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Abstract - Electric Discharge Machining (EDM) is a non-traditional machining process that utilizes electric sparks between an 

electrode and a workpiece submerged in a dielectric fluid to ablate a material. It is commonly used in die-making, aerospace, 

automotive manufacturing, and medical manufacturing, because it can machine hard and complex materials with high precision. 

In this work, a Surface Roughness Optimization for EDM (SRO-EDM) model is proposed to investigate the machining performance 

of the die-sinking EDM process of titanium alloys. A regression-based combined approach of Glowworm Swarm Optimization 

(GSO) and a Two-Factor Interaction (2FI) model has been proposed to investigate the impact of four key process variables, namely 

voltage (V), peak current (Ip), pulse-on time (ton), and pulse-off time (toff) on surface roughness (Ra) at various locations on work 

surfaces. A Central Composite Design (CCD) was applied to systematically investigate parameter combinations. Statistical analysis 

was performed using analysis of variance (ANOVA), which confirmed the statistical significance of the selected parameters, and 

2FI regression (R² = 0.60) with moderate-fit predictive accuracy was established. To enhance the quality of optimization, the 

Enhanced Glowworm Swarm Optimization (EGSO) algorithm is proposed by hybridizing the GSO with Artificial Fish Swarm 

(AFS) algorithm. The AFS module improves the exploration capability of the GSO and alleviates the local optima problem. For 

the experimental validation of the model, Response Surface Methodology (RSM) was used to generate the regression based on the 

developed model and as an objective function for optimization. Experimental results show that EGSO outperforms GSO in 

performance to achieve an optimized Ra (6.09 𝜇𝑚) compared to 6.106 𝜇𝑚 through conventional GSO. The results demonstrate 

that the EGSO model can improve convergence accuracy and speed and is a practical method for EDM surface quality optimization 

in the high-precision manufacturing industry. 
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1. INTRODUCTION  

Machining processes are broadly categorized into traditional and nontraditional methods. These processes generally 

involve the use of workpieces, machine tools, and cutting instruments. Non-traditional machining techniques remove 

materials using electrical, thermal, chemical, or mechanical energy sources[1]. Among these, Electrical Discharge 

Machining (EDM) has emerged as one of the most widely adopted techniques owing to its ability to machine hard and 

geometrically complex materials that are difficult to process using conventional methods[2]. Unlike conventional 

machining processes, EDM can fabricate complex geometrical features with high precision and is applicable in the 

aerospace, automotive, and medical device industries[3], [4]. The process is based on controlled electrical discharges 

that are produced between a tool electrode and conductive workpiece, leading to localized melting and material 

removal[5]. Each shot in the discharge creates plasma temperatures in the range of 10–20 k°C that vaporize and 

evacuate material from the surface of the target[6], [7], [8]. It is important to optimize the EDM process, particularly 

in the case of die-sink EDM, to attain high precision and better surface finish, along with an enhanced material removal 

rate. This type of optimization for cost-effectiveness and sustainability is useful for reducing tool wear, increasing 

energy efficiency, and improving process stability[9]. However, EDM is a non-linear and multiparameter optimization 

problem; thus, existing optimization methods are confrontational challenges in terms of locating suitable global optima. 

To address this, Swarm Intelligence (SI) algorithms, which are based on the collective behaviour of organisms in 

nature, have emerged as effective meta-heuristics for solving complex optimization problems[3], [4], [10]. The aim 

of this research is to propose an improved EDM by enhancing the GSO algorithm with the objective function for the 

optimization of Ra in terms of the 2FI regression model.  

The rest of this paper is organized as follows: In Section 2, related works and background algorithms are reviewed; 

the EGSO approach and modelling are described in Section 3; Section 4 provides results comparing EGSO with the 

standard GSO; and finally, conclusions and suggestions for further study are presented in Section 5. 

 

2. LITERATURE REVIEW  

2.1 Optimization and Swarm Intelligence (SI) 

Optimization is an important tool in engineering[11], finance, [12] and data analysis[13]. Gradient-based methods are 

incapable of shifting perpendicular to the gradients in a high-dimensional or non-linear search space. In contrast, SI 

algorithms tend to draw inspiration from collective biological behaviour and implement decentralized and dynamic 

search strategies[14]. Examples include Ant Colony Optimization (ACO) [15] and artificial bee colonies (ABC)[16], 

which are inspired by the success of social insects in solving problems cooperatively through interaction and feedback 

mechanisms.  

 

2.2 Glowworm Swarm Optimization (GSO) 

The concept proposed by ACO was extended by Krishnan and Ghose [17] in their GSO algorithm for continuous 

optimization problems. In GSO, every agent (glowworm) contains luciferin intensity that is proportional to the fitness 

of the individual and moves towards its brighter neighbours. The algorithm repeats the luciferin update, movement, 

and decision range adjustment phases. Although GSO performs well as a global search algorithm, it has weaknesses 

in terms of slow distribution convergence and poor effective range-finding[18]. 

 

2.3 Hybrid and Improved GSO Models  

Several augmented derivates of the Simple GSO (SGSO) have been proposed because of their inherent limitations, 

including slow convergence and early stagnation. Zhou et al. [19] introduced a hybrid glowworm swarm optimization 

(HGSO) that combines AFS and differential evolution (DE) algorithms and adopts a two-population co-evolution 

strategy to deliver faster convergence speed and better computational accuracy for multimodal optimization tasks. 

Similarly, Karthikeyan et al. [20] proposed a hybrid model of GSO with Genetic Algorithm (GA) methodology for 

the enhancement and optimization of SVM parameters in diabetic retinopathy classification. The suggested GSO-GA 

approach showed better results than existing approaches in terms of sensitivity, accuracy, and specificity. In a separate 

study, Zhou et al. [21] introduced a combination of GSO for cloud task scheduling and showed that the convergence 
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rate and resource allocation performance in a cloud system were improved. Chen et al. [22] proposed a hybrid 

algorithm by combining GSO with a 2-opt local search to address the spherical TSP. The enhanced version of GSO 

achieved better route optimization performance and stability than the basic form of GSO. Tang et al. [23] proposed 

the particle-GSO (PGSO) algorithm, incorporating mutation and local search considering the PSO, to achieve a higher 

convergence rate, robustness, and computational filter accuracy for UCAV path planning. In addition, Alphonsa et al. 

[24] proposed a genetically modified GSO model for privacy-preserving cloud computing in healthcare that could 

improve the efficiency of analysis and protect users’ sensitive medical records. In summary, this research proves that 

hybridization helps enhance the global search of GSO combined with other metaheuristic or evolutionary methods, 

accelerates convergence, and further improves its adaptability to different types of problems. 

 

2.4 Research Gap and Motivation 

Although much has been done on the development of hybrid versions of GSO, little is found in the literature 

concerning their applications to optimization problems, specifically in manufacturing process optimization such as 

EDM. Existing literature has focused on computational or classification tasks rather than machining performance, 

such as Ra or material removal rate. Therefore, this investigation presents an EGSO with a combined AFS approach 

for die-sinking EDM parameter optimization. We used the experimental data published in [25] as pilot data for the 

model validation. The 2FI regression model was used as the objective function, and Ra was chosen as the cutting 

performance index. The aims of this study were to 

• accelerating the convergence speed and enhancing the optimal solution of GSO; 

• compare EGSO with the standard GSO in EDM optimization; and 

• determine the best cutting conditions with minimum Ra value. 

 

3 RESEARCH METHODOLOGY  

This section describes chronological research, which involves the design of the research as well as the collection and 

investigation of data[1], [9]. The proposed research pattern should be supplemented by references so that the 

explanation can be scientifically accepted. The experiments presented in this paper were used to establish the EGSO 

algorithm and based on the experimental data of the mathematical model, some parameters that influence the Ra value 

were found. Data analysis is used to inform feature patterns and parameter relationships that can aid in formulating 

appropriate optimization goals and constraints. The AFS algorithm was also investigated to embed its exploration into 

the GSO to enhance its search ability. 

Its working methodology comprises four major stages, as shown in Figure 1: data definition, developing the EGSO 

algorithm, optimizing the EGSO algorithm using a mathematical model, and evaluating the results of EGSO and GSO. 

A recent literature review of the fundamental knowledge of GSO coupled with the AFS algorithm and optimization 

process is presented in this work. Related work is a necessary and essential study for this experiment, which enables 

us to grasp the historical development, concepts, and principles of the two algorithms. In addition, a study related to 

learning supports the pinpointing of research gaps and limitations of both algorithms. To resolve these limitations, 

this study designed the research objective and enhanced algorithms, built knowledge, benchmarked, received 

methodological guidance, formulated a theoretical foundation, and generated new insights to ensure that the enhanced 

GSO algorithm development process was novel, well-informed, and contributed to the progress of this study. 

In the validation period, both EGSO and GSO were compared for their performance in improving Ra. Experimental 

data [25] were used as a benchmark; if the optimized Ra value was less than that of the reference, then we accepted 

the success of the proposed EGSO approach. 

 

3.1 Experimental Data 

The dataset used in this study was compiled in [25]. The experiments were performed using Grace Model D-6030S 

die-sinking EDM. The material of the workpiece was Ti-13Zr-13Nb titanium alloy, which is applicable to biomedicine 

and has high strength, and a graphite tool electrode (10 mm diameter) was used. The debris was cleaned from the 
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discharge zone and stable sparking conditions were established through an impulse-jet cleansing system using 

commercial-grade kerosene as the dielectric medium. 

Zirconium (Zr), niobium (Nb), and titanium (Ti)-based alloys contain small amounts of nitrogen, oxygen, carbon, 

silicon, and iron as impurity elements. The general range of the chemical composition of the alloy is listed in Table 1. 

 

 

Figure 1. Operation Framework 

 

 

Table 1. Chemical Composition of the Titanium Alloy (Ti–13Zr–13Nb) Used in the EDM Experiments 

Elemental powder Impurity content (%) 

N O C Si Fe 

Zr 0.080 0.450 0.028 - 0.030 

Nb 0.038 0.620 0.020 - 0.040 

Ti 0.872 0.349 0.073 0.025 0.040 

 

The workpiece was 20 mm in diameter and 35 mm in length, and the machining area was 50 × 50 mm². The complete 

operating setup is presented in Table 2. 

 

Table 2. The EDM Operating Conditions 

Parameter Specification 

Machine Grace D-6030S die-sinking EDM 

Workpiece material Ti-13Zr-13Nb titanium alloy 

Working area 50 × 50 mm² 

Workpiece size 20 mm (Ø) × 35 mm (length) 

Dielectric fluid Kerosene with impulse-jet cleansing 

Electrode Graphite (Ø 10 mm) 

 

The design of the machining parameters, along with their respective units and levels, is summarized in Table 3. 
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Table 3. Experimental Factors and Their Corresponding Levels for EDM Processing of the Titanium Alloy 

Parameter Symbol Unit Level 

1 2 3 

Peak Current Ip A 8 12 16 

Voltage V V 50 60 70 

Pulse on time Ton µs 6 8 10 

Pulse off time Toff µs 7 9 11 

 

The experiments were designed using the RSM with a CCD to evaluate the effect of these four parameters on Ra. 

Thirty experimental runs were conducted, incorporating full factorial, star, and centre points. The resulting Ra values 

reported by Zubar et al. (2019) [21] ranged between 6.245 µm and 18.214 µm, with the lowest value achieved at (V = 

50 V, Ip = 8 A, Ton = 6 µs, Toff = 11 µs). 

To provide a concise overview of the input ranges and corresponding Ra responses used in this study, Table 4, adapted 

from, [25] summarizes the parameter limits, central levels, and the statistical range of the measured Ra values. These 

summarized data serve as benchmarks for subsequent model development and optimization. 

Table 4. Summary of EDM Process Parameter Ranges and Ra Statistics  

Parameter Symbol Unit Range Central Level Response (Ra, µm) 

Voltage V V 50 – 70 60 6.245 – 18.214 

Peak Current Ip A 8 – 16 12 — 

Pulse On Time Ton µs 6 – 10 8 — 

Pulse Off Time Toff µs 7 – 11 9 — 

 

3.2 Mathematical Model 

Optimization of the ideal Ra effect for the signal responses was achieved by a 2FI regression model according to 

Equation (1). This is the objective function used for the GSO and EGSO-AFS algorithms. The 2FI model was 

formulated as shown in Equation (1). In Equation (1), Ra is the surface roughness (µm), 𝑉 stands for the servo voltage 

(V), 𝐼𝑝 is a peak current (A), 𝑇𝑜𝑛 and 𝑇𝑜𝑓𝑓 are pulse-on time and pulse-off time (µs), respectively. A 2FI model was 

established based on the experimental results (Table 4). The experimental data were analysed using Design Expert 13 

(Statistical Software) to develop the 2FI model to represent the main effect and interaction of operation parameters on 

Ra. According to the R-squared ( 𝑅2) value derived from ANOVA, the 2FI model demonstrated the strongest 

relationship between the model and dependent variable at 0.60. The 2FI model showed the strongest relationship 

between the model and the dependent variable. 

 
𝑅𝑎 = −4.465 + 0.106 ∗ 𝑉 + 0.686 ∗ 𝐼𝑝 + 1.895 ∗ 𝑇𝑜𝑛 − 1.785 ∗ 𝑇𝑜𝑓𝑓 − 0.008 ∗ 𝑉 ∗ 𝐼𝑝 − 0.021 ∗ 𝑉 ∗ 𝑇𝑜𝑛 + 0.026 ∗ 𝑉 ∗

𝑇𝑜𝑓𝑓 + 0.029 ∗ 𝐼𝑝 ∗ 𝑇𝑜𝑛 − 0.015 ∗ 𝐼𝑝 ∗ 𝑇𝑜𝑓𝑓 + 0.048 ∗ 𝑇𝑜𝑛 ∗ 𝑇𝑜𝑓𝑓                                                                        (1) 

 

Based on the pilot results reported in [21], Table 3 summarizes the experimental design and their lower (Level 1) and 

upper (Level 3) factor settings. Equations (2) – (5) show the minimum and maximum ranges of the four parameters in 

EDM for optimization. 

 

50𝑉 ≤  𝑉 ≤ 70𝑉 (2) 

8𝐴 ≤  𝐼𝑝 ≤ 16𝐴 (3) 

6µ𝑠 ≤  𝑇𝑜𝑛 ≤ 10µ𝑠 (4) 

7µ𝑠 ≤  𝑇𝑜𝑓𝑓 ≤ 11µ𝑠 (5) 

 

3.3 GSO 

Motivated by the behaviour of glowworms in nature, the GSO algorithm finds its roots where each glowworm is 

attracted towards others with higher brightness[26], [27], [28]. In this metaphor, each glowworm symbolizes a 
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hypothetical optimizer, and its brightness, luciferin, equals the quality of the solution represented by that glowworm. 

Glowworms communicate with each other in a dynamic local-only neighbourhood, which is characterized by the 

sensor range and decision range. Attractive by nature to move towards a brighter companion for mating or foraging, 

glowworms inevitably take another attractive individual as a goal tangling each other across their decision-making 

neighbourhood because of the typically low luciferin value assigned based on randomness within the search space. 

Each glowworm then determines its moving direction by considering the information in the local neighbourhood. This 

collective behaviour is simulated by the GSO algorithm, which consists of three major phases: (i) luciferin update, (ii) 

movement, and (iii) neighbourhood range update. To update the luciferin phase, each glowworm updates its luciferin 

level by increasing the value proportional to its current fitness and decreasing it by the decay factor (decay factor 

representing the natural fading of luminescence). The luciferin level of each glowworm was determined using (1), 

according to the proposed rules of[26], [27], [29] (see Equation (6)). 

 

                                                                            𝑙𝑖(𝑡) = (1 − 𝜌)𝑙𝑖(𝑡 − 1) + 𝑦𝐽(𝑥𝑖(𝑡))                                                   (6) 

 

where 𝑙𝑖(𝑡) denotes the luciferin level of glowworm i at time 𝑡, 𝜌 is the luciferin decay rate 0<𝜌 < 1, 𝑦 is the luciferin 

enhancement factor, and 𝐽(𝑥𝑖(𝑡)) signifies the value of the objective function at agent i’s position at time 𝑡. In the 

GSO, each Glowworm (i.e., an agent) moves towards its neighbouring agents with a higher luciferin. This simulates 

the fact that glowworms prefer luminescent entities. In this stage, every agent uses a probability-based motion to find 

and move towards a neighbour with a higher quantity of luciferin, such that it can lead the swarm towards a better 

fitness area in the search space. 

                                                                             𝑁𝑖(𝑡) = {𝑗 ∶ 𝑑𝑖𝑗(𝑡) <  𝑟𝑑
𝑖 (𝑡); 𝑙𝑗(𝑡) <  𝑙𝑗}                                       (7) 

Equation (7) defines the neighbourhood set of Glowworm i at time 𝑡. The term 𝑑𝑖𝑗(𝑡) denotes the Euclidean distance 

between glowworms i  and j at time 𝑡 , and 𝑟𝑑
𝑖 (𝑡)  represents the dynamic neighborhood range associated with 

glowworm i. This range is constrained by the sensor boundary such that  (0 < 𝑟𝑑
𝑖 < 𝑟𝑠

𝑖). For each Glowworm i, the 

probability of movement towards a neighbouring glowworm j ∈ 𝑁𝑖(𝑡) is determined using Equation (8). 

 𝑃𝑖𝑗(t) =  
𝑙𝑗(𝑡) − 𝑙𝑖(𝑡)

∑ 𝑙𝑘(𝑡) − 𝑙𝑖(𝑡)𝑘∈𝑁𝑖(𝑡)

  

            

where j is a neighbor of the glowworm i. In the current iteration 𝑡, glowworm i chooses glowworm from its neighbours 

𝑁𝑖(𝑡) using the Roulette Wheel method. Glowworms with higher probabilities are expected to be picked out from 

neighbouring groups. Then, during the movement phase of the glowworms, the position of the current glowworm was 

adjusted according to the position of the selected neighbour. This movement can be expressed as in Equation (9). 

                                                                  𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑠 [
𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)

||𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)||
]                                                     (9) 

where 𝑠 (> 0) represents the step size, || || is the Euclidean norm operator. Then, 𝑥𝑖(𝑡) ∈ 𝑅𝑚  represents the location 

of glowworm 𝑖 at time 𝑡 in the m-dimensional real space 𝑅𝑚. 𝑥𝑖(𝑡) and 𝑥𝑖(𝑡 + 1) are the previous and new positions 

of the 𝑖th glowworm, respectively.  

The last step in GSO is the neighbourhood range update phase, which is used to detect multiple peaks in a multimodal 

function landscape. Next, let 𝑟0 be the initial neighborhood range value of each worm (𝑟𝑑
𝑖 (0) = 𝑟0, for all 𝑖). The 

following rule (Equation (10)) is used to adaptively update the neighbourhood range update rule for each glowworm.  

                                                            𝑟𝑑
𝑖 (𝑡 + 1) = min{𝑟𝑠, 𝑚𝑎𝑥{0, 𝑟𝑑

𝑖 (𝑡) + 𝛽(𝑛𝑡 − |𝑁𝑖(𝑡)|)}}                                      (10) 

Here, 𝛽, 𝑟𝑠 and  𝑛𝑡 denote the constant radial sensor range, model constant, and constant controlling the neighbour 

count, respectively. Figure 2 illustrates the sensory and decision radii associated with glowworm 𝑖. 

(8) 
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Figure 2. Sensory and Decision Radius of Glowworm 𝑖 [22] 

  

As depicted in Figure. 2, rₛ is the sensor radius and 𝑟𝑑
𝑖   is the initial neighborhood range that is defined during the 

update of the neighborhood range. When Glowworm 𝑖 moves, this process is repeated to find and reposition nearby 

glowworms in the sensing range. 

 

3.4 AFS Algorithm 

The AFS algorithm is a biologically motivated optimization algorithm that emulates how fish search for food in aquatic 

environments. It is also able to reach the global optimum as it mimics natural processes such as foraging, clustering, 

and the following of agents to reach global optima through a sequence of local interactions. The AFS algorithm The 

AFS is based on SI and models the collective motion of a group of fish to effectively solve difficult optimization 

problems [30 - 33]. Based on detailed observations of fish nature, AFS adopts a cooperative search method to achieve 

a trade-off between searching and optimizing in multidimensional solution spaces. 

𝑋𝑖 is the current position of 𝑖 and 𝑋𝑗 is a random state within the field of view 𝑟𝑎𝑛𝑑() which generates a random 

number in [0, 1]. The distance between any two fish 𝑖 and 𝑗 is defined as 𝑑𝑖𝑗 = ||𝑋𝑖 − 𝑋𝑗  ||, where denotes the visual 

range of each fish. The parameter 𝑡𝑟𝑦𝑛𝑢𝑚𝑏𝑒𝑟 denotes the number of trials when each fish attempts to search for a 

better location and δ is the crowding factor (0 < 𝛿 < 1). 𝑛𝑓 is the number of neighbouring fish that are within the 

visible distance (𝑑𝑖𝑗 < 𝑉𝑖𝑠𝑢𝑎𝑙), and 𝑠𝑡𝑒𝑝 represents how far 𝐴𝐹  moves. The set 𝑇 = {𝑋𝑗|||𝑋𝑖 − 𝑋𝑗 ||  <  𝑉𝑖𝑠𝑢𝑎𝑙} 

represents all the places that the 𝑖-th fish can visit with respect to its current visual range. The adaptive effects of these 

parameters are the foundation of the AFS behavioural model and allow each fish to assess an area of high potential 

versus other areas in the search space, moving towards improved points, as illustrated below. 

Based on Equation (11), AF-Prey is the basic foraging mechanism for AF. Fish usually sense fluid cues in their visual 

fields and swim to regions where food concentrations are higher. Similarly, in the AFS algorithm, 𝑋𝑖 is the current 

state of a fish and is randomly chosen to move into another state 𝑋𝑗(𝑋𝑗 ∈ 𝑡) with its visual range. The variable 𝑦 

denotes the concentration of food in the spot. The larger the visual range, the easier it is for the algorithm to find 

regions with more food, thereby enhancing the global optimal solution and convergence speed of the algorithms. 

Mathematically, the behaviour of the prey was calculated as in Equation (11). 

 

                                         𝑝𝑟𝑒𝑦(𝑋𝑖
𝑡+1) = {

𝑋𝑖
𝑡 + (

𝑋𝑗 −  𝑋𝑖
𝑡

||𝑋𝑗 − 𝑋𝑖
𝑡||

) . 𝑠𝑡𝑒𝑝. 𝑟𝑎𝑛𝑑(), 𝑦𝑗 > 𝑦𝑖

𝑋𝑖 + (2. 𝑟𝑎𝑛𝑑() − 1)𝑠𝑡𝑒𝑝, 𝑒𝑙𝑠𝑒

                                       (11) 

where 𝑟𝑎𝑛𝑑() yields values between zero and one. From Equation (12), it follows that AF-Swarm behaviour simulates 

fish collective movement as a means of survival and resistance against threats during migration. Denote 𝑋ᵢ as the 
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present location of artificial fish and let 𝑋𝑐 =  ∑ 𝑋𝑗/𝑛𝑓𝑥𝑗∈𝑆  are the central coordinates of the swarm, 𝑛𝑓 is the number 

of nearest neighbours in visual field  (𝑑𝑖𝑗 < 𝑉𝑖𝑠𝑢𝑎𝑙), and 𝑛 is a total number of fish in population. The mathematical 

representation of swarm behaviour is as follows. 

                                                    𝑠𝑤𝑎𝑟𝑚 (𝑋𝑖
𝑡+1) =  𝑋𝑖

𝑡 + 𝑠𝑡𝑒𝑝.
𝑋𝑐− 𝑋𝑖

||𝑋𝑐− 𝑋𝑖||
, if 

𝑦𝑐

𝑛𝑓
> 𝛿𝑦𝑖                                                    (12) 

Based on Equation (13), AF-Follow represents the attraction of a fish to other fish that find food patches. On the other 

hand, when several fish discover an area of high food concentration during movement, nearby prey is attracted to them 

to find the area faster. Let 𝑋𝑖  be the current position of an artificial fish and let 𝑋𝑚𝑎𝑥  state have a higher food 

concentration (higher fitness function value). The maximum food concentration was given by 𝑦𝑚𝑎𝑥 =

max {𝑓(𝑋𝑗)|𝑋𝑗 ∈ 𝑡} . The positions of the fish are then updated by, as expressed in Equation (13). 

                             𝑓𝑜𝑙𝑙𝑜𝑤(𝑋𝑖
𝑡+1) = {

𝑋𝑖
𝑡 + 𝑠𝑡𝑒𝑝 (

𝑋𝑚𝑎𝑥 −  𝑋𝑖

||𝑋𝑚𝑎𝑥 − 𝑋𝑖||
) ,

𝑦𝑚𝑎𝑥

𝑛𝑓
> 𝛿𝑦𝑖  

𝑝𝑟𝑒𝑦(𝑋𝑖), 𝑒𝑙𝑠𝑒

                                   (13) 

3.5 Modelling the EGSO 

The EGSO algorithm is a combination of GSO and AFS to enhance global searching capabilities and avoid local 

minima. EGSO is introduced to optimize Ra, which is a significant parameter for evaluating machining performance. 

In machining, Ra is used as a measure of the average Ra of a machined workpiece [25], with smaller values denoting 

smoother surfaces and improved machining precision. Thus, the ultimate purpose of EGSO in this context is to 

determine the local minimum value of Ra with better surface quality. The practical realization of EGSO starts with 

the initialization of the parameters. The settings of the parameters in this study were as follows:  

• 𝑛 =  50: Number of glowworms (population size).  

• 𝑚𝑎𝑥_𝑡 =  100: threshold for maximum iterations.  

• 𝑑𝑖𝑚 =  4: Number of dimensions in the optimization problem (to be precisely associated with four EDM 

parameters).  

• 𝑠 =  0.5: This is the step size, and it specifies the movement that needs to be done per iteration.  

• 𝛽 =  0.08: Attractiveness coefficient that affects movement towards brighter glowworms. 

• 𝛾 = 0.6 is the decay factor that controls the reduction of attractiveness with distance. 

• 𝑛𝑡 = 5: threshold for the neighbourhood used in the interaction area.  

• 𝑙0 = 5 is the initial neighbourhood radius.  

 

These parameter settings enable EGSO to determine the optimal Ra value between exploration and exploitation. The 

complete EGSO algorithm was depicted to describe how the levels of luciferin were iteratively updated, the movement 

was adaptively responded to, and the decision range was modified (as shown in Figure 3). In the luciferin update 

process, each glowworm updates its light intensity based on its fitness results (brighter glowworms correspond to 

solutions of better quality and attract closer agents). During the movement phase, glowworms move to neighbours 

with a higher value of luciferin, and the movement is controlled by the reward factor and step size. Second, in the 

decision range update step, both ranges are adjusted to guarantee effective communication and convergence within 

the swarm. 

Finally, EGSO also includes a random displacement technique in the prey stage, which reflects the movement of the 

AFS algorithm. During the random search phase, all virtual fish in the AFS model move randomly to traverse the 

search space for food, according to Equation (5). Likewise, in EGSO, each Glowworm can move randomly around its 

current position. By adding stochastic movement, this algorithm improves its capability to exit from local optima and 

search for novel regions of the solution space, resulting in an improvement in both the solution quality and speed of 

convergence. 
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Figure 3. The Flowchart of the EGSO Model 

 

4 RESULTS AND DISCUSSIONS  

This section presents the solution quality and validation results for the EGSO and standard GSO models in comparison 

with experimental benchmark data. As listed in Table 4, the lowest Ra value obtained from the machining experiment 

by Zubar et al. [21] was 6.245 𝜇𝑚, corresponding to the parameter combination (V = 50.000 V, Ip = 8.000 A, Ton = 

6.000 μs, Toff = 11.000 μs). This experimental minimum was used as the benchmark to evaluate the optimization 

performance of both algorithms. 

In optimization problems, an optimal solution refers to the best possible configuration that satisfies all problem 

constraints while minimizing or maximizing the objective function. The objective of this study is to obtain the 

minimum Ra value by comparing the EGSO and GSO algorithms. The results summarized in Table 5 show that EGSO 

achieved the lowest Ra value of 6.098 𝜇𝑚 with the same parameter combination as the experimental benchmark, 

whereas GSO achieved a slightly higher value of 6.106 𝜇𝑚. 

 

Table 5. Comparison of Results for EGSO, GSO, and Experimental Data 

Item Experimental Data GSO EGSO 

Parameters [50.000, 8.000, 6.000, 

11.000] 

[50.101, 8.052, 6.126, 

11.000] 

[50.000, 8.000, 6.000, 

11.000] 

Result (Ra μm) 6.245 μm 6.106 μm 6.098 μm 

 

 

The GSO algorithm achieved an Ra value of 6.106 𝜇𝑚 with a parameter combination (50.101 V, 8.052 A, 6.126 μs, 

11 μs). Both optimization algorithms produced lower Ra values compared to the experimental benchmark of 6.245 

𝜇𝑚 (Table 4), confirming their effectiveness in enhancing surface quality. However, the EGSO algorithm yielded the 

lowest Ra value of 6.098 𝜇𝑚, demonstrating its superior performance in achieving the optimal solution and validating 

its improved search capability over the standard GSO. Figure 4 shows the average fitness of an individual for EGSO 

and GSO for optimizing Ra. 
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(a) GSO (b) EGSO 

Figure 4. The Average Fitness of Individuals for GSO and EGSO in Optimized 𝑅𝑎 

 

As shown in Figure 4, EGSO and GSO converge during the optimization process, and EGSO converges more quickly. 

The best Ra value of EGSO was achieved at the 31st iteration, and for GSO after the 83rd iteration. The rapid 

convergence, combined with a lower predicted Ra, highlights the EGSO’s improved efficiency, stability, and 

effectiveness in optimizing the EDM process compared to the standard GSO. Thus, the rapid convergence and better 

Ra value obtained by EGSO emphasized its better optimization efficiency and stability than that of the standard GSO. 

Moreover, the superior performance of the EGSO algorithm can also be attributed to the following: 

 

a. EGSO has an adaptive step size that is dynamically based on local fitness improvements, allowing faster 

convergence near the optimum. 

b. EGSO improved the luciferin update mechanism, which led to better exploration of promising regions while 

avoiding premature convergence in local minima. 

c. EGSO adaptively modifies the neighbourhood radius to balance exploration and exploitation and to improve 

stability and solution quality. 

 

5 CONCLUSION 

In this study, an EGSO model combining the AFS algorithm in the prey phase was proposed to determine the optimal 

parameters of the EDM process. The AFS integration enhances the search efficiency of the standard GSO by 

strengthening its exploration and preventing early convergence. Optimization was performed according to the 

constraints of a 2FI regression model, which served as the objective function for Ra. Statistical modelling with 

ANOVA showed that the 2FI model was significant, with a coefficient of determination 𝑅2= 0.60, demonstrating its 

relevance in predictive terms. Numerical experiments indicate that EGSO is better than GSO in terms of both solution 

quality and convergence speed, achieving an Ra of 6.098 μm compared to GSO’s 6.106 μm. This enhancement 

confirms the possibility of considering EGSO as a more open optimization platform for complex non-linear shape 

factors. However, its performance could be a problem domain and enhancement strategy dependent. Further research 

should be conducted to explore different hybridization techniques and evaluate the scalability and robustness of EGSO 

over wider optimization problems, especially in advanced manufacturing. In general, this work helps the study of SI 

in the sense that combining complementary algorithms can improve both the solution accuracy and adaptability in 

practical engineering. 
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