid, Bayesian 

and genetic search algorithms [50], [51] to improve probable misclassifications difficulties in the proposed model. 
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APPENDIX: List of some abbreviations used in the paper 

 

2D-CNN  Two-dimensional Convolutional Neural Networks 

1D-CNN  One-dimensional Convolutional Neural Networks 

AAMI   Advancement of Medical Instrumentation 

AI   Artificial Intelligence 

CAD   Computer-Aided Diagnostic 

CaDi   Cardiovascular Disorders 

CB-DuConvNetA Cost-Based Dual ConvNet-Attention 

CIR   Class Imbalance Ratio 

CIRWP   Class Imbalance Ratio Weight Penalty 

DL   Deep Learning 

DT   Decision Tree 

ECG   Electrocardiogram 

GDBT   Gradient-Boosted Tree 

Ha   Heart arrhythmia 

KNN   K-Nearest Neighbor 

LF   Loss Function 

LSTM   Long-term, Short-Term Memory 

MI   Myocardial Infarction 

ML   Machine Learning 

MLP   Multi-layer Perceptron 

NB   Naïve Bayes 

PTB   Physikalisch-Technische Bundesanstalt 

RELU   Rectifier Linear Unit 

RF   Random Forest 

SMOTE   Synthetic Minority Oversampling Technique 

SVM   Support Vector Machine 

TL   Transfer Learning 

+ve   Positive 

-ve   Negative 

 

 

  

      

      


