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Abstract - One such serious problem in machine learning (ML) is imbalanced datasets. Minority class samples are usually sparse
but hold significant meaning. The model can become biased toward the majority class due to unbalanced class distribution. This
results in fraudulently high accuracy without being able to detect minority cases. This bias is also most perilous in critical
applications, where ignoring minority cases can be highly destructive. To overcome this problem, the Synthetic Minority
Oversampling Technique (SMOTE) is one of the most widely used. SMOTE creates balanced class distribution by interpolating
between existing minority samples. It creates samples that are too close to one another and can lead to overfitting and limit the
generalization of the model. Recent advancements in generative modeling, especially Generative Adversarial Networks (GANSs),
offer a more effective solution to handle class imbalance. GANs utilizes a generative discriminator structure to produce synthetic
data highly similar to real data. A hybrid technique called GANified-SMOTE combines the power of SMOTE with the generation
power of GANs to produce more diverse and realistic minority class samples. The technique improves the model strength and
eliminates the limitations of traditional oversampling. This paper presents the incorporation of latent factors into the architecture
of GANified-SMOTE framework. Latent variables reveal hidden structures and relations in the data, leading to a closer synthetic
sample and improving classification accuracy. By incorporating latent factors, this research aims to build a better oversampling
method for imbalanced classification sets.
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1. INTRODUCTION

Fraud detection [1], [2], diagnosis in healthcare [3] and natural language processing are only a few of the areas which
are faced with imbalanced dataset problems in ML. The very crucial minority class, made up of infrequent occurrences
is typically underrepresented [4]. The resulting models will be skewed towards the majority class, yielding high
accuracy outcomes from the algorithm but poor performance for the minority class [5]. In dire cases, bias can result
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in undetected illness or missed samples of manipulative behavior, which can lead to significant damage. Several
approaches have been given to address the problem caused by biased datasets. One such widely used oversampling
technique is known as SMOTE. This method enhances minority class coverage by oversampling, making synthetic
samples by interpolating present samples [6], [7]. Although this form of oversampling is advantageous, it also has the
potential to overfit depending on the type of sample that results [8]. Furthermore, regular oversampling methods may
also fail to capture minority class distribution and adversely affect model’s outcomes.

GANS, are a new approach in generative modelling. A GAN has two neural networks which are a generator and a
discriminator that experience a competition [9]. The generator produces imitated data, and the discriminator examines
whether it is original or not in comparison to real data [10], [11]. Based on this architecture, GANs can generate
realistic samples with close identity to the statistical attributes of the training set. The power of GANs lies in generating
varied and intricate data, which can be utilized to enhance imbalanced datasets. GANified-SMOTE merges the power
of SMOTE with GANSs’ generation property and thus provide various advantages over more traditional approaches
[12]. Since GANSs are employed, GANified-SMOTE can produce better quality synthetic samples that better capture
the minority class distribution. Additionally, this step adds diversity to the data and decreases overfitting and
consequently enhances the generalization of models trained on this to new data.

In the case of GANified-SMOTE, this model seems to suffer from generating good quality samples for the minority
class. This results in overfitting with poor performance. Additionally, the absence of dimensionality reduction results
in the inclusion of noise or irrelevant characteristics that can weaken the quality of synthetic samples and fail strong
classification. Thus, in the present study, the latent factors are included in GANified-SMOTE, which is a positive step
towards addressing the problem of synthetic sample generation in the context of imbalance. By utilizing hidden factors
like merging, there is significant potential for ongoing advancements in the field, which could greatly enhance
classification performance. The key concept behind this consolidation is to augment the functionality of the framework
by improving the complexities in data handled by GANified-SMOTE.

This paper is structured as follows. Section 1 presents the background of the study. Section 2 presents related literature
under Related Work. Under Methodology, Section 3 explains the research methods utilized in the study. In Section 4,
the author states the findings under Results and Discussion. Finally, Section 5 provides the overall findings in the
Conclusion.

2. RELATED WORKS

This section presents a literature review in this research area consisting of the SMOTE resampling technique, GANs
for data augmentation and a hybrid approach of GANified-SMOTE.

2.1. Resampling Technique: SMOTE

Resampling technique constitutes a pillar of the approach to handling imbalanced datasets. Among them, SMOTE has
been leading due to its innovative approach to generating synthetic samples of the minority class. SMOTE was
proposed by Chawla et al. [13] to avoid the limitations of random oversampling, which leads to overfitting by merely
duplicating the existing minority samples. Yet, SMOTE creates new samples through interpolating between the
existing minority class samples, basically increasing the diversity and number of the minority class samples [14].
SMOTE includes several key steps in its algorithm. First, for each sample of the minority class, the algorithm chooses
its k-nearest neighbours [15]. Then, it selects one or more of them at random and generates synthetic samples by
adding points along all line segments connecting the original sample to its selected neighbours. By doing so, SMOTE
generates new samples that are not mere replicas of existing samples but inject variety in the minority class with data
points that reflect the underlying distribution.

Apart from its effectiveness, SMOTE also presents its drawbacks. One of the major problems is that it creates
representative synthetic samples of the true data distribution when the minority class is sparse or has intricate
boundaries. Also, SMOTE may have the tendency to introduce noise by interpolating distant samples in the feature
space and generating samples that do not reflect the actual attributes of the minority class. Various variants of SMOTE
have been introduced that address their issues. Table 1 provides a summary of SMOTE variants.
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Table 1. Variants of SMOTE

Variants Mechanism
SMOTE: Synthetic Minority Creates synthetic samples instead of using replacement for
Oversampling Technique [13] oversampling
Borderline-SMOTE: Borderline Objective was to generate synthetic samples for minority class
Synthetic Minority Oversampling samples that are near the decision boundary
Technique [15]
Safe-level SMOTE: Safe-level Used a safe level constraint to determine suitable samples for
Synthetic Minority Oversampling generating synthetic samples and removing noise
Technique [16]
SVM SMOTE: Support Vector Used SVM to determine and generate synthetic samples with the
Machine Synthetic Minority support vectors
Oversampling Technique [17]
CDSMOTE: Clustered Synthetic Uses a cluster-based approach to generate synthetic samples based
Minority Oversampling Technique on minority sample distribution and density
[18]
Deep SMOTE: Deep Learning- Applied Deep Learning to generate synthetic samples by learning the
based Synthetic Minority minority class sample distribution

Oversampling Technique [19]

2.2. GANs in Data Augmentation

GANSs have revolutionized the field of generative modelling since their introduction in 2014 [9]. GANs consist of two
neural networks: a generator and a discriminator. The primary function of the generator is to generate synthetic data,
and the discriminator determines whether the data it receives is real or artificial [10], [11]. The system provides a
competitive environment that requires both networks to continuously enhance their performance. During training, the
generator attempts to produce synthetic samples that are indistinguishable from real data.[10]. Meanwhile, the
discriminator enhances its ability to distinguish between synthetic and real samples [11]. This adversarial training
approach results in synthetic data of high quality that effectively captures the underlying distribution of the original
dataset.

GANSs are seen as effective and versatile across a variety of applications, including synthesis and text-to-image
synthesis, as well as speech synthesis. Their successful applications highlight their capability to revolutionize a variety
of industries by generating realistic data and improving model performance. In the scenario of imbalanced datasets,
GAN:Ss offer an effective solution compared to traditional resampling techniques. One of the key advantages of using
GAN:Ss for data augmentation is that they can learn complex data distributions. Unlike techniques like SMOTE, which
perform linear interpolation between existing samples, GANs can generate diverse and realistic synthetic samples that
represent complex patterns in the data. This is particularly applicable to minority classes in imbalanced data, where
the distribution may be non-linear and complex. It has been shown that classifiers trained on imbalanced data. Through
the generation of synthetic samples that are characteristic of the minority class, GANs can enhance the model’s
generalization and accurate prediction on unseen data. This approach not only addresses the issue of class imbalance
but also minimizes the risk of overfitting, since the new samples provide a larger variety of training samples. Several
variants of GANs have been explored to further enhance their performance in data augmentation, as outlined in Table
2.

2.3. GANified-SMOTE: A Hybrid Approach

GANified-SMOTE is a crucial step towards seeking the solution to the problem that occurs when handling imbalanced
datasets with the utilities that are being integrated between GANs and SMOTE [12]. The hybrid approach is supposed
to leverage the sample generation capabilities of GANs while maintaining the fundamental principles of SMOTE,
which deals with having the right kind of meaningful and representative samples being generated for the minority
class. In its algorithm, SMOTE starts the process of generating artificial samples of the minority class. The standard
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SMOTE generates samples by interpolating the minority samples. While GANified-SMOTE allows the generator to
learn a more complex distribution of the minority class. The GAN can generate diverse synthetic samples capable of
capturing subtle patterns and variations through training on the minority data. Therefore, it can generate a more
complex representation of the minority class. This is useful in scenarios where the minority class is sparse or has non-
linear dependencies in the feature space. Another key advantage of GANified-SMOTE is that it can create high-quality
generated samples that are not copies or slightly edited versions of existing samples. With the generation of more
diverse and realistic samples, GANified-SMOTE prevents the risk of overfitting. The synthesized data not only
amounts to additional minority samples but also enhances the quality overall, providing a more robust training set for
classifiers.

Table 2. Variants of GANs

Variants Mechanism

GANSs: Generative Adversarial Networks [9] | A new model framework for generative model estimation with
an adversarial process through the joint training of a generative
model (G) and discriminative model (D)

WGAN: Wasserstein Generative An adaption of traditional GAN training

Adversarial Network [20]

c¢GAN: Conditional Generative Adversarial | A technique for training generative models to facilitate

Network [21] conditioning data on specific inputs

Duo-GAN: Dual Generative Adversarial Generates synthetic datasets to address the problems of highly

Network [22] imbalanced data

Majority-Minority GAN Transfer: Majority- | Harness the power of GANSs and transfer learning to create more

Minority Generative Adversarial Network effective solutions for synthetic data generation

Transfer [23]

CTAB-GAN: Categorical and Tabular A specially designed framework particularly for generating

Generative Adversarial Network [24] synthetic data for tabular datasets with categorical and
continuous features

SDG-GAN: Stochastic Distributional One of the modifications of the traditional GAN and one that is

Generative Adversarial Network [25] highly interested in modelling and synthesizing data that
possesses inherent stochasticity and distributional characteristics

c¢WGAN: Conditional Wasserstein A variant of the WGAN with the addition of conditional data to

Generative Adversarial Network [26] serve as a guide

3. RESEARCH METHODOLOGY

The proposed methodology integrates GANified-SMOTE [12] and latent factor. The approach is aimed at enhancing
the minority class representation of imbalanced datasets and thus improving classifier performance.

3.1. Data Collection and Preprocessing

Data collection is accomplished through obtaining datasets from the Kaggle platform that offers a wide range of
publicly accessible datasets in different domains [27]. Two specific datasets are employed to examine the performance
of the proposed methodology in this study, as listed in Table 3.

Preprocessing data plays a key role in transforming raw data into a neat form to be utilized in analysis or modelling
[30], as listed in Table 4.
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Table 3. Lists of Datasets

Datasets Explanation

Credit Card Fraud Detection [28] These are credit card transactions, and the aim is detection of
fraudulent activities

Pima Indians Diabetes Database [29] These are Pima Indians’ medical records and are used to predict
diabetes onset from diagnostic tests

Table 4. Preprocessing Steps

Steps Explanation

Feature and Target Separation The information is divided into two categories: feature (input variables)
and target variables (result to be predicted). This separation makes data
manipulation and analysis more straightforward

Feature Scaling To maintain all the input features on the same scale, feature scaling
techniques such as normalization or standardization are employed. The
step is necessary for scale-sensitive algorithms such as gradient descent-
based ones

Class Separation The target variable is analysed to identify different classes. Data is split
into various subsets based on these classes, which is particularly important
in addressing class imbalance

Data Partitioning The dataset is divided into the train and test sets. The training set is used to
train the models, while the test set is kept aside to evaluate the
performance of models. Partitioning is performed to ensure that the
performance of the model is evaluated against unseen data, providing a
better estimate of its generalization ability

3.2. Integration of GAN and SMOTE

The study tries to utilize a hybrid approach known as GANified-SMOTE with Latent Factor, wherein SMOTE. The
approach focuses on generating real-like synthetic samples of the minority class for classification. By using GANs for
generating high-quality synthetic data and then further augmenting it with SMOTE, the study is intended to increase
the representation of minority classes. Synthetic samples are initiated from real samples of a training set, which are
evaluated by the discriminator to separate true and generated data. The generator generates synthetic samples from
random noise and latent variables to mimic the features of real samples. The discriminator employs a sigmoid loss
function to calculate its accuracy in relation to how well it classifies the samples, and the generator employs a mean
squared error loss to calculate its capability to mislead the discriminator. Synthetic samples are then produced, and
SMOTE is performed on the data generated by GAN to enhance diversity and decrease reliance on dominant patterns
to avoid overfitting. The result from SMOTE is then merged with the original training set to provide a balanced and
full dataset for model training. Figure 1 shows where GAN is embedded in SMOTE to generate synthetic samples.

3.3. Latent Factor Integration

The integration of latent factors in the GANified-SMOTE framework reveals hidden structures within the data. This
then enhances synthetic sample quality as well as classification performance. The incorporation is necessary to
construct more robust models capable of handling complex data distributions. The latent variables are incorporated
into the generator's architecture as additional input dimensions. This allows the generator to learn a representation that
captures more intricate patterns in the data. Figure 2 presents the pseudocode for this process.
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Figure 1. Proposed GANified-SMOTE with Latent Factor

Samples

Algorithm 1: GANified-SMOTE with Latent Factor

FUNCTION generate random noise (latent dim, num samples);

#Initialize parameters
SET mean = 0
SET std dev =1

#Generate random noise
noise = np.random.normal (mean, std dev, (num samples,

#Return the generated noise
RETURN noise

latent dim))

Figure 2. Pseudocode of Latent Factor Integration

3.4. Model Training and Evaluation

The study validates the efficacy and accuracy of the proposed research model after systematically applying it. The
process of evaluation is performed based on various measures and techniques to quantify the performance of the model.
This process is known as data classification and minority class detection in imbalanced datasets. The performance is
focused on three classifiers: Random Forest (RF), Gradient Boosting (GB) and Decision Tree (DT). Each classifier is
trained on a balanced dataset and tested on a corresponding set of performance metrics, including accuracy, recall,

precision and F1-score. The respective formulas are as follows.
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TP+TN

Accuracy = oy TN (1)
.. TP
Precision = 2)
TP+FP
TP
Recall = 3)
TP+FN
P isi R i
F1 — score = 2 x recision X Reca (4)

Precision+Recall

4. RESULTS AND DISCUSSIONS

Experimental results are presented in this section. It shows the effect that various strategies to deal with imbalanced
datasets, as well as overfitting, have on model performance.

4.1. GANified-SMOTE

Table 5 lists the experimental results of GANified-SMOTE methods on two datasets, the Credit Card Fraud Detection
and the Pima Indian Diabetes. In the case of the Credit Card Fraud Detection, the RF was phenomenal in achieving
99.9965% and 99.9895% precision and 100% perfect recall. This indicated its better performance in accurately
detecting fraudulent transactions with minimized false positives. GB classifiers were also satisfactory with an accuracy
of 98.6951%. However, it had a slightly lower recall, indicating that it had failed to detect some cases of fraud. DT
classifier also performed well by achieving an accuracy of 99.9009%. This verifies how these classifiers perform well
in detecting fraud in this significant application.

However, for the Pima Indians Diabetes dataset, all the classifiers were reasonably good but could not classify all the
positive cases. The RF classifier was the best with 87.9365% accuracy and a precision of 87.7778%. But its recall of
74.5283% resulted in some of the true cases of diabetes not being classified. The GB classifier also suffered from the
same drawback, with 86.9841% accuracy and a precision of 84.9462. The DT classifier was also fine with an accuracy
value of 88.88889% but still performed badly in terms of recall. This situation indicates a need to improve model
training further so that the model detection rate for diabetes samples improves.

Table 5. Performance for GANified-SMOTE

Datasets Classifier Performance Metrics
Accuracy Precision Recall F1-score
. Random Forest 0.999965 0.999895 1.0 0.999947
gf;g;tﬁgird Fraud 1750 fient Boosting | 0.986951 0.994527 0.966252 0.980186
Decision Tree 0.999009 0.998701 0.998333 0.998517
. . Random Forest 0.879365 0.877778 0.745283 0.806123
PDlgl;‘eItgglanS Gradient Boosting 0.869841 0.849462 0.745283 0.793970
Decision Tree 0.888889 0.851485 0.811321 0.830918

4.2. GANified-SMOTE with Latent Factor

Table 6 shows the GANified-SMOTE with Latent Factor results. RF classifier works brilliantly in the Credit Card
Fraud Detection with a 99.9971% accuracy level, indicating its ability to detect most of the fraud samples accurately.
Its precision and recall rates are also extremely high at 99.9930% and 99.9983% levels, respectively. It means that the
model not only predicts correctly but also minimises false positives. The DT classifier performs excellently with
99.9015% accuracy. The GB model lags with 98.7971% accuracy. It indicates its poorer performance in this specific
application.
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For the Diabetes dataset, the RF classifier was again found to perform well with 88.2540% accuracy, indicating its
consistent performance in distinguishing diabetic from non-diabetic patients. The precision ratio of 87.9121% and
recall ratio of 75.4717% suggest it accurately identifies true positive samples but can be optimised further in reducing
false positives. The GB classifier also displays marginally lower performance figures at 85.7143% accuracy, again
highlighting the RF's advantages here. Compared to the credit card dataset, the diabetes performance metrics indicate
a more challenging classification task, which mirrors the intricacy of medical data analysis.

Table 6. Performance for GANified-SMOTE with Latent Factor

Datasets Classifier Performance Metrics
Accuracy Precision Recall F1-score
. Random Forest 0.999971 0.999930 0.999983 0.999956
greigéttigird Fraud e dient Boosting 0.987971 0.994972 0.968884 0.981755
Decision Tree 0.999015 0.998806 0.998245 0.998525
, ‘ Random Forest 0.882540 0.879121 0.754717 0.812183
ggsegslans Gradient Boosting | 0.857143 0.814433 0.745283 0.778325
Decision Tree 0.866667 0.813725 0.783019 0.798077

5. CONCLUSION

In conclusion, this comparative analysis of GANified-SMOTE and GANified-SMOTE with Latent Factor
demonstrates significant advancements in solving the issues related to imbalanced data. With the integration of GANs
and the traditional augmentation techniques like SMOTE, the models diversify the data and improve model
performance. However, there are challenges to be met, particularly regarding scalability as well as computational cost.
As the size of datasets grows, the resources required to train GANs may become so costly that real-time applications
in fields like medicine and fraud prevention might be limited.

To address these challenges, future research should focus on enhancing training algorithms for GANSs to scale better,
possibly employing mini-batch training or distributed computing. Examining hybrid approaches where GANified-
SMOTE is integrated with other augmentation methods might go further toward building model robustness. Further,
investigation into other latent factor extraction protocols may yield even better representations for complex
relationships within data. Finally, using these techniques on multiple domains and developing new metrics for
measurement will yield comprehensive model performance analysis, paving the way for further innovation in
imbalanced learning and data augmentation.
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