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Abstract - Regression testing plays a critical role in ensuring the reliability and quality of software following continuous integration
and development. However, executing all test cases during regression testing can be time-consuming and resource-intensive. Test
Case Prioritization (TCP) addresses this challenge by determining an optimal execution order of test cases that maximizes early
fault detection while minimizing execution time. Optimization algorithms contribute significantly to enhancing the effectiveness
of TCP while utilizing limited resources. This study proposes an Ant Colony Optimization (ACO) algorithm to address the TCP
problem, leveraging its strength in navigating complex search spaces inspired by the foraging behavior of real ant colonies. It
involves four phases: dataset selection, dataset conversion, algorithm implementation, and performance evaluation. ACO was
implemented and evaluated on two datasets (Case Study One and Case Study Two) of differing sizes and complexity. The results
demonstrate its potential to improve testing efficiency and effectiveness with limited resources using the Average Percentage Fault
Detected (APFD) and execution time. Case Study One, which involved a larger dataset, achieved a higher APFD (0.6911), but
required more iterations and execution time (0.3733 s). In contrast, Case Study Two, with fewer test cases and faults, demonstrated
a faster convergence and execution time (0.2596 s), with a slightly lower APFD (0.6700). These findings demonstrate a trade-off
between early fault detection and execution efficiency, indicating that dataset characteristics such as size and fault density influence
the performance of the algorithm.
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1. INTRODUCTION

Software testing plays a critical role in ensuring the reliability and quality of software systems by executing the
software and identifying potential defects. A system that fails to produce the expected results is considered faulty and
requires debugging and corrective action [1]. Despite its importance, software testing remains one of the most
overlooked phases of the software development lifecycle [2]. Time constraints and high costs often lead to rushed
testing processes, resulting in premature software release and diminished product quality [2]. Among the various
testing processes, regression testing is essential to verify that the existing functionalities remain unaffected by new
changes. However, regression testing frequently encounters challenges, particularly because of the poor
communication between stakeholders and developers. This disconnect often results in redundant testing of the entire
test suite, a resource-intensive and time-consuming effort that can erode developer confidence and negatively impact
the overall system quality. Furthermore, ineffective regression testing increases the risk of defects being deployed in
production, ultimately compromising product reliability and client trust. Approaches such as test-case reduction,
selection, and prioritization are always being considered.

One effective approach to address the challenges in regression testing is the application of Test Case Prioritization
(TCP) techniques, which enhance the efficiency and effectiveness of software testing processes [2]. TCP techniques
prioritize test cases according to their significance, ensuring that the most critical tests are executed early in the testing
cycle [3]. This prioritization facilitates early fault detection, provides timely feedback to developers, and improves the
overall efficiency of the testing process [4]. Among these three approaches, TCP is the most used because it does not
eliminate or select test cases. Instead, it simply rearranges them so that the most critical ones are checked first [5].
However, traditional TCP approaches such as backtracking and dynamic programming often incur significant
computational costs, particularly for large datasets. In contrast, metaheuristic algorithms, a class of optimization
techniques, offer an efficient alternative by providing near-optimal solutions with reduced computational effort [6].
These algorithms are especially advantageous in regression testing scenarios, where limited resources and complex
test-case dependencies are common challenges.

Among various metaheuristic algorithms, ACO is a promising approach for solving TCP problems. Ants deposit
pheromones on their paths, guiding subsequent ants towards potentially fruitful areas [7]. Similarly, ACO utilizes
virtual “ants” that traverse a network representing the test case space, leaving a virtual pheromone on paths which
signifies the path it takes. Paths with more pheromones become more attractive to subsequent ants, guiding them
towards potentially high-impact test cases[8]. This iterative process gradually converges on a prioritized list,
maximizing fault detection while minimizing execution time.

This study investigated the effectiveness of the ACO algorithm for TCP by evaluating its performance on two diverse
datasets sourced from existing research. The performance of the algorithm was assessed based on the fault-detection
rate and execution time, demonstrating its potential to improve the efficiency of regression testing. The findings of
this study contribute to a deeper understanding of ACO’s capabilities of ACO in software testing and encourage further
exploration of its applications in the field.

This paper is organized as follows. Section 1 presents the introduction, outlining the background, problem statement,
research objectives, and scope of the study. Section 2 reviews the related literature, summarizing previous work and
the key concepts relevant to this research. Section 3 describes the research methodology, details the research
framework, and processes adopted in the study. Section 4 explains the implementation of the ACO algorithm for the
TCP. Section 5 discusses the results and key findings. Finally, the paper concludes with a summary of the study’s
contributions and provides recommendations for future research.

2. LITERATURE REVIEW
2.1 Regression Testing

In the ever-evolving world of software development, software updates are essential for remaining relevant and meeting
evolving customer requirements. However, these updates can mistakenly introduce unintended consequences,
potentially causing financial losses or endangering lives. To mitigate these risks, regression testing steps act as
safeguards to validate the stability and reliability of the updated software [9]. Regression testing is performed in a
meticulous process that involves revisiting previously tested code segments with the following modifications to ensure
that no new errors have been inadvertently introduced during the update process [10]. As software evolves through

289



Journal of Informatics and Web Engineering Vol. 5 No. 1 (February 2026)

continuous updates, its complexity inevitably increases, posing a significant challenge to exhaustive testing within the
constraints of time and resources. To mitigate these challenges, regression testing is strategically categorized into three
primary approaches: test suite minimization (TSM), test case selection (TCS), and TCP [9].

Testing large programs can be time consuming, especially when executing redundant test cases. To reduce testing
time and costs, it is essential to minimize the number of test cases while maintaining comprehensive coverage. TSM
strategies can help achieve this by identifying and removing redundant tests, ultimately streamlining the testing
process, and improving its effectiveness [11].

TCS is the process of selecting a specific group of test cases from a larger collection based on predetermined criteria.
The primary aim of this approach is to minimize redundant or unnecessary test data while identifying the most
effective fault-detecting test cases efficiently [11]. This approach aims to identify smaller test cases that can efficiently
identify potential defects with minimal effort and time.

Although TSM and TCS reduce the overall number of test cases, TCP simply rearranges them without removing any
test cases. TCP is preferred because it preserves all the test cases for potential future use. Therefore, TCP is a safe
alternative for permanent removal. TCP is a secure, reliable, and cost-effective approach for regression testing [3].
The implementation of ACO in TCP aims to enhance fault detection capabilities while simultaneously reducing
execution time compared with manual TCP approaches [12].

2.1.1TCP

TCP is a widely used regression testing technique in software development that aims to optimize the execution
sequence of test cases to achieve specific objectives efficiently, such as maximizing the fault detection rate. Coverage-
based TCP is a particularly effective and valuable approach among the various TCP techniques. The core principle of
coverage-based TCP lies in strategically ordering the test cases for execution. For instance, if the goal is to maximize
the fault detection rate, then the test cases with higher priority for the fault detection rate will be executed earlier[13].

The primary evaluation metric used in TCP is APFD. APFD represents the weighted average of the faults detected
throughout the execution of prioritized test cases. Its values range from 0 to 1, where higher values indicate a faster
and more effective fault detection. A detailed calculation of APFD is presented in Section 3. Aside from APFD,
execution time is another critical metric for assessing TCP performance. The execution time measures the duration
required for the algorithm to generate a prioritized sequence of test cases based on factors such as fault severity. When
optimization algorithms are applied to TCP, the optimal cost, often represented as distance, is determined to identify
the most efficient prioritization path. A summary of the algorithms applied to TCP is presented in Table 1.

According to Table 1, several studies have explored the application of metaheuristic algorithms to address the
challenges in TCP, particularly in optimizing the execution time and enhancing the fault detection rates. A study
conducted by Akila and Arunachalam [12] highlighted the potential of the ACO algorithm to address the challenges.
The findings demonstrate that ACO excels in fault detection, efficient path exploration, and optimization of both the
number of iterations and test cases required for effective testing. When applied to TCP, ACO aims to achieve two
primary objectives: enhancing the fault detection rate and reducing the execution time, particularly when compared
with manual approaches in regression testing. In this study, ACO was employed to further investigate its potential to
improve the efficiency of test case execution, offering a more streamlined and effective regression-testing process.

2.1.2 Overview of ACO

ACO is a swarm intelligence technique inspired by the foraging behaviour of real ant colonies to solve complex
computational problems in the real world. In ACO, artificial ants collaborate to find the best solutions to the problem,
whereas artificial ants exchange information about their progress through a communication mechanism used by real
ants. This method has been demonstrated to be effective in enhancing test case scenarios across a variety of testing
domains, including regression testing and functional testing [8]. Like real ants, these artificial ants leave pheromones
behind to indicate the quality of the path they have taken[16]. The higher the pheromone concentration that starts from
the first node, the higher the likelihood that other ants will follow that path. This indirect communication and collective
decision making allows the colony to move towards the optimal solution[8]. The Ant Colony System (ACS), also
known as ACO, which was first proposed by Dorigo et al., is well regarded and demonstrates superior performance
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compared to other Ant System (AS) strategies owing to its ability to balance exploration and exploitation during the
search for optimal solutions[17]. Exploration refers to the process of seeking a new and potentially better solution,
whereas exploitation focuses on strengthening and improving known promising solutions, which significantly reduces
the cost of executing prioritization.

The ACO algorithm initiates the process by randomly assigning test cases to the artificial ants within a colony. Each
ant evaluates the test cases based on their fault detection capabilities and deposit pheromones in proportion to their
effectiveness. Pheromone levels are iteratively updated, reinforcing successful paths and reducing the influence of
less-effective paths. The process continues until a predefined number of iterations is completed or a satisfactory fault-
detection rate is achieved[ 18]. Through this iterative process, the ant colony collectively identifies the most effective
sequence of test cases. Figure 1 illustrates the general ACO framework.

Table 1. Comparison of Algorithms Used in TCP

Author Algorithm Purpose Problem Statement Results

M. Firefly Utilize the Firefly Current TCP techniques are The Firefly Algorithm
Khatibsyar | Algorithm Algorithm, coupled inadequate due to the demonstrated superior
bini et al. with a similarity extensive search space performance in terms of

[2] distance model-based | involved in identifying the | execution time and APFD.

fitness function, for optimal test case sequence | The algorithm emerged as
optimal TCP. regarding execution time a promising method for
and fault detection rate. TCP applications.

P. Artificial Apply Artificial Bee Traditional code coverage- ABC has led to a
Padmnav | Bee Colony Colony and Genetic based algorithms have been | remarkable improvement
et al. [14] and Algorithm, guided by applied to TCP testing, but in fault detection

Genetic historical regression their efficacy has been performance.
Algorithm | cycle execution data, to | limited due to their reliance
improve fault detection | on data that is often difficult
effectiveness. to obtain.
A. Bajaj Genetic Analysing the impact of Default GA parameters The tournament selection
and O. P. | Algorithm | various GA parameter provide a solid starting operator emerged as the
Sangwan configurations on the point, but there is potential most effective selection
[3] performance of TCP for further refinement by method, with a crossover
through an using different parameter rate of 1 and a mutation
experimental study. values. rate of 0.5 yielding the
most promising results.
T.K. Modified Implement a multi- Metaheuristic techniques The proposed model
Akila and Genetic objective strategy that have proven to be effective surpasses previous
A. Algorithm | combines the Modified | in addressing TCP. Usually, techniques which is the
Malathi and ACO Genetic Algorithm and it will solve a single single objective model by
[12] ACO Algorithm to objective, which is not achieving a significantly
optimize TCP problem- | entirely ineffective, but can | higher fault detection rate
solving. adopt a multi-objective for multi-objective
approach. solutions.
L.Z. Yue Particle Examine and compare Conducting all test cases is FA outperformed PSO as
and R. Swarm the performance of PSO expensive and time- a TCP technique with
Ibrahim Optimizati and FA algorithms in consuming which leads to a faster execution time,
[15] on and prioritizing test cases solution to reduce the time lower complexity, and
Firefly based on execution and cost of regression similar APFD values.
Algorithm time, Big-O, and testing by using PSO and
APFD. FA.
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Start

Initialization of parameters

Place ant in random place

lteration < num?
Yes |

Conduct tour for individual ant by random on best probability

Calculate tour length for each ant

Record best solution and update pheromone

Optimum solution

Display optimum solution

Figure 1. ACO Framework

Based on a study conducted in[19], each ant in the ACO algorithm navigates the solution space based on two key
factors: pheromone trails and heuristic information. Pheromone trails, deposited by previous ants, represent collective
knowledge of the colony regarding promising paths. The strength of these trials is directly proportional to the quality
of the solutions constructed using these paths. Heuristic information quantifies the inherent desirability of traversing
a particular edge, often in the form of proximity or cost. The ant’s decision-making process employs a probabilistic
rule known as the “random-proportional rule,” which assigns a probability to each potential next step based on a
weighted combination of the pheromone trail and heuristic information. Equation (1) provides the mathematical
expression for the next step.

[tij] " * [nij]"B

POON = S e ol a « il 6

(1)

where k is the ant identifier; i and j are the current and next potential places, a and 8 are parameters controlling the
relative influence of pheromone trails and heuristic information, respectively; J(k) is the list of unvisited places for
ant k; (tij) is the strength of the trails; and (nij) refers to the heuristic information. Parameter nij is given by Equation

Q).

L1
nij = @i (2)

Where, dij is the distance between the ith place and jth place.

Generally, an ant at place i decides on its next move to place j based on two factors: attractiveness and exploration.
The more pheromones (tij)and the shorter the distance (nij)between two places, the more attractive the connection
becomes. Sometimes, the ant might take a chance and choose a different place, even if it is not the most attractive
score. The mathematical equation for the ant’s decision-making is given in Equation (3).
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argmax{tij*a * nij*p} ifq < qO (exploitation)

s = . . : (3)

S otherwise (biased exploration)

where q is a random number uniformly distributed in the range [0,1], qO is a fixed parameter (0 < q0 < 1), and S
is a random variable selected according to the probability distribution.

The effectiveness of the ACO algorithm depends on the dynamic adjustment of the pheromone levels on the solution
paths. Two distinct update mechanisms play a vital role in local and global updating. During the construction of the
solutions, individual ants traverse edges, modifying their pheromone levels through a local update rule, as shown in
Equation (4).

Tij(t+1) = (1 —p)tij(t) + pt0 4)

where tij(t + 1) represents the pheromone level on edge (i,j) after several iterations (t+ 1), p is the pheromone
evaporation factor(0 < p < 1), tij(t)represents the existing pheromone level on edge (i,j), and t0 is the initial
pheromone level.

Equation (4) incorporates two key factors, namely evaporation and reinforcement. The mathematical term for (1 —
p)tij(t) represents the natural decay of pheromones over time, preventing stagnation on outdated paths. Conversely,
the mathematical term for ptO0 injects a constant amount of pheromone onto each traversed edge, reinforcing its
attractiveness to other ants. Following individual ant exploration, a global update mechanism reinforces the most
promising path discovered during the current iteration. This selective reinforcement amplifies the influence of the
optimal solution on the future ant behaviour. The global update rule, presented in Equation (5), focuses on edges
belonging to the “best ant tour.”

tij(t+1) = (1 —p)Tij(t) + pAtij(t+ 1) (5)

where,Tij(t + 1) represents the updated pheromone level on edge (i,j) after the number of iterations (t + 1) and p is
the pheromone evaporation factor. The mathematical term for Atij(r)is defined by Equation (6).

1/L; if(i,j) € global — best — ant
0; otherwise

Atij(r) = { (6)
where L is the total path length of the best ant tour. Through the interplay of local and global updates, the ACO
algorithm converges towards optimal solutions. The local updates provide continuous feedback, shaping the
pheromone landscape, while the global updates ensure that the best path is effectively communicated and exploited
by the ant colony, which focuses on the single best solution identified within each iteration.

3. METHODOLOGY

This section outlines the methodology used to evaluate the effectiveness of the ACO algorithm for addressing the TCP
problem. The methodology was structured into several key phases: dataset selection, dataset conversion, algorithm
implementation, and performance evaluation.

3.1 Dataset Selection

Tables 2 and 3 present the sample test suites obtained from [20] and [21] for the demonstrations. The first test suite
(Case Study One) consisted of 15 test cases and 15 faults. The second test suite (Case Study Two) was obtained from
[21] 10 test cases and 10 faults. Case Study One utilized ten ants were assigned under a test suite encompassing 15
test cases and 15 faults detected, as specified in Table 2 in sequential order, represented as T = {T1, T2, T3, T4, T5,
T6, T7, T8, T9, T10, T11, T12, T13, T14, T15}. Faults were represented by F = {F1, F2, F3, F4, F5, F6, F7, F8, F9,
F10, F11, F12, F13, F14, F15}. Case Study Two utilized ten ants were assigned under a test suite encompassing ten
test cases and ten faults detected, as specified in Table 3 in sequential order, represented as T = {T1, T2, T3, T4, TS,
T6, T7, T8, T9, T10}. Faults are represented by F = {F1, F2, F3, F4, F5, F6, F7, F§, F9, F10}.
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Table 2. Case Study One

Faults
Test |F1 | F2 | F3 | F4 | F5 | ¥6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15
Cases
Tl / / / /
T2 / / / /
T3 / / /
T4 / / /
T5 / / / /
T6 / / /
T7 / / /
T8 / / / /
T9 / / / /
T10 / / / / /
T11 / / / /
T12 / / / /
T13 / / / /
T14 / /
T15 / / /

Table 3. Case Study Two

Faults
Test Cases F1 | F2 F3 F4 F5 | F6 | F7 | F8 F9 | F10
T1 / /

T2 / /

T3

T4 / /

T5

T6 / /

T7 / / /

T8 / /

T9 / / /
T10 / /

This study reveals an interesting connection between dataset complexity and the effectiveness of the ACO algorithm
for TCP. A dataset with more test cases and faults, such as Case Study One, may result in a higher average percentage
of detected faults (APFD), where faults might be more evenly distributed across the test cases. However, these larger
datasets also required more time for the algorithm to converge to the optimal order, leading to longer execution times.
Conversely, smaller datasets with fewer test cases and faults, such as Case Study Two, exhibited faster convergence
times. Although this led to quicker test execution, it may have resulted in the slight cost of a lower APFD.
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3.2 Dataset Conversion to Distance Matrix Using Hamming Distance

The ACO algorithm requires distance matrices as input, a common format in Traveling Salesman Problem (TSP)
applications. To adapt the selected datasets to this format, both were transformed into distance matrices. Fault
occurrences in the original test case-fault tables were assigned a value of 1, whereas the absence of faults was assigned
a value of 0, effectively converting the data into a binary representation. Given this binary nature, Hamming Distance
was chosen as the most suitable metric. The Hamming Distance calculates the number of different bit positions
between two strings, making it a suitable choice for binary data. Unlike other distance metrics, such as Euclidean or
Manhattan distances, which are better suited for continuous data, Hamming Distance consistently yields integer values
greater than or equal to 1. This is particularly important because some algorithms may not function well at very small
distances [11]. The expression Xi — yi in Equation (7) is evaluated as zero only when xi is equal to yi. Otherwise, it
evaluates to one.

k
HaCey)= ). Ixi =yl )

The resulting distance matrices for Case Study One and Case Study Two are presented in Tables 4 and 5, respectively.
These results are used by the ACO algorithm to determine the optimal distance.

Table 4. Distance Matrix of Case Study One

Faults
Test | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15
Cases
Tl 0 6 5 7 6 3 7 6 2 9 8 6 8 4 7
T2 6 0 7 7 8 7 5 8 6 7 6 8 6 4 5
T3 5 7 0 4 5 2 6 7 5 6 7 3 7 3 4
T4 7 7 4 0 3 6 4 3 7 2 7 3 3 5 6
TS5 6 8 5 3 0 5 5 4 4 5 8 6 4 4 7
T6 3 7 2 6 5 0 6 5 3 8 7 3 7 3 4
T7 7 5 6 4 5 6 0 3 7 2 5 5 1 5 2
T8 6 8 7 3 4 5 3 0 6 3 6 4 2 6 5
T9 2 6 5 7 4 3 7 6 0 9 8 6 8 4 7
T10 9 7 6 2 5 8 2 3 9 0 7 5 1 7 4
TI1 8 6 7 7 8 7 5 6 8 7 0 8 6 6 5
T12 6 8 3 3 6 3 5 4 6 5 8 0 6 6 5
T13 8 6 7 3 4 7 1 2 8 1 6 6 0 6 3
T14 4 4 3 5 4 3 5 6 4 7 6 6 6 0 5
T15 7 5 4 6 7 4 2 5 7 4 5 5 3 5 0

3.3 Algorithm Implementation

In the implementation phase, the ACO algorithm, inspired by the TSP principles, was applied to the selected datasets.
The experimental procedures were conducted using MATLAB R2023a running on a desktop computer equipped with
an Intel Core 15-9500 processor operating at 3.00 GHz.

Figure 2 shows the steps involved in implementing the ACO algorithm for the TCP. In this approach, artificial agents,
referred to as ants, explore various sequences in which to execute test cases, analogous to navigating cities in the
classical TSP. The primary goal was to determine the most efficient execution order to identify faults early in the
testing process. Unlike the physical distances used in TSP, the distances between the test cases represent the estimated
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effort or cost associated with uncovering and fixing potential faults. This distance is calculated using the Hamming
Distance, as defined in Equation (7), where a shorter distance reflects less effort to detect faults.

Table 5. Distance Matrix of Case Study Two

Faults
Test Cases F1 F2 F3 F4 F5S Fé6 F7 F8 F9 F10
Tl 0 5 2 4 2 4 5 2 5 4
T2 5 0 3 5 3 3 4 3 6 5
T3 2 3 0 2 0 2 3 2 3 2
T4 4 5 2 0 2 4 5 4 3 2
TS 2 3 0 2 0 2 3 2 3 2
T6 4 3 2 4 2 0 5 4 3 4
T7 5 4 3 5 3 5 0 5 4 3
T8 2 3 2 4 2 4 5 0 5 4
T9 5 6 3 3 3 3 4 5 0 5
T10 4 5 2 2 2 4 3 4 5 0

Initialize distance matrix and parameters
While (max number of iterations is not reached)
Initialization Back ants numbering and cities
For each ant
Initialization Back cities
Place first ants at random first city
While (not all cities are visited)
Select unvisited city by random probability
Update tour length for each ant
Update and evaporation of pheromones
End while
Record best distance
End for
End while
Display best distance

Figure 2. ACO Pseudocode

The ACO algorithm was run over a fixed number of iterations. During each iteration, ants are initially placed in
random test cases, and their paths are built by selecting the next test case based on two main factors: pheromone levels
and distances. Pheromone levels reflect historical success, guiding ants towards paths previously associated with early
fault detection, whereas the distance factor encourages the selection of test cases that are easier and cheaper to execute.
Additionally, the algorithm incorporates a probabilistic exploration mechanism that allows ants to occasionally select
less-travelled paths, thereby facilitating the discovery of potentially better solutions. Throughout the iterative process,
the best paths identified by the individual ants and the overall best path across all ants were continuously recorded.
After completing all the iterations, the algorithm outputs the optimal prioritized test case sequence along with the total
execution time.

The experimental parameters used in this study are presented in Table 6. For both the datasets, the algorithm was
configured with 150 iterations and 10 ants. Parameter values, such as alpha, beta, and the initial pheromone levels,
were carefully selected to balance the influence of distance and pheromone trails on the ants' decision-making process,
ensuring effective exploration and exploitation during the search for the optimal solution.
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Table 6. ACO Initialization Values

Constant Parameter | Case Study One | Case Study Two
t, Iteration 150
k, Number of ants 10
a, Alpha 1
3 Beta 1
Tij, Pheromone Value 0.5

4. RESULTS AND DISCUSSIONS
This section evaluates the ACO algorithm for TCP.
4.1 Prioritized Test Cases

In Case Study One, the ACO algorithm was applied to identify the optimal execution order of the test cases. After
completing 150 iterations, the algorithm produced the following optimal test case sequence: T2, T14, T5, T9, T1, T6,
T3, T12, T4, T8, T13, T10, T7, T15, and T11. The prioritized orders are summarized in Table 7. The optimization
process required 0.3733 s to determine the optimal sequence. As illustrated in Figure 3(a), Case Study One achieved
its best optimization distance of 40, with the algorithm converging at iteration 87, indicating the point at which further
iterations no longer produced a better solution. A more detailed view of the optimal result is provided in Figure 3(b),
highlighting the convergence behavior and efficiency of the ACO algorithm in reaching the optimal solution. Table 7
presents the prioritized test case order. The double slash symbol (//) indicates the earliest instance in which each fault
was detected in this order.

Table 7. ACO Prioritized Test Cases for Case Study One

Faults

Test F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 F11 F12 F13 F14 F15
Cases

T2 / // // 1

T14 /! /

T5 // // //

T9 /! / /

T1 /

T6

~| ~| ~| | -
~
~

T3 // /

T12 /

T4

T8 / //

T13

~| ~| ~| —

T10

~ ~| | | | -

T7

T15

~| ~| ~| —
~| ~| ~| | -

T11 // 1 /
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The beat discance was achieved ac iteration 87 Best Distance = 40

The best distance was achieved by ant 2

Cities visited in thebest cour: 2 14 5 9 1 ¢ 3 12 4 § 1310 7 15 1l
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[

s
S

lteration

(a) (b)
Figure 3. (a) ACO Optimal Solution Graph for Case Study One; (b) ACO Optimal Solution for Case Study One

In Case Study Two, after 150 iterations, the algorithm produced the optimal test case sequence T7 — T10 — T4 — T9 —
T6 — T2 — T8 — T1 — T3 — T5, as summarized in Table 8. The optimization process was completed in 0.2596 s,
reflecting the efficiency of the algorithm when applied to a smaller dataset. As illustrated in Figure 4(a), the best
optimization distance achieved was 21, with convergence occurring at iteration 25. This indicates that the algorithm
required fewer iterations to reach an optimal solution than Case Study One, likely because of the reduced complexity
of the dataset. Further details of the optimization results are presented in Figure 4(b), providing a closer view of the
convergence pattern and algorithm performance throughout the iterations. Table 8 lists the prioritized test case order
using the ACO algorithm. The double slash symbol (//) indicates the earliest instance in which each fault was detected
in this order.

Table 8. ACO Prioritized Test Cases for Case Study Two

Faults
Test Cases F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
T7 / / /
T10 / //
T4 !/ /
T9 1 / /
T6 / //
T2 / / /
T8 / //
Tl / /
T3
T5

4.2 APFD

APFD considers both the number of faults detected and the order in which they are discovered. A higher APFD, closer
to 1, indicates faster fault detection, whereas a lower APFD, that is, a minimum of 0, suggests slower detection. This
metric translates into a more efficient testing process when the value is higher. In this study, APFD was calculated for
the ACO algorithm in two separate case studies. The calculations were based on prioritized test cases, allowing a
comparison of the effectiveness of the ACO algorithm in identifying faults early. Table 9 presents the APFD values
for both case studies. Table 9 compares the APFD values of both the case studies. As shown in Figure 7, Case Study
One achieved a higher APFD (0.6911) and outperformed Case Study Two (0.6700). This indicates that Case Study
One is more efficient in detecting software defects.
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Figure 4. (a) ACO Optimal Solution Graph for Case Study Two; (b) ACO Optimal Solution for Case Study Two

Table 9. Comparison of APFD

Case Study One

Case Study Two

0.6911

0.6700

APFD Comparison

0.8

0.6

0.4

APFD Value

0.2

Case Study One

Case Study Two

Figure 7. APFD Comparison Graph

4.3  Execution Time

Time is a critical factor in SDLC, as it ensures the timely delivery of the final product. Therefore, during software
testing, execution time is a crucial consideration to prevent project delays. The results of implementing this approach
are presented in Table 10, which compares the execution times of both case studies. Table 10 presents the execution
times for both the case studies. Figure 8 presents a graph comparing the execution times between the case studies,
based on Table 10. While neither case study takes more than a second, Case Study One exhibits a slightly longer
execution time (0.3733 s) than Case Study Two (0.2596 s). This difference is due to Case Study One having a larger
dataset, which makes the optimization process need to be explored further. Case Study Two outperformed Case Study

One by 0.1137 s.
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Table 10. Comparison of Execution Time

Case Study One Case Study Two

0.3733 0.2596

Time Execution Comparison

0.4

0.3733

Time (s)

Case Study One Case Study Two

Figure 8. Time Execution Comparison Graph

The analysis of Case Studies One and Two revealed interesting insights into how dataset characteristics influence TCP
techniques. Case Study One, with its larger dataset size and potentially higher complexity, achieved higher APFD.
This suggests that the TCP technique is more effective in identifying faults within this dataset. However, Case Study
Two, with a smaller and potentially less complex dataset, exhibited a significantly faster execution time. The ACO
algorithm converged in only 87 iterations compared with the 25 iterations required for Case Study One. This highlights
the clear impact of dataset size and complexity on both the algorithm's execution time and APFD. These findings
emphasize the importance of considering both APFD and execution time when selecting a TCP technique. The optimal
choice may depend on the specific characteristics of the dataset, such as its density (number of test cases and faults).

5. CONCLUSION

This study explored how the ACO algorithm can be used for TCP in software testing. The goal was to compare the
ACO effectiveness in terms of how quickly bugs could be found, which was measured using the APFD metric, and
the execution time, which was tested on two different datasets: one with 15 test cases and 15 known bugs, referred to
as Case Study One, and another with 10 test cases and 10 known bugs, referred to as Case Study Two. This study
shows how the algorithms are performed under different conditions, which are the differences between the sizes and
defect density. After running the experiments, the analysed results identified the size and defect density of the datasets
from the top. It was observed that datasets with more test cases and faults (such as Case Study One) achieved higher
APFD, suggesting a better ability to detect faults early in the test run, but took longer to execute (more iterations).
Conversely, datasets with fewer test cases (Case Study Two) prioritized faster execution, converging in only 25
iterations compared with the 87 iterations required by Case Study One, but had a slightly lower APFD. This suggests
that Case Study Two might be more suitable for scenarios in which faster test execution is critical, even if it comes at
a cost in terms of immediate fault identification. As recommended, future studies could investigate the development
of hybrid, improved, or enhanced versions of the ACO algorithm to achieve a better balance between the APFD and
execution time.
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