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Abstract - Regression testing plays a critical role in ensuring the reliability and quality of software following continuous integration 

and development. However, executing all test cases during regression testing can be time-consuming and resource-intensive. Test 

Case Prioritization (TCP) addresses this challenge by determining an optimal execution order of test cases that maximizes early 

fault detection while minimizing execution time. Optimization algorithms contribute significantly to enhancing the effectiveness 

of TCP while utilizing limited resources. This study proposes an Ant Colony Optimization (ACO) algorithm to address the TCP 

problem, leveraging its strength in navigating complex search spaces inspired by the foraging behavior of real ant colonies. It 

involves four phases: dataset selection, dataset conversion, algorithm implementation, and performance evaluation. ACO was 

implemented and evaluated on two datasets (Case Study One and Case Study Two) of differing sizes and complexity. The results 

demonstrate its potential to improve testing efficiency and effectiveness with limited resources using the Average Percentage Fault 

Detected (APFD) and execution time. Case Study One, which involved a larger dataset, achieved a higher APFD (0.6911), but 

required more iterations and execution time (0.3733 s). In contrast, Case Study Two, with fewer test cases and faults, demonstrated 

a faster convergence and execution time (0.2596 s), with a slightly lower APFD (0.6700). These findings demonstrate a trade-off 

between early fault detection and execution efficiency, indicating that dataset characteristics such as size and fault density influence 

the performance of the algorithm.  
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1. INTRODUCTION 

Software testing plays a critical role in ensuring the reliability and quality of software systems by executing the 

software and identifying potential defects. A system that fails to produce the expected results is considered faulty and 

requires debugging and corrective action [1]. Despite its importance, software testing remains one of the most 

overlooked phases of the software development lifecycle [2]. Time constraints and high costs often lead to rushed 

testing processes, resulting in premature software release and diminished product quality [2]. Among the various 

testing processes, regression testing is essential to verify that the existing functionalities remain unaffected by new 

changes. However, regression testing frequently encounters challenges, particularly because of the poor 

communication between stakeholders and developers. This disconnect often results in redundant testing of the entire 

test suite, a resource-intensive and time-consuming effort that can erode developer confidence and negatively impact 

the overall system quality. Furthermore, ineffective regression testing increases the risk of defects being deployed in 

production, ultimately compromising product reliability and client trust. Approaches such as test-case reduction, 

selection, and prioritization are always being considered.  

One effective approach to address the challenges in regression testing is the application of Test Case Prioritization 

(TCP) techniques, which enhance the efficiency and effectiveness of software testing processes [2]. TCP techniques 

prioritize test cases according to their significance, ensuring that the most critical tests are executed early in the testing 

cycle [3]. This prioritization facilitates early fault detection, provides timely feedback to developers, and improves the 

overall efficiency of the testing process [4]. Among these three approaches, TCP is the most used because it does not 

eliminate or select test cases. Instead, it simply rearranges them so that the most critical ones are checked first [5]. 

However, traditional TCP approaches such as backtracking and dynamic programming often incur significant 

computational costs, particularly for large datasets. In contrast, metaheuristic algorithms, a class of optimization 

techniques, offer an efficient alternative by providing near-optimal solutions with reduced computational effort [6]. 

These algorithms are especially advantageous in regression testing scenarios, where limited resources and complex 

test-case dependencies are common challenges. 

Among various metaheuristic algorithms, ACO is a promising approach for solving TCP problems. Ants deposit 

pheromones on their paths, guiding subsequent ants towards potentially fruitful areas [7]. Similarly, ACO utilizes 

virtual “ants” that traverse a network representing the test case space, leaving a virtual pheromone on paths which 

signifies the path it takes. Paths with more pheromones become more attractive to subsequent ants, guiding them 

towards potentially high-impact test cases[8]. This iterative process gradually converges on a prioritized list, 

maximizing fault detection while minimizing execution time. 

This study investigated the effectiveness of the ACO algorithm for TCP by evaluating its performance on two diverse 

datasets sourced from existing research. The performance of the algorithm was assessed based on the fault-detection 

rate and execution time, demonstrating its potential to improve the efficiency of regression testing. The findings of 

this study contribute to a deeper understanding of ACO’s capabilities of ACO in software testing and encourage further 

exploration of its applications in the field. 

This paper is organized as follows. Section 1 presents the introduction, outlining the background, problem statement, 

research objectives, and scope of the study. Section 2 reviews the related literature, summarizing previous work and 

the key concepts relevant to this research. Section 3 describes the research methodology, details the research 

framework, and processes adopted in the study. Section 4 explains the implementation of the ACO algorithm for the 

TCP. Section 5 discusses the results and key findings. Finally, the paper concludes with a summary of the study’s 

contributions and provides recommendations for future research. 

 

2. LITERATURE REVIEW  

2.1 Regression Testing 

In the ever-evolving world of software development, software updates are essential for remaining relevant and meeting 

evolving customer requirements. However, these updates can mistakenly introduce unintended consequences, 

potentially causing financial losses or endangering lives. To mitigate these risks, regression testing steps act as 

safeguards to validate the stability and reliability of the updated software [9]. Regression testing is performed in a 

meticulous process that involves revisiting previously tested code segments with the following modifications to ensure 

that no new errors have been inadvertently introduced during the update process [10]. As software evolves through 
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continuous updates, its complexity inevitably increases, posing a significant challenge to exhaustive testing within the 

constraints of time and resources. To mitigate these challenges, regression testing is strategically categorized into three 

primary approaches: test suite minimization (TSM), test case selection (TCS), and TCP [9]. 

Testing large programs can be time consuming, especially when executing redundant test cases. To reduce testing 

time and costs, it is essential to minimize the number of test cases while maintaining comprehensive coverage. TSM 

strategies can help achieve this by identifying and removing redundant tests, ultimately streamlining the testing 

process, and improving its effectiveness [11]. 

TCS is the process of selecting a specific group of test cases from a larger collection based on predetermined criteria. 

The primary aim of this approach is to minimize redundant or unnecessary test data while identifying the most 

effective fault-detecting test cases efficiently [11]. This approach aims to identify smaller test cases that can efficiently 

identify potential defects with minimal effort and time. 

Although TSM and TCS reduce the overall number of test cases, TCP simply rearranges them without removing any 

test cases. TCP is preferred because it preserves all the test cases for potential future use. Therefore, TCP is a safe 

alternative for permanent removal. TCP is a secure, reliable, and cost-effective approach for regression testing [3]. 

The implementation of ACO in TCP aims to enhance fault detection capabilities while simultaneously reducing 

execution time compared with manual TCP approaches [12]. 

 

2.1.1 TCP  

TCP is a widely used regression testing technique in software development that aims to optimize the execution 

sequence of test cases to achieve specific objectives efficiently, such as maximizing the fault detection rate. Coverage-

based TCP is a particularly effective and valuable approach among the various TCP techniques. The core principle of 

coverage-based TCP lies in strategically ordering the test cases for execution. For instance, if the goal is to maximize 

the fault detection rate, then the test cases with higher priority for the fault detection rate will be executed earlier[13]. 

The primary evaluation metric used in TCP is APFD. APFD represents the weighted average of the faults detected 

throughout the execution of prioritized test cases. Its values range from 0 to 1, where higher values indicate a faster 

and more effective fault detection. A detailed calculation of APFD is presented in Section 3. Aside from APFD, 

execution time is another critical metric for assessing TCP performance. The execution time measures the duration 

required for the algorithm to generate a prioritized sequence of test cases based on factors such as fault severity. When 

optimization algorithms are applied to TCP, the optimal cost, often represented as distance, is determined to identify 

the most efficient prioritization path. A summary of the algorithms applied to TCP is presented in Table 1. 

According to Table 1, several studies have explored the application of metaheuristic algorithms to address the 

challenges in TCP, particularly in optimizing the execution time and enhancing the fault detection rates. A study 

conducted by Akila and Arunachalam [12] highlighted the potential of the ACO algorithm to address the challenges. 

The findings demonstrate that ACO excels in fault detection, efficient path exploration, and optimization of both the 

number of iterations and test cases required for effective testing. When applied to TCP, ACO aims to achieve two 

primary objectives: enhancing the fault detection rate and reducing the execution time, particularly when compared 

with manual approaches in regression testing. In this study, ACO was employed to further investigate its potential to 

improve the efficiency of test case execution, offering a more streamlined and effective regression-testing process. 

 

2.1.2 Overview of ACO 

ACO is a swarm intelligence technique inspired by the foraging behaviour of real ant colonies to solve complex 

computational problems in the real world. In ACO, artificial ants collaborate to find the best solutions to the problem, 

whereas artificial ants exchange information about their progress through a communication mechanism used by real 

ants. This method has been demonstrated to be effective in enhancing test case scenarios across a variety of testing 

domains, including regression testing and functional testing [8]. Like real ants, these artificial ants leave pheromones 

behind to indicate the quality of the path they have taken[16]. The higher the pheromone concentration that starts from 

the first node, the higher the likelihood that other ants will follow that path. This indirect communication and collective 

decision making allows the colony to move towards the optimal solution[8]. The Ant Colony System (ACS), also 

known as ACO, which was first proposed by Dorigo et al., is well regarded and demonstrates superior performance 
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compared to other Ant System (AS) strategies owing to its ability to balance exploration and exploitation during the 

search for optimal solutions[17]. Exploration refers to the process of seeking a new and potentially better solution, 

whereas exploitation focuses on strengthening and improving known promising solutions, which significantly reduces 

the cost of executing prioritization. 

The ACO algorithm initiates the process by randomly assigning test cases to the artificial ants within a colony. Each 

ant evaluates the test cases based on their fault detection capabilities and deposit pheromones in proportion to their 

effectiveness. Pheromone levels are iteratively updated, reinforcing successful paths and reducing the influence of 

less-effective paths. The process continues until a predefined number of iterations is completed or a satisfactory fault-

detection rate is achieved[18]. Through this iterative process, the ant colony collectively identifies the most effective 

sequence of test cases. Figure 1 illustrates the general ACO framework. 

 

Table 1. Comparison of Algorithms Used in TCP 

Author Algorithm Purpose Problem Statement Results 

M. 

Khatibsyar

bini et al. 

[2] 

Firefly 

Algorithm 

Utilize the Firefly 

Algorithm, coupled 

with a similarity 

distance model-based 

fitness function, for 

optimal TCP. 

Current TCP techniques are 

inadequate due to the 

extensive search space 

involved in identifying the 

optimal test case sequence 

regarding execution time 

and fault detection rate. 

The Firefly Algorithm 

demonstrated superior 

performance in terms of 

execution time and APFD. 

The algorithm emerged as 

a promising method for 

TCP applications. 

P. 

Padmnav 

et al. [14] 

Artificial 

Bee Colony 

and 

Genetic 

Algorithm 

Apply Artificial Bee 

Colony and Genetic 

Algorithm, guided by 

historical regression 

cycle execution data, to 

improve fault detection 

effectiveness. 

Traditional code coverage-

based algorithms have been 

applied to TCP testing, but 

their efficacy has been 

limited due to their reliance 

on data that is often difficult 

to obtain. 

ABC has led to a 

remarkable improvement 

in fault detection 

performance. 

A. Bajaj 

and O. P. 

Sangwan 

[3] 

Genetic 

Algorithm 

Analysing the impact of 

various GA parameter 

configurations on the 

performance of TCP 

through an 

experimental study. 

Default GA parameters 

provide a solid starting 

point, but there is potential 

for further refinement by 

using different parameter 

values. 

The tournament selection 

operator emerged as the 

most effective selection 

method, with a crossover 

rate of 1 and a mutation 

rate of 0.5 yielding the 

most promising results. 

T.K. 

Akila and 

A. 

Malathi 

[12] 

Modified 

Genetic 

Algorithm 

and ACO 

Implement a multi-

objective strategy that 

combines the Modified 

Genetic Algorithm and 

ACO Algorithm to 

optimize TCP problem-

solving. 

Metaheuristic techniques 

have proven to be effective 

in addressing TCP. Usually, 

it will solve a single 

objective, which is not 

entirely ineffective, but can 

adopt a multi-objective 

approach. 

The proposed model 

surpasses previous 

techniques which is the 

single objective model by 

achieving a significantly 

higher fault detection rate 

for multi-objective 

solutions. 

L. Z. Yue 

and R. 

Ibrahim 

[15] 

Particle 

Swarm 

Optimizati

on and 

Firefly 

Algorithm 

Examine and compare 

the performance of PSO 

and FA algorithms in 

prioritizing test cases 

based on execution 

time, Big-O, and 

APFD. 

Conducting all test cases is 

expensive and time-

consuming which leads to a 

solution to reduce the time 

and cost of regression 

testing by using PSO and 

FA. 

FA outperformed PSO as 

a TCP technique with 

faster execution time, 

lower complexity, and 

similar APFD values. 
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Figure 1. ACO Framework  

 

 

Based on a study conducted in[19], each ant in the ACO algorithm navigates the solution space based on two key 

factors: pheromone trails and heuristic information. Pheromone trails, deposited by previous ants, represent collective 

knowledge of the colony regarding promising paths. The strength of these trials is directly proportional to the quality 

of the solutions constructed using these paths. Heuristic information quantifies the inherent desirability of traversing 

a particular edge, often in the form of proximity or cost. The ant’s decision-making process employs a probabilistic 

rule known as the “random-proportional rule,” which assigns a probability to each potential next step based on a 

weighted combination of the pheromone trail and heuristic information. Equation (1) provides the mathematical 

expression for the next step. 

P(k)ij =  
[τij]^α ∗  [ηij]^β 

∑u ∈ J(k)[τiu]^α ∗  [ηiu]^β
 (1) 

 

where k is the ant identifier; i and j are the current and next potential places, α and β are parameters controlling the 

relative influence of pheromone trails and heuristic information, respectively; J(k) is the list of unvisited places for 

ant k; (τij) is the strength of the trails; and (nij) refers to the heuristic information. Parameter nij is given by Equation 

(2). 

nij =  
1

dij
 (2) 

 
Where, dij is the distance between the ith place and jth place. 

Generally, an ant at place i decides on its next move to place j based on two factors: attractiveness and exploration. 

The more pheromones (τij)and the shorter the distance (nij)between two places, the more attractive the connection 

becomes. Sometimes, the ant might take a chance and choose a different place, even if it is not the most attractive 

score. The mathematical equation for the ant’s decision-making is given in Equation (3). 
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s = {
argmax{τij^α ∗  ηij^β}     if q ≤  q0 (exploitation)

S    otherwise (biased exploration)
 (3) 

 

where q is a random number uniformly distributed in the range [0,1], q0 is a fixed parameter (0 ≤  q0 ≤  1), and S 

is a random variable selected according to the probability distribution. 

 

The effectiveness of the ACO algorithm depends on the dynamic adjustment of the pheromone levels on the solution 

paths. Two distinct update mechanisms play a vital role in local and global updating. During the construction of the 

solutions, individual ants traverse edges, modifying their pheromone levels through a local update rule, as shown in 

Equation (4).  

τij(t + 1)  =  (1 − ρ)τij(t)  + ρτ0 (4) 
 
where τij(t + 1) represents the pheromone level on edge (i,j) after several iterations (t + 1), ρ is the pheromone 

evaporation factor(0 < ρ < 1), τij(t)represents the existing pheromone level on edge (i,j), and τ0 is the initial 

pheromone level. 

Equation (4) incorporates two key factors, namely evaporation and reinforcement. The mathematical term for (1 −
ρ)τij(t) represents the natural decay of pheromones over time, preventing stagnation on outdated paths. Conversely, 

the mathematical term for ρτ0 injects a constant amount of pheromone onto each traversed edge, reinforcing its 

attractiveness to other ants. Following individual ant exploration, a global update mechanism reinforces the most 

promising path discovered during the current iteration. This selective reinforcement amplifies the influence of the 

optimal solution on the future ant behaviour. The global update rule, presented in Equation (5), focuses on edges 

belonging to the “best ant tour.” 

τij(t + 1)  =  (1 − ρ)τij(t)  + ρ∆τij(t + 1) (5) 
 
where,τij(t + 1) represents the updated pheromone level on edge (i,j) after the number of iterations (t + 1) and ρ is 

the pheromone evaporation factor. The mathematical term for ∆τij(r)is defined by Equation (6). 

∆τij(r)  =  {
1/L;   if(i, j) ∈  global − best − ant 

0;   otherwise
 (6) 

 
where L is the total path length of the best ant tour. Through the interplay of local and global updates, the ACO 

algorithm converges towards optimal solutions. The local updates provide continuous feedback, shaping the 

pheromone landscape, while the global updates ensure that the best path is effectively communicated and exploited 

by the ant colony, which focuses on the single best solution identified within each iteration. 

 

3. METHODOLOGY  

This section outlines the methodology used to evaluate the effectiveness of the ACO algorithm for addressing the TCP 

problem. The methodology was structured into several key phases: dataset selection, dataset conversion, algorithm 

implementation, and performance evaluation. 

 

3.1 Dataset Selection 

Tables 2 and 3 present the sample test suites obtained from [20] and [21] for the demonstrations. The first test suite 

(Case Study One) consisted of 15 test cases and 15 faults. The second test suite (Case Study Two) was obtained from 

[21] 10 test cases and 10 faults. Case Study One utilized ten ants were assigned under a test suite encompassing 15 

test cases and 15 faults detected, as specified in Table 2 in sequential order, represented as T = {T1, T2, T3, T4, T5, 

T6, T7, T8, T9, T10, T11, T12, T13, T14, T15}. Faults were represented by F = {F1, F2, F3, F4, F5, F6, F7, F8, F9, 

F10, F11, F12, F13, F14, F15}. Case Study Two utilized ten ants were assigned under a test suite encompassing ten 

test cases and ten faults detected, as specified in Table 3 in sequential order, represented as T = {T1, T2, T3, T4, T5, 

T6, T7, T8, T9, T10}. Faults are represented by F = {F1, F2, F3, F4, F5, F6, F7, F8, F9, F10}. 
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Table 2. Case Study One 

 Faults 

Test 

Cases 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

T1 /  /      /      / 

T2  /     /  /   /    

T3 /       /     /   

T4      /  /   /     

T5 /     /     /   /  

T6 /  /          /   

T7  /  /  /          

T8   / /  /     /     

T9 /  /      /     /  

T10  /  /  /  /   /     

T11    / /     /  /    

T12   /   /  /     /   

T13  /  /  /     /     

T14 /      /         

T15  /  /         /   

 

Table 3. Case Study Two 

 Faults 

Test Cases F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

T1          / /       

T2   /     /          

T3                     

T4       /         /   

T5                     

T6 /       /           

T7     /         /   / 

T8   /         /       

T9 /    /        /     

T10     /           /  

 

This study reveals an interesting connection between dataset complexity and the effectiveness of the ACO algorithm 

for TCP. A dataset with more test cases and faults, such as Case Study One, may result in a higher average percentage 

of detected faults (APFD), where faults might be more evenly distributed across the test cases. However, these larger 

datasets also required more time for the algorithm to converge to the optimal order, leading to longer execution times. 

Conversely, smaller datasets with fewer test cases and faults, such as Case Study Two, exhibited faster convergence 

times. Although this led to quicker test execution, it may have resulted in the slight cost of a lower APFD.  
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3.2 Dataset Conversion to Distance Matrix Using Hamming Distance 

The ACO algorithm requires distance matrices as input, a common format in Traveling Salesman Problem (TSP) 

applications. To adapt the selected datasets to this format, both were transformed into distance matrices. Fault 

occurrences in the original test case-fault tables were assigned a value of 1, whereas the absence of faults was assigned 

a value of 0, effectively converting the data into a binary representation. Given this binary nature, Hamming Distance 

was chosen as the most suitable metric. The Hamming Distance calculates the number of different bit positions 

between two strings, making it a suitable choice for binary data. Unlike other distance metrics, such as Euclidean or 

Manhattan distances, which are better suited for continuous data, Hamming Distance consistently yields integer values 

greater than or equal to 1. This is particularly important because some algorithms may not function well at very small 

distances [11]. The expression 𝐱𝐢 − 𝐲𝐢 in Equation (7) is evaluated as zero only when 𝐱𝐢 is equal to 𝐲𝐢. Otherwise, it 

evaluates to one.  

ℋ𝒹(𝑥, 𝑦) =  ∑ |𝑥𝑖 −  𝑦𝑖|
k

i = 1
 (7) 

 

The resulting distance matrices for Case Study One and Case Study Two are presented in Tables 4 and 5, respectively. 

These results are used by the ACO algorithm to determine the optimal distance. 

 

Table 4. Distance Matrix of Case Study One 

 Faults 

Test 

Cases 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

T1 0 6 5 7 6 3 7 6 2 9 8 6 8 4 7 

T2 6 0 7 7 8 7 5 8 6 7 6 8 6 4 5 

T3 5 7 0 4 5 2 6 7 5 6 7 3 7 3 4 

T4 7 7 4 0 3 6 4 3 7 2 7 3 3 5 6 

T5 6 8 5 3 0 5 5 4 4 5 8 6 4 4 7 

T6 3 7 2 6 5 0 6 5 3 8 7 3 7 3 4 

T7 7 5 6 4 5 6 0 3 7 2 5 5 1 5 2 

T8 6 8 7 3 4 5 3 0 6 3 6 4 2 6 5 

T9 2 6 5 7 4 3 7 6 0 9 8 6 8 4 7 

T10 9 7 6 2 5 8 2 3 9 0 7 5 1 7 4 

T11 8 6 7 7 8 7 5 6 8 7 0 8 6 6 5 

T12 6 8 3 3 6 3 5 4 6 5 8 0 6 6 5 

T13 8 6 7 3 4 7 1 2 8 1 6 6 0 6 3 

T14 4 4 3 5 4 3 5 6 4 7 6 6 6 0 5 

T15 7 5 4 6 7 4 2 5 7 4 5 5 3 5 0 

 

3.3 Algorithm Implementation 

In the implementation phase, the ACO algorithm, inspired by the TSP principles, was applied to the selected datasets. 

The experimental procedures were conducted using MATLAB R2023a running on a desktop computer equipped with 

an Intel Core i5-9500 processor operating at 3.00 GHz.  

Figure 2 shows the steps involved in implementing the ACO algorithm for the TCP. In this approach, artificial agents, 

referred to as ants, explore various sequences in which to execute test cases, analogous to navigating cities in the 

classical TSP. The primary goal was to determine the most efficient execution order to identify faults early in the 

testing process. Unlike the physical distances used in TSP, the distances between the test cases represent the estimated 
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effort or cost associated with uncovering and fixing potential faults. This distance is calculated using the Hamming 

Distance, as defined in Equation (7), where a shorter distance reflects less effort to detect faults.  

 

Table 5. Distance Matrix of Case Study Two 

 Faults 

Test Cases F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

T1 0 5 2 4 2 4 5 2 5 4 

T2 5 0 3 5 3 3 4 3 6 5 

T3 2 3 0 2 0 2 3 2 3 2 

T4 4 5 2 0 2 4 5 4 3 2 

T5 2 3 0 2 0 2 3 2 3 2 

T6 4 3 2 4 2 0 5 4 3 4 

T7 5 4 3 5 3 5 0 5 4 3 

T8 2 3 2 4 2 4 5 0 5 4 

T9 5 6 3 3 3 3 4 5 0 5 

T10 4 5 2 2 2 4 3 4 5 0 

 

 
Figure 2. ACO Pseudocode 

 

The ACO algorithm was run over a fixed number of iterations. During each iteration, ants are initially placed in 

random test cases, and their paths are built by selecting the next test case based on two main factors: pheromone levels 

and distances. Pheromone levels reflect historical success, guiding ants towards paths previously associated with early 

fault detection, whereas the distance factor encourages the selection of test cases that are easier and cheaper to execute. 

Additionally, the algorithm incorporates a probabilistic exploration mechanism that allows ants to occasionally select 

less-travelled paths, thereby facilitating the discovery of potentially better solutions. Throughout the iterative process, 

the best paths identified by the individual ants and the overall best path across all ants were continuously recorded. 

After completing all the iterations, the algorithm outputs the optimal prioritized test case sequence along with the total 

execution time. 

The experimental parameters used in this study are presented in Table 6. For both the datasets, the algorithm was 

configured with 150 iterations and 10 ants. Parameter values, such as alpha, beta, and the initial pheromone levels, 

were carefully selected to balance the influence of distance and pheromone trails on the ants' decision-making process, 

ensuring effective exploration and exploitation during the search for the optimal solution. 

Initialize distance matrix and parameters 

While (max number of iterations is not reached) 

    Initialization Back ants numbering and cities 

    For each ant 

   Initialization Back cities 

  Place first ants at random first city 

        While (not all cities are visited) 

            Select unvisited city by random probability  

            Update tour length for each ant 

Update and evaporation of pheromones 

        End while 

  Record best distance 

    End for 

End while 

Display best distance 
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Table 6. ACO Initialization Values 

Constant Parameter Case Study One Case Study Two 

t, Iteration 150 

k, Number of ants 10 

α, Alpha 1 

β Beta 1 

τij, Pheromone Value 0.5 

 

 

4. RESULTS AND DISCUSSIONS 

This section evaluates the ACO algorithm for TCP.  

4.1 Prioritized Test Cases 

In Case Study One, the ACO algorithm was applied to identify the optimal execution order of the test cases. After 

completing 150 iterations, the algorithm produced the following optimal test case sequence: T2, T14, T5, T9, T1, T6, 

T3, T12, T4, T8, T13, T10, T7, T15, and T11. The prioritized orders are summarized in Table 7. The optimization 

process required 0.3733 s to determine the optimal sequence. As illustrated in Figure 3(a), Case Study One achieved 

its best optimization distance of 40, with the algorithm converging at iteration 87, indicating the point at which further 

iterations no longer produced a better solution. A more detailed view of the optimal result is provided in Figure 3(b), 

highlighting the convergence behavior and efficiency of the ACO algorithm in reaching the optimal solution. Table 7 

presents the prioritized test case order. The double slash symbol (//) indicates the earliest instance in which each fault 

was detected in this order.  

Table 7. ACO Prioritized Test Cases for Case Study One 

 Faults 

Test 

Cases 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

T2   //         //   //     //       

T14 //           /                 

T5 /         //         //     //   

T9 /   //           /         /   

T1 /   /           /           // 

T6 /   /                   //     

T3 /             //         /     

T12     /     /   /         /     

T4           /   /     /         

T8     / //   /         /         

T13   /   /   /         /         

T10   /   /   /   /     /         

T7   /   /   /                   

T15   /   /                 /    

T11       / //         //   /       

 



Journal of Informatics and Web Engineering                             Vol. 5 No. 1 (February 2026) 

298 
 

Figure 3. (a) ACO Optimal Solution Graph for Case Study One; (b) ACO Optimal Solution for Case Study One 

 

In Case Study Two, after 150 iterations, the algorithm produced the optimal test case sequence T7 – T10 – T4 – T9 – 

T6 – T2 – T8 – T1 – T3 – T5, as summarized in Table 8. The optimization process was completed in 0.2596 s, 

reflecting the efficiency of the algorithm when applied to a smaller dataset. As illustrated in Figure 4(a), the best 

optimization distance achieved was 21, with convergence occurring at iteration 25. This indicates that the algorithm 

required fewer iterations to reach an optimal solution than Case Study One, likely because of the reduced complexity 

of the dataset. Further details of the optimization results are presented in Figure 4(b), providing a closer view of the 

convergence pattern and algorithm performance throughout the iterations. Table 8 lists the prioritized test case order 

using the ACO algorithm. The double slash symbol (//) indicates the earliest instance in which each fault was detected 

in this order.  

Table 8. ACO Prioritized Test Cases for Case Study Two 

 Faults 

Test Cases F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

T7     //         //   // 

T10     /           //  

T4       //         /   

T9 //    /       /     

T6 /       //           

T2   //     /         / 

T8   /         //       

T1          // /       

T3           

T5           

 

4.2 APFD 

APFD considers both the number of faults detected and the order in which they are discovered. A higher APFD, closer 

to 1, indicates faster fault detection, whereas a lower APFD, that is, a minimum of 0, suggests slower detection. This 

metric translates into a more efficient testing process when the value is higher. In this study, APFD was calculated for 

the ACO algorithm in two separate case studies. The calculations were based on prioritized test cases, allowing a 

comparison of the effectiveness of the ACO algorithm in identifying faults early. Table 9 presents the APFD values 

for both case studies. Table 9 compares the APFD values of both the case studies. As shown in Figure 7, Case Study 

One achieved a higher APFD (0.6911) and outperformed Case Study Two (0.6700). This indicates that Case Study 

One is more efficient in detecting software defects. 

 

 

(a) (b) 
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Figure 4. (a) ACO Optimal Solution Graph for Case Study Two; (b) ACO Optimal Solution for Case Study Two 

 

Table 9. Comparison of APFD 

Case Study One Case Study Two 

0.6911 0.6700 

 

Figure 7. APFD Comparison Graph 

 

4.3 Execution Time 

Time is a critical factor in SDLC, as it ensures the timely delivery of the final product. Therefore, during software 

testing, execution time is a crucial consideration to prevent project delays. The results of implementing this approach 

are presented in Table 10, which compares the execution times of both case studies. Table 10 presents the execution 

times for both the case studies. Figure 8 presents a graph comparing the execution times between the case studies, 

based on Table 10. While neither case study takes more than a second, Case Study One exhibits a slightly longer 

execution time (0.3733 s) than Case Study Two (0.2596 s). This difference is due to Case Study One having a larger 

dataset, which makes the optimization process need to be explored further. Case Study Two outperformed Case Study 

One by 0.1137 s. 

 

 

 

(a) (b) 
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Table 10. Comparison of Execution Time 

Case Study One Case Study Two 

0.3733 0.2596 

 

 

Figure 8. Time Execution Comparison Graph 

 

The analysis of Case Studies One and Two revealed interesting insights into how dataset characteristics influence TCP 

techniques. Case Study One, with its larger dataset size and potentially higher complexity, achieved higher APFD. 

This suggests that the TCP technique is more effective in identifying faults within this dataset. However, Case Study 

Two, with a smaller and potentially less complex dataset, exhibited a significantly faster execution time. The ACO 

algorithm converged in only 87 iterations compared with the 25 iterations required for Case Study One. This highlights 

the clear impact of dataset size and complexity on both the algorithm's execution time and APFD. These findings 

emphasize the importance of considering both APFD and execution time when selecting a TCP technique. The optimal 

choice may depend on the specific characteristics of the dataset, such as its density (number of test cases and faults). 

 

5. CONCLUSION  

This study explored how the ACO algorithm can be used for TCP in software testing. The goal was to compare the 

ACO effectiveness in terms of how quickly bugs could be found, which was measured using the APFD metric, and 

the execution time, which was tested on two different datasets: one with 15 test cases and 15 known bugs, referred to 

as Case Study One, and another with 10 test cases and 10 known bugs, referred to as Case Study Two. This study 

shows how the algorithms are performed under different conditions, which are the differences between the sizes and 

defect density. After running the experiments, the analysed results identified the size and defect density of the datasets 

from the top. It was observed that datasets with more test cases and faults (such as Case Study One) achieved higher 

APFD, suggesting a better ability to detect faults early in the test run, but took longer to execute (more iterations). 

Conversely, datasets with fewer test cases (Case Study Two) prioritized faster execution, converging in only 25 

iterations compared with the 87 iterations required by Case Study One, but had a slightly lower APFD. This suggests 

that Case Study Two might be more suitable for scenarios in which faster test execution is critical, even if it comes at 

a cost in terms of immediate fault identification. As recommended, future studies could investigate the development 

of hybrid, improved, or enhanced versions of the ACO algorithm to achieve a better balance between the APFD and 

execution time. 
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