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Abstract - Electric Discharge Machining (EDM) is a non-traditional machining process that utilizes electric sparks between an
electrode and a workpiece submerged in a dielectric fluid to ablate a material. It is commonly used in die-making, aerospace,
automotive manufacturing, and medical manufacturing, because it can machine hard and complex materials with high precision.
In this work, a Surface Roughness Optimization for EDM (SRO-EDM) model is proposed to investigate the machining performance
of the die-sinking EDM process of titanium alloys. A regression-based combined approach of Glowworm Swarm Optimization
(GSO) and a Two-Factor Interaction (2FI) model has been proposed to investigate the impact of four key process variables, namely
voltage (V), peak current (Ip), pulse-on time (ton), and pulse-off time (toff) on surface roughness (Ra) at various locations on work
surfaces. A Central Composite Design (CCD) was applied to systematically investigate parameter combinations. Statistical analysis
was performed using analysis of variance (ANOVA), which confirmed the statistical significance of the selected parameters, and
2FT regression (R? = 0.60) with moderate-fit predictive accuracy was established. To enhance the quality of optimization, the
Enhanced Glowworm Swarm Optimization (EGSO) algorithm is proposed by hybridizing the GSO with Artificial Fish Swarm
(AFS) algorithm. The AFS module improves the exploration capability of the GSO and alleviates the local optima problem. For
the experimental validation of the model, Response Surface Methodology (RSM) was used to generate the regression based on the
developed model and as an objective function for optimization. Experimental results show that EGSO outperforms GSO in
performance to achieve an optimized Ra (6.09 um) compared to 6.106 um through conventional GSO. The results demonstrate
that the EGSO model can improve convergence accuracy and speed and is a practical method for EDM surface quality optimization
in the high-precision manufacturing industry.
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1. INTRODUCTION

Machining processes are broadly categorized into traditional and nontraditional methods. These processes generally
involve the use of workpieces, machine tools, and cutting instruments. Non-traditional machining techniques remove
materials using electrical, thermal, chemical, or mechanical energy sources[1]. Among these, Electrical Discharge
Machining (EDM) has emerged as one of the most widely adopted techniques owing to its ability to machine hard and
geometrically complex materials that are difficult to process using conventional methods[2]. Unlike conventional
machining processes, EDM can fabricate complex geometrical features with high precision and is applicable in the
aerospace, automotive, and medical device industries[3], [4]. The process is based on controlled electrical discharges
that are produced between a tool electrode and conductive workpiece, leading to localized melting and material
removal[5]. Each shot in the discharge creates plasma temperatures in the range of 10—20 k°C that vaporize and
evacuate material from the surface of the target[6], [7], [8]. It is important to optimize the EDM process, particularly
in the case of die-sink EDM, to attain high precision and better surface finish, along with an enhanced material removal
rate. This type of optimization for cost-effectiveness and sustainability is useful for reducing tool wear, increasing
energy efficiency, and improving process stability[9]. However, EDM is a non-linear and multiparameter optimization
problem; thus, existing optimization methods are confrontational challenges in terms of locating suitable global optima.
To address this, Swarm Intelligence (SI) algorithms, which are based on the collective behaviour of organisms in
nature, have emerged as effective meta-heuristics for solving complex optimization problems[3], [4], [10]. The aim
of this research is to propose an improved EDM by enhancing the GSO algorithm with the objective function for the
optimization of Ra in terms of the 2FI regression model.

The rest of this paper is organized as follows: In Section 2, related works and background algorithms are reviewed;
the EGSO approach and modelling are described in Section 3; Section 4 provides results comparing EGSO with the
standard GSO; and finally, conclusions and suggestions for further study are presented in Section 5.

2. LITERATURE REVIEW
2.1 Optimization and Swarm Intelligence (SI)

Optimization is an important tool in engineering[11], finance, [12] and data analysis[13]. Gradient-based methods are
incapable of shifting perpendicular to the gradients in a high-dimensional or non-linear search space. In contrast, SI
algorithms tend to draw inspiration from collective biological behaviour and implement decentralized and dynamic
search strategies[14]. Examples include Ant Colony Optimization (ACO) [15] and artificial bee colonies (ABC)[16],
which are inspired by the success of social insects in solving problems cooperatively through interaction and feedback
mechanisms.

2.2 Glowworm Swarm Optimization (GSO)

The concept proposed by ACO was extended by Krishnan and Ghose [17] in their GSO algorithm for continuous
optimization problems. In GSO, every agent (glowworm) contains luciferin intensity that is proportional to the fitness
of the individual and moves towards its brighter neighbours. The algorithm repeats the luciferin update, movement,
and decision range adjustment phases. Although GSO performs well as a global search algorithm, it has weaknesses
in terms of slow distribution convergence and poor effective range-finding[18].

2.3 Hybrid and Improved GSO Models

Several augmented derivates of the Simple GSO (SGSO) have been proposed because of their inherent limitations,
including slow convergence and early stagnation. Zhou et al. [19] introduced a hybrid glowworm swarm optimization
(HGSO) that combines AFS and differential evolution (DE) algorithms and adopts a two-population co-evolution
strategy to deliver faster convergence speed and better computational accuracy for multimodal optimization tasks.
Similarly, Karthikeyan et al. [20] proposed a hybrid model of GSO with Genetic Algorithm (GA) methodology for
the enhancement and optimization of SVM parameters in diabetic retinopathy classification. The suggested GSO-GA
approach showed better results than existing approaches in terms of sensitivity, accuracy, and specificity. In a separate
study, Zhou et al. [21] introduced a combination of GSO for cloud task scheduling and showed that the convergence
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rate and resource allocation performance in a cloud system were improved. Chen et al. [22] proposed a hybrid
algorithm by combining GSO with a 2-opt local search to address the spherical TSP. The enhanced version of GSO
achieved better route optimization performance and stability than the basic form of GSO. Tang et al. [23] proposed
the particle-GSO (PGSO) algorithm, incorporating mutation and local search considering the PSO, to achieve a higher
convergence rate, robustness, and computational filter accuracy for UCAYV path planning. In addition, Alphonsa et al.
[24] proposed a genetically modified GSO model for privacy-preserving cloud computing in healthcare that could
improve the efficiency of analysis and protect users’ sensitive medical records. In summary, this research proves that
hybridization helps enhance the global search of GSO combined with other metaheuristic or evolutionary methods,
accelerates convergence, and further improves its adaptability to different types of problems.

2.4 Research Gap and Motivation

Although much has been done on the development of hybrid versions of GSO, little is found in the literature
concerning their applications to optimization problems, specifically in manufacturing process optimization such as
EDM. Existing literature has focused on computational or classification tasks rather than machining performance,
such as Ra or material removal rate. Therefore, this investigation presents an EGSO with a combined AFS approach
for die-sinking EDM parameter optimization. We used the experimental data published in [25] as pilot data for the
model validation. The 2FI regression model was used as the objective function, and Ra was chosen as the cutting
performance index. The aims of this study were to

e accelerating the convergence speed and enhancing the optimal solution of GSO;
e compare EGSO with the standard GSO in EDM optimization; and
e determine the best cutting conditions with minimum Ra value.

3 RESEARCH METHODOLOGY

This section describes chronological research, which involves the design of the research as well as the collection and
investigation of data[1], [9]. The proposed research pattern should be supplemented by references so that the
explanation can be scientifically accepted. The experiments presented in this paper were used to establish the EGSO
algorithm and based on the experimental data of the mathematical model, some parameters that influence the Ra value
were found. Data analysis is used to inform feature patterns and parameter relationships that can aid in formulating
appropriate optimization goals and constraints. The AFS algorithm was also investigated to embed its exploration into
the GSO to enhance its search ability.

Its working methodology comprises four major stages, as shown in Figure 1: data definition, developing the EGSO
algorithm, optimizing the EGSO algorithm using a mathematical model, and evaluating the results of EGSO and GSO.
A recent literature review of the fundamental knowledge of GSO coupled with the AFS algorithm and optimization
process is presented in this work. Related work is a necessary and essential study for this experiment, which enables
us to grasp the historical development, concepts, and principles of the two algorithms. In addition, a study related to
learning supports the pinpointing of research gaps and limitations of both algorithms. To resolve these limitations,
this study designed the research objective and enhanced algorithms, built knowledge, benchmarked, received
methodological guidance, formulated a theoretical foundation, and generated new insights to ensure that the enhanced
GSO algorithm development process was novel, well-informed, and contributed to the progress of this study.

In the validation period, both EGSO and GSO were compared for their performance in improving Ra. Experimental
data [25] were used as a benchmark; if the optimized Ra value was less than that of the reference, then we accepted
the success of the proposed EGSO approach.

3.1 Experimental Data

The dataset used in this study was compiled in [25]. The experiments were performed using Grace Model D-6030S
die-sinking EDM. The material of the workpiece was Ti-13Zr-13Nb titanium alloy, which is applicable to biomedicine
and has high strength, and a graphite tool electrode (10 mm diameter) was used. The debris was cleaned from the
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discharge zone and stable sparking conditions were established through an impulse-jet cleansing system using
commercial-grade kerosene as the dielectric medium.

Zirconium (Zr), niobium (Nb), and titanium (Ti)-based alloys contain small amounts of nitrogen, oxygen, carbon,
silicon, and iron as impurity elements. The general range of the chemical composition of the alloy is listed in Table 1.

Data Definition ——————————___.I

‘ Understand and study the parameter that affect the Ra.

Modelling +  For this study three types of regressions are developed as a mathematical .I
) del of this study.
Develop the mathematical model. I oo - I
‘ P ‘ +  ANOVA will observe the significance of the mathematical model. K
e e e e e e — — — — — —

|

Develop EGS0 - The enhanced glowworm swarm optimization will be developed while
incorporating the Artificial Fish Swarm Algorithm.
To increase the convergence rate and improve the solution results.

‘ Develop the enhance glowworm swarm optimization ‘ |
.

|

Validation and evaluation

‘ Evaluate the result of GSO, EGSO and experimental data. ‘

Figure 1. Operation Framework

Table 1. Chemical Composition of the Titanium Alloy (Ti—13Zr—13Nb) Used in the EDM Experiments

Elemental powder Impurity content (%)
N 0 C Si Fe
Zr 0.080 0.450 0.028 - 0.030
Nb 0.038 0.620 0.020 - 0.040
Ti 0.872 0.349 0.073 0.025 0.040

The workpiece was 20 mm in diameter and 35 mm in length, and the machining area was 50 x 50 mm?2. The complete
operating setup is presented in Table 2.

Table 2. The EDM Operating Conditions

Parameter Specification
Machine Grace D-6030S die-sinking EDM
Workpiece material | Ti-13Zr-13Nb titanium alloy
Working area 50 x 50 mm?
Workpiece size 20 mm (@) x 35 mm (length)
Dielectric fluid Kerosene with impulse-jet cleansing
Electrode Graphite (@ 10 mm)

The design of the machining parameters, along with their respective units and levels, is summarized in Table 3.
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Table 3. Experimental Factors and Their Corresponding Levels for EDM Processing of the Titanium Alloy

Parameter Symbol Unit Level
1 2 3
Peak Current Ip A 8 12 16
Voltage \% \% 50 60 70
Pulse on time Ton us 6 8 10
Pulse off time Toff us 7 9 11

The experiments were designed using the RSM with a CCD to evaluate the effect of these four parameters on Ra.
Thirty experimental runs were conducted, incorporating full factorial, star, and centre points. The resulting Ra values
reported by Zubar et al. (2019) [21] ranged between 6.245 um and 18.214 pm, with the lowest value achieved at (V' =
50V, Ip=8A4, Ton =6 us, Toff = 11 us).

To provide a concise overview of the input ranges and corresponding Ra responses used in this study, Table 4, adapted
from, [25] summarizes the parameter limits, central levels, and the statistical range of the measured Ra values. These
summarized data serve as benchmarks for subsequent model development and optimization.

Table 4. Summary of EDM Process Parameter Ranges and Ra Statistics

Parameter Symbol | Unit | Range | Central Level | Response (Ra, pm)
Voltage \Y )\ 50-170 60 6.245 - 18.214
Peak Current Ip A 816 12 —

Pulse On Time | Ton us 6-—10 8 —
Pulse Off Time | Toff us 7-11 9 —

3.2 Mathematical Model

Optimization of the ideal Ra effect for the signal responses was achieved by a 2FI regression model according to
Equation (1). This is the objective function used for the GSO and EGSO-AFS algorithms. The 2FI model was
formulated as shown in Equation (1). In Equation (1), Ra is the surface roughness (um), V stands for the servo voltage
(V), Ip is a peak current (A), Ton and Tof f are pulse-on time and pulse-off time (us), respectively. A 2FI model was
established based on the experimental results (Table 4). The experimental data were analysed using Design Expert 13
(Statistical Software) to develop the 2FI model to represent the main effect and interaction of operation parameters on
Ra. According to the R-squared ( R 2) value derived from ANOVA, the 2FI model demonstrated the strongest
relationship between the model and dependent variable at 0.60. The 2FI model showed the strongest relationship
between the model and the dependent variable.

Ra = —4.465+ 0.106 *V 4+ 0.686 * Ip + 1.895 * Ton — 1.785 * Tof f —0.008 * V * Ip — 0.021 * V * Ton + 0.026 * V *
Toff +0.029  Ip * Ton — 0.015 * Ip * Toff + 0.048 «x Ton * Tof f (1)

Based on the pilot results reported in [21], Table 3 summarizes the experimental design and their lower (Level 1) and
upper (Level 3) factor settings. Equations (2) — (5) show the minimum and maximum ranges of the four parameters in
EDM for optimization.

50V V<70V )
8A< Ip <164 3)
6ps < Ton < 10ps 4
7us < Toff <1lps (5

3.3 GSO

Motivated by the behaviour of glowworms in nature, the GSO algorithm finds its roots where each glowworm is
attracted towards others with higher brightness[26], [27], [28]. In this metaphor, each glowworm symbolizes a

5
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hypothetical optimizer, and its brightness, luciferin, equals the quality of the solution represented by that glowworm.
Glowworms communicate with each other in a dynamic local-only neighbourhood, which is characterized by the
sensor range and decision range. Attractive by nature to move towards a brighter companion for mating or foraging,
glowworms inevitably take another attractive individual as a goal tangling each other across their decision-making
neighbourhood because of the typically low luciferin value assigned based on randomness within the search space.
Each glowworm then determines its moving direction by considering the information in the local neighbourhood. This
collective behaviour is simulated by the GSO algorithm, which consists of three major phases: (i) luciferin update, (ii)
movement, and (iii) neighbourhood range update. To update the luciferin phase, each glowworm updates its luciferin
level by increasing the value proportional to its current fitness and decreasing it by the decay factor (decay factor
representing the natural fading of luminescence). The luciferin level of each glowworm was determined using (1),
according to the proposed rules of[26], [27], [29] (see Equation (6)).

L =1 —pLit—1) + y](x () (6)

where [;(t) denotes the luciferin level of glowworm i at time t, p is the luciferin decay rate 0<p < 1, y is the luciferin
enhancement factor, and J (xi (t)) signifies the value of the objective function at agent i’s position at time t. In the
GSO, each Glowworm (i.e., an agent) moves towards its neighbouring agents with a higher luciferin. This simulates
the fact that glowworms prefer luminescent entities. In this stage, every agent uses a probability-based motion to find
and move towards a neighbour with a higher quantity of luciferin, such that it can lead the swarm towards a better
fitness area in the search space.

Ni(®) = : diy(8) < 730 [;(O) < 1) (7)
Equation (7) defines the neighbourhood set of Glowworm i at time t. The term d;;(t) denotes the Euclidean distance
between glowworms i and j at time t, and 7/(t) represents the dynamic neighborhood range associated with

glowworm i. This range is constrained by the sensor boundary such that (0 <rl< rsi). For each Glowworm i, the
probability of movement towards a neighbouring glowworm j € N;(t) is determined using Equation (8).

ORI10 ®
Zken;e) (@) — L ()

Pt =

where j is a neighbor of the glowworm i. In the current iteration ¢, glowworm i chooses glowworm from its neighbours
N;(t) using the Roulette Wheel method. Glowworms with higher probabilities are expected to be picked out from
neighbouring groups. Then, during the movement phase of the glowworms, the position of the current glowworm was
adjusted according to the position of the selected neighbour. This movement can be expressed as in Equation (9).

x;(t) — x;(t)

xi(t+1) =x,t) +s|———mm—
|l (® - x|

)

where s (> 0) represents the step size, || || is the Euclidean norm operator. Then, x;(t) € R™ represents the location
of glowworm i at time t in the m-dimensional real space R™. x;(t) and x;(t + 1) are the previous and new positions
of the ith glowworm, respectively.

The last step in GSO is the neighbourhood range update phase, which is used to detect multiple peaks in a multimodal
function landscape. Next, let r, be the initial neighborhood range value of each worm (r5(0) = ry, for all i). The
following rule (Equation (10)) is used to adaptively update the neighbourhood range update rule for each glowworm.

rit+1) = min{rs, max{O, ri(t) + p(n, — |Nl-(t)|)}} (10)

Here, 8, 1, and n; denote the constant radial sensor range, model constant, and constant controlling the neighbour
count, respectively. Figure 2 illustrates the sensory and decision radii associated with glowworm i.
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Figure 2. Sensory and Decision Radius of Glowworm i [22]

As depicted in Figure. 2, r; is the sensor radius and r} is the initial neighborhood range that is defined during the
update of the neighborhood range. When Glowworm i moves, this process is repeated to find and reposition nearby
glowworms in the sensing range.

3.4 AFS Algorithm

The AFS algorithm is a biologically motivated optimization algorithm that emulates how fish search for food in aquatic
environments. It is also able to reach the global optimum as it mimics natural processes such as foraging, clustering,
and the following of agents to reach global optima through a sequence of local interactions. The AFS algorithm The
AFS is based on SI and models the collective motion of a group of fish to effectively solve difficult optimization
problems [30 - 33]. Based on detailed observations of fish nature, AFS adopts a cooperative search method to achieve
a trade-off between searching and optimizing in multidimensional solution spaces.

X; is the current position of i and X; is a random state within the field of view rand() which generates a random
number in [0, 1]. The distance between any two fish i and j is defined as d;; = [|X; — X; ||, where denotes the visual
range of each fish. The parameter trynumber denotes the number of trials when each fish attempts to search for a
better location and § is the crowding factor (0 < § < 1). nf is the number of neighbouring fish that are within the
visible distance (di]- < Visual), and step represents how far AF moves. The set T = {Xj|||Xi Xl < Visual}
represents all the places that the i-th fish can visit with respect to its current visual range. The adaptive effects of these
parameters are the foundation of the AFS behavioural model and allow each fish to assess an area of high potential
versus other areas in the search space, moving towards improved points, as illustrated below.

Based on Equation (11), AF-Prey is the basic foraging mechanism for AF. Fish usually sense fluid cues in their visual
fields and swim to regions where food concentrations are higher. Similarly, in the AFS algorithm, X; is the current
state of a fish and is randomly chosen to move into another state X;(X; € t) with its visual range. The variable y
denotes the concentration of food in the spot. The larger the visual range, the easier it is for the algorithm to find
regions with more food, thereby enhancing the global optimal solution and convergence speed of the algorithms.
Mathematically, the behaviour of the prey was calculated as in Equation (11).

. Xt
X+ #).ste .rand(), >y
prey(Xit+1) — 2 <||X} _Xlt” p () y] Yi

X; + 2.rand() — 1)step, else

(11D

where rand () yields values between zero and one. From Equation (12), it follows that AF-Swarm behaviour simulates
fish collective movement as a means of survival and resistance against threats during migration. Denote X; as the
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present location of artificial fish and let X, = Y., jes Xj/nf are the central coordinates of the swarm, nf is the number
of nearest neighbours in visual field (d;; < Visual), and n is a total number of fish in population. The mathematical
representation of swarm behaviour is as follows.

X2 % g 2e s gy, (12)

swarm (Xf*Y) = Xf + step. o xa o

Based on Equation (13), AF-Follow represents the attraction of a fish to other fish that find food patches. On the other
hand, when several fish discover an area of high food concentration during movement, nearby prey is attracted to them
to find the area faster. Let X; be the current position of an artificial fish and let X,,,, state have a higher food
concentration (higher fitness function value). The maximum food concentration was given by Vyax =
max {f (X 0 |X ; € t} . The positions of the fish are then updated by, as expressed in Equation (13).

Xmax - Xi ) YVmax
”Xmax - Xil | '
prey(X;), else

XF+ step <

follow(Xt*1) = (13)

3.5 Modelling the EGSO

The EGSO algorithm is a combination of GSO and AFS to enhance global searching capabilities and avoid local
minima. EGSO is introduced to optimize Ra, which is a significant parameter for evaluating machining performance.
In machining, Ra is used as a measure of the average Ra of a machined workpiece [25], with smaller values denoting
smoother surfaces and improved machining precision. Thus, the ultimate purpose of EGSO in this context is to
determine the local minimum value of Ra with better surface quality. The practical realization of EGSO starts with
the initialization of the parameters. The settings of the parameters in this study were as follows:

n = 50: Number of glowworms (population size).

e max_t = 100: threshold for maximum iterations.

dim = 4: Number of dimensions in the optimization problem (to be precisely associated with four EDM
parameters).

s = 0.5: This is the step size, and it specifies the movement that needs to be done per iteration.

B = 0.08: Attractiveness coefficient that affects movement towards brighter glowworms.

y = 0.6 is the decay factor that controls the reduction of attractiveness with distance.

n; = 5: threshold for the neighbourhood used in the interaction area.

l, =5 is the initial neighbourhood radius.

These parameter settings enable EGSO to determine the optimal Ra value between exploration and exploitation. The
complete EGSO algorithm was depicted to describe how the levels of luciferin were iteratively updated, the movement
was adaptively responded to, and the decision range was modified (as shown in Figure 3). In the luciferin update
process, each glowworm updates its light intensity based on its fitness results (brighter glowworms correspond to
solutions of better quality and attract closer agents). During the movement phase, glowworms move to neighbours
with a higher value of luciferin, and the movement is controlled by the reward factor and step size. Second, in the
decision range update step, both ranges are adjusted to guarantee effective communication and convergence within
the swarm.

Finally, EGSO also includes a random displacement technique in the prey stage, which reflects the movement of the
AFS algorithm. During the random search phase, all virtual fish in the AFS model move randomly to traverse the
search space for food, according to Equation (5). Likewise, in EGSO, each Glowworm can move randomly around its
current position. By adding stochastic movement, this algorithm improves its capability to exit from local optima and
search for novel regions of the solution space, resulting in an improvement in both the solution quality and speed of
convergence.
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Figure 3. The Flowchart of the EGSO Model

4 RESULTS AND DISCUSSIONS

This section presents the solution quality and validation results for the EGSO and standard GSO models in comparison
with experimental benchmark data. As listed in Table 4, the lowest Ra value obtained from the machining experiment
by Zubar et al. [21] was 6.245 um, corresponding to the parameter combination (V' = 50.000 V, Ip = 8.000 A, Ton =
6.000 us, Toff = 11.000 us). This experimental minimum was used as the benchmark to evaluate the optimization
performance of both algorithms.

In optimization problems, an optimal solution refers to the best possible configuration that satisfies all problem
constraints while minimizing or maximizing the objective function. The objective of this study is to obtain the
minimum Ra value by comparing the EGSO and GSO algorithms. The results summarized in Table 5 show that EGSO
achieved the lowest Ra value of 6.098 um with the same parameter combination as the experimental benchmark,
whereas GSO achieved a slightly higher value of 6.106 um.

Table 5. Comparison of Results for EGSO, GSO, and Experimental Data

Item Experimental Data GSO EGSO
Parameters [50.000, 8.000, 6.000, [50.101, 8.052, 6.126, [50.000, 8.000, 6.000,
11.000] 11.000] 11.000]
Result (Ra pm) 6.245 pm 6.106 pm 6.098 pm

The GSO algorithm achieved an Ra value of 6.106 um with a parameter combination (50.101 V, 8.052 A4, 6.126 us,
11 us). Both optimization algorithms produced lower Ra values compared to the experimental benchmark of 6.245
um (Table 4), confirming their effectiveness in enhancing surface quality. However, the EGSO algorithm yielded the
lowest Ra value of 6.098 um, demonstrating its superior performance in achieving the optimal solution and validating
its improved search capability over the standard GSO. Figure 4 shows the average fitness of an individual for EGSO
and GSO for optimizing Ra.
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Figure 4. The Average Fitness of Individuals for GSO and EGSO in Optimized Ra

As shown in Figure 4, EGSO and GSO converge during the optimization process, and EGSO converges more quickly.
The best Ra value of EGSO was achieved at the 31% iteration, and for GSO after the 83™ iteration. The rapid
convergence, combined with a lower predicted Ra, highlights the EGSO’s improved efficiency, stability, and
effectiveness in optimizing the EDM process compared to the standard GSO. Thus, the rapid convergence and better
Ra value obtained by EGSO emphasized its better optimization efficiency and stability than that of the standard GSO.
Moreover, the superior performance of the EGSO algorithm can also be attributed to the following:

a. EGSO has an adaptive step size that is dynamically based on local fitness improvements, allowing faster
convergence near the optimum.

b. EGSO improved the luciferin update mechanism, which led to better exploration of promising regions while
avoiding premature convergence in local minima.

c. EGSO adaptively modifies the neighbourhood radius to balance exploration and exploitation and to improve
stability and solution quality.

5 CONCLUSION

In this study, an EGSO model combining the AFS algorithm in the prey phase was proposed to determine the optimal
parameters of the EDM process. The AFS integration enhances the search efficiency of the standard GSO by
strengthening its exploration and preventing early convergence. Optimization was performed according to the
constraints of a 2FI regression model, which served as the objective function for Ra. Statistical modelling with
ANOVA showed that the 2FI model was significant, with a coefficient of determination R?= 0.60, demonstrating its
relevance in predictive terms. Numerical experiments indicate that EGSO is better than GSO in terms of both solution
quality and convergence speed, achieving an Ra of 6.098 pm compared to GSO’s 6.106 pm. This enhancement
confirms the possibility of considering EGSO as a more open optimization platform for complex non-linear shape
factors. However, its performance could be a problem domain and enhancement strategy dependent. Further research
should be conducted to explore different hybridization techniques and evaluate the scalability and robustness of EGSO
over wider optimization problems, especially in advanced manufacturing. In general, this work helps the study of SI
in the sense that combining complementary algorithms can improve both the solution accuracy and adaptability in
practical engineering.
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