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Abstract - One such serious problem in machine learning (ML) is imbalanced datasets. Minority class samples are usually sparse 

but hold significant meaning. The model can become biased toward the majority class due to unbalanced class distribution. This 

results in fraudulently high accuracy without being able to detect minority cases. This bias is also most perilous in critical 

applications, where ignoring minority cases can be highly destructive. To overcome this problem, the Synthetic Minority 

Oversampling Technique (SMOTE) is one of the most widely used. SMOTE creates balanced class distribution by interpolating 

between existing minority samples. It creates samples that are too close to one another and can lead to overfitting and limit the 

generalization of the model. Recent advancements in generative modeling, especially Generative Adversarial Networks (GANs), 

offer a more effective solution to handle class imbalance. GANs utilizes a generative discriminator structure to produce synthetic 

data highly similar to real data. A hybrid technique called GANified-SMOTE combines the power of SMOTE with the generation 

power of GANs to produce more diverse and realistic minority class samples. The technique improves the model strength and 

eliminates the limitations of traditional oversampling. This paper presents the incorporation of latent factors into the architecture 

of GANified-SMOTE framework. Latent variables reveal hidden structures and relations in the data, leading to a closer synthetic 

sample and improving classification accuracy. By incorporating latent factors, this research aims to build a better oversampling 

method for imbalanced classification sets. 
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1. INTRODUCTION 

Fraud detection [1], [2], diagnosis in healthcare [3] and natural language processing are only a few of the areas which 

are faced with imbalanced dataset problems in Machine Learning (ML). The very crucial minority class, made up of 
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infrequent occurrences is typically underrepresented [4]. The resulting models will be skewed towards the majority 

class, yielding high accuracy outcomes from the algorithm but poor performance for the minority class [5]. In dire 

cases, bias can result in undetected illness or missed samples of manipulative behavior, which can lead to significant 

damage. Several approaches have been given to address the problem caused by biased datasets. One such widely used 

oversampling technique is known as SMOTE. This method enhances minority class coverage by oversampling, 

making synthetic samples by interpolating present samples [6], [7]. Although this form of oversampling is 

advantageous, it also has the potential to overfit depending on the type of sample that results [8]. Furthermore, regular 

oversampling methods may also fail to capture minority class distribution and adversely affect model’s outcomes. 

GANs, are a new approach in generative modelling. A GAN has two neural networks which are a generator and a 

discriminator that experience a competition [9]. The generator produces imitated data, and the discriminator examines 

whether it is original or not in comparison to real data [10], [11]. Based on this architecture, GANs can generate 

realistic samples with close identity to the statistical attributes of the training set. The power of GANs lies in generating 

varied and intricate data, which can be utilized to enhance imbalanced datasets. GANified-SMOTE merges the power 

of SMOTE with GANs’ generation property and thus provide various advantages over more traditional approaches 

[12]. Since GANs are employed, GANified-SMOTE can produce better quality synthetic samples that better capture 

the minority class distribution. Additionally, this step adds diversity to the data and decreases overfitting and 

consequently enhances the generalization of models trained on this to new data. 

In the case of GANified-SMOTE, this model seems to suffer from generating good quality samples for the minority 

class. This results in overfitting with poor performance. Additionally, the absence of dimensionality reduction results 

in the inclusion of noise or irrelevant characteristics that can weaken the quality of synthetic samples and fail strong 

classification. Thus, in the present study, the latent factors are included in GANified-SMOTE, which is a positive step 

towards addressing the problem of synthetic sample generation in the context of imbalance. By utilizing hidden factors 

like merging, there is significant potential for ongoing advancements in the field, which could greatly enhance 

classification performance. The key concept behind this consolidation is to augment the functionality of the framework 

by improving the complexities in data handled by GANified-SMOTE.  

This paper is structured as follows. Section 1 presents the background of the study. Section 2 presents related literature 

under Related Work. Under Methodology, Section 3 explains the research methods utilized in the study. In Section 4, 

the author states the findings under Results and Discussion. Finally, Section 5 provides the overall findings in the 

Conclusion. 

 

2. RELATED WORKS 

This section presents a literature review in this research area consisting of the SMOTE resampling technique, GANs 

for data augmentation and a hybrid approach of GANified-SMOTE. 

 

2.1. Resampling Technique: SMOTE  

Resampling technique constitutes a pillar of the approach to handling imbalanced datasets. Among them, SMOTE has 

been leading due to its innovative approach to generating synthetic samples of the minority class. SMOTE was 

proposed by Chawla et al. [13] to avoid the limitations of random oversampling, which leads to overfitting by merely 

duplicating the existing minority samples. Yet, SMOTE creates new samples through interpolating between the 

existing minority class samples, basically increasing the diversity and number of the minority class samples [14]. 

SMOTE includes several key steps in its algorithm. First, for each sample of the minority class, the algorithm chooses 

its k-nearest neighbours [15]. Then, it selects one or more of them at random and generates synthetic samples by 

adding points along all line segments connecting the original sample to its selected neighbours. By doing so, SMOTE 

generates new samples that are not mere replicas of existing samples but inject variety in the minority class with data 

points that reflect the underlying distribution. 

Apart from its effectiveness, SMOTE also presents its drawbacks. One of the major problems is that it creates 

representative synthetic samples of the true data distribution when the minority class is sparse or has intricate 

boundaries. Also, SMOTE may have the tendency to introduce noise by interpolating distant samples in the feature 
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space and generating samples that do not reflect the actual attributes of the minority class. Various variants of SMOTE 

have been introduced that address their issues. Table 1 provides a summary of SMOTE variants. 

 

Table 1. Variants of SMOTE 

Variants Mechanism 

SMOTE: Synthetic Minority 

Oversampling Technique [13] 

Creates synthetic samples instead of using replacement for 

oversampling 

Borderline-SMOTE: Borderline 

Synthetic Minority Oversampling 

Technique [15] 

Objective was to generate synthetic samples for minority class 

samples that are near the decision boundary 

Safe-level SMOTE: Safe-level 

Synthetic Minority Oversampling 

Technique [16] 

Used a safe level constraint to determine suitable samples for 

generating synthetic samples and removing noise 

SVM SMOTE: Support Vector 

Machine Synthetic Minority 

Oversampling Technique [17] 

Used SVM to determine and generate synthetic samples with the 

support vectors 

CDSMOTE: Clustered Synthetic 

Minority Oversampling Technique 

[18] 

Uses a cluster-based approach to generate synthetic samples based 

on minority sample distribution and density 

Deep SMOTE: Deep Learning-

based Synthetic Minority 

Oversampling Technique [19] 

Applied Deep Learning to generate synthetic samples by learning the 

minority class sample distribution 

 

 

2.2. GANs in Data Augmentation 

GANs have revolutionized the field of generative modelling since their introduction in 2014 [9]. GANs consist of two 

neural networks: a generator and a discriminator. The primary function of the generator is to generate synthetic data, 

and the discriminator determines whether the data it receives is real or artificial [10], [11]. The system provides a 

competitive environment that requires both networks to continuously enhance their performance. During training, the 

generator attempts to produce synthetic samples that are indistinguishable from real data.[10]. Meanwhile, the 

discriminator enhances its ability to distinguish between synthetic and real samples [11]. This adversarial training 

approach results in synthetic data of high quality that effectively captures the underlying distribution of the original 

dataset. 

GANs are seen as effective and versatile across a variety of applications, including synthesis and text-to-image 

synthesis, as well as speech synthesis. Their successful applications highlight their capability to revolutionize a variety 

of industries by generating realistic data and improving model performance. In the scenario of imbalanced datasets, 

GANs offer an effective solution compared to traditional resampling techniques. One of the key advantages of using 

GANs for data augmentation is that they can learn complex data distributions. Unlike techniques like SMOTE, which 

perform linear interpolation between existing samples, GANs can generate diverse and realistic synthetic samples that 

represent complex patterns in the data. This is particularly applicable to minority classes in imbalanced data, where 

the distribution may be non-linear and complex. It has been shown that classifiers trained on imbalanced data. Through 

the generation of synthetic samples that are characteristic of the minority class, GANs can enhance the model’s 

generalization and accurate prediction on unseen data. This approach not only addresses the issue of class imbalance 

but also minimizes the risk of overfitting, since the new samples provide a larger variety of training samples. Several 

variants of GANs have been explored to further enhance their performance in data augmentation, as outlined in Table 

2. 
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Table 2. Variants of GANs 

Variants Mechanism 

GANs: Generative Adversarial Networks [9] A new model framework for generative model estimation with 

an adversarial process through the joint training of a generative 

model (𝐺) and discriminative model (𝐷) 

WGAN: Wasserstein Generative 

Adversarial Network [20] 

An adaption of traditional GAN training  

cGAN: Conditional Generative Adversarial 

Network [21] 

A technique for training generative models to facilitate 

conditioning data on specific inputs 

Duo-GAN: Dual Generative Adversarial 

Network [22] 

Generates synthetic datasets to address the problems of highly 

imbalanced data 

Majority-Minority GAN Transfer: Majority-

Minority Generative Adversarial Network 

Transfer [23] 

Harness the power of GANs and transfer learning to create more 

effective solutions for synthetic data generation 

CTAB-GAN: Categorical and Tabular 

Generative Adversarial Network [24] 

A specially designed framework particularly for generating 

synthetic data for tabular datasets with categorical and 

continuous features 

SDG-GAN: Stochastic Distributional 

Generative Adversarial Network [25] 

One of the modifications of the traditional GAN and one that is 

highly interested in modelling and synthesizing data that 

possesses inherent stochasticity and distributional characteristics 

cWGAN: Conditional Wasserstein 

Generative Adversarial Network [26] 

A variant of the WGAN with the addition of conditional data to 

serve as a guide 

 

2.3. GANified-SMOTE: A Hybrid Approach 

GANified-SMOTE is a crucial step towards seeking the solution to the problem that occurs when handling imbalanced 

datasets with the utilities that are being integrated between GANs and SMOTE [12]. The hybrid approach is supposed 

to leverage the sample generation capabilities of GANs while maintaining the fundamental principles of SMOTE, 

which deals with having the right kind of meaningful and representative samples being generated for the minority 

class. In its algorithm, SMOTE starts the process of generating artificial samples of the minority class. The standard 

SMOTE generates samples by interpolating the minority samples. While GANified-SMOTE allows the generator to 

learn a more complex distribution of the minority class. The GAN can generate diverse synthetic samples capable of 

capturing subtle patterns and variations through training on the minority data. Therefore, it can generate a more 

complex representation of the minority class. This is useful in scenarios where the minority class is sparse or has non-

linear dependencies in the feature space. Another key advantage of GANified-SMOTE is that it can create high-quality 

generated samples that are not copies or slightly edited versions of existing samples. With the generation of more 

diverse and realistic samples, GANified-SMOTE prevents the risk of overfitting. The synthesized data not only 

amounts to additional minority samples but also enhances the quality overall, providing a more robust training set for 

classifiers.  

 

3. RESEARCH METHODOLOGY 

The proposed methodology integrates GANified-SMOTE [12] and latent factor. The approach is aimed at enhancing 

the minority class representation of imbalanced datasets and thus improving classifier performance. 

 

3.1. Data Collection and Preprocessing 

Data collection is accomplished through obtaining datasets from the Kaggle platform that offers a wide range of 

publicly accessible datasets in different domains [27]. Two specific datasets are employed to examine the performance 

of the proposed methodology in this study, as listed in Table 3. 
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Table 3. Lists of Datasets 

Datasets Explanation 

Credit Card Fraud Detection [28] These are credit card transactions, and the aim is detection of 

fraudulent activities 

Pima Indians Diabetes Database [29] These are Pima Indians’ medical records and are used to predict 

diabetes onset from diagnostic tests 

 

Preprocessing data plays a key role in transforming raw data into a neat form to be utilized in analysis or modelling 

[30], as listed in Table 4. 

 

Table 4. Preprocessing Steps 

Steps Explanation 

Feature and Target Separation The information is divided into two categories: feature (input variables) 

and target variables (result to be predicted). This separation makes data 

manipulation and analysis more straightforward 

Feature Scaling To maintain all the input features on the same scale, feature scaling 

techniques such as normalization or standardization are employed. The 

step is necessary for scale-sensitive algorithms such as gradient descent-

based ones 

Class Separation The target variable is analysed to identify different classes. Data is split 

into various subsets based on these classes, which is particularly important 

in addressing class imbalance 

Data Partitioning The dataset is divided into the train and test sets. The training set is used to 

train the models, while the test set is kept aside to evaluate the 

performance of models. Partitioning is performed to ensure that the 

performance of the model is evaluated against unseen data, providing a 

better estimate of its generalization ability 

 

3.2. Integration of GAN and SMOTE 

The study tries to utilize a hybrid approach known as GANified-SMOTE with Latent Factor, wherein SMOTE. The 

approach focuses on generating real-like synthetic samples of the minority class for classification. By using GANs for 

generating high-quality synthetic data and then further augmenting it with SMOTE, the study is intended to increase 

the representation of minority classes. Synthetic samples are initiated from real samples of a training set, which are 

evaluated by the discriminator to separate true and generated data. The generator generates synthetic samples from 

random noise and latent variables to mimic the features of real samples. The discriminator employs a sigmoid loss 

function to calculate its accuracy in relation to how well it classifies the samples, and the generator employs a mean 

squared error loss to calculate its capability to mislead the discriminator. Synthetic samples are then produced, and 

SMOTE is performed on the data generated by GAN to enhance diversity and decrease reliance on dominant patterns 

to avoid overfitting. The result from SMOTE is then merged with the original training set to provide a balanced and 

full dataset for model training. Figure 1 shows where GAN is embedded in SMOTE to generate synthetic samples. 

 

3.3. Latent Factor Integration 

The integration of latent factors in the GANified-SMOTE framework reveals hidden structures within the data. This 

then enhances synthetic sample quality as well as classification performance. The incorporation is necessary to 

construct more robust models capable of handling complex data distributions. The latent variables are incorporated 

into the generator's architecture as additional input dimensions. This allows the generator to learn a representation that 

captures more intricate patterns in the data. Figure 2 presents the pseudocode for this process. 
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Figure 1. Proposed GANified-SMOTE with Latent Factor 

 

 

Figure 2. Pseudocode of Latent Factor Integration 

 

3.4. Model Training and Evaluation 

The study validates the efficacy and accuracy of the proposed research model after systematically applying it. The 

process of evaluation is performed based on various measures and techniques to quantify the performance of the model. 

This process is known as data classification and minority class detection in imbalanced datasets. The performance is 

focused on three classifiers: Random Forest (RF), Gradient Boosting (GB) and Decision Tree (DT). Each classifier is 
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trained on a balanced dataset and tested on a corresponding set of performance metrics, including accuracy, recall, 

precision and F1-score. The respective formulas are as follows. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                       (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                    (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                     (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                           (4) 

 

4. RESULTS AND DISCUSSIONS 

Experimental results are presented in this section. It shows the effect that various strategies to deal with imbalanced 

datasets, as well as overfitting, have on model performance.  

 

4.1. GANified-SMOTE 

Table 5 lists the experimental results of GANified-SMOTE methods on two datasets, the Credit Card Fraud Detection 

and the Pima Indian Diabetes. In the case of the Credit Card Fraud Detection, the RF was phenomenal in achieving 

99.9965% and 99.9895% precision and 100% perfect recall. This indicated its better performance in accurately 

detecting fraudulent transactions with minimized false positives. GB classifiers were also satisfactory with an accuracy 

of 98.6951%. However, it had a slightly lower recall, indicating that it had failed to detect some cases of fraud. DT 

classifier also performed well by achieving an accuracy of 99.9009%. This verifies how these classifiers perform well 

in detecting fraud in this significant application. 

However, for the Pima Indians Diabetes dataset, all the classifiers were reasonably good but could not classify all the 

positive cases. The RF classifier was the best with 87.9365% accuracy and a precision of 87.7778%. But its recall of 

74.5283% resulted in some of the true cases of diabetes not being classified. The GB classifier also suffered from the 

same drawback, with 86.9841% accuracy and a precision of 84.9462. The DT classifier was also fine with an accuracy 

value of 88.88889% but still performed badly in terms of recall. This situation indicates a need to improve model 

training further so that the model detection rate for diabetes samples improves. 

Table 5. Performance for GANified-SMOTE 

Datasets Classifier 
Performance Metrics 

Accuracy Precision Recall F1-score 

Credit Card Fraud 

Detection 

Random Forest 0.999965 0.999895 1.0 0.999947 

Gradient Boosting 0.986951 0.994527 0.966252 0.980186 

Decision Tree 0.999009 0.998701 0.998333 0.998517 

Pima Indians 

Diabetes 

Random Forest 0.879365 0.877778 0.745283 0.806123 

Gradient Boosting 0.869841 0.849462 0.745283 0.793970 

Decision Tree 0.888889 0.851485 0.811321 0.830918 

 

4.2. GANified-SMOTE with Latent Factor 

Table 6 shows the GANified-SMOTE with Latent Factor results. RF classifier works brilliantly in the Credit Card 

Fraud Detection with a 99.9971% accuracy level, indicating its ability to detect most of the fraud samples accurately. 

Its precision and recall rates are also extremely high at 99.9930% and 99.9983% levels, respectively. It means that the 

model not only predicts correctly but also minimises false positives. The DT classifier performs excellently with 

99.9015% accuracy. The GB model lags with 98.7971% accuracy. It indicates its poorer performance in this specific 

application. 
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For the Diabetes dataset, the RF classifier was again found to perform well with 88.2540% accuracy, indicating its 

consistent performance in distinguishing diabetic from non-diabetic patients. The precision ratio of 87.9121% and 

recall ratio of 75.4717% suggest it accurately identifies true positive samples but can be optimised further in reducing 

false positives. The GB classifier also displays marginally lower performance figures at 85.7143% accuracy, again 

highlighting the RF's advantages here. Compared to the credit card dataset, the diabetes performance metrics indicate 

a more challenging classification task, which mirrors the intricacy of medical data analysis. 

 

Table 6. Performance for GANified-SMOTE with Latent Factor 

Datasets Classifier 
Performance Metrics 

Accuracy Precision Recall F1-score 

Credit Card Fraud 

Detection 

Random Forest 0.999971 0.999930 0.999983 0.999956 

Gradient Boosting 0.987971 0.994972 0.968884 0.981755 

Decision Tree 0.999015 0.998806 0.998245 0.998525 

Pima Indians 

Diabetes 

Random Forest 0.882540 0.879121 0.754717 0.812183 

Gradient Boosting 0.857143 0.814433 0.745283 0.778325 

Decision Tree 0.866667 0.813725 0.783019 0.798077 

 

 

 

5. CONCLUSION  

In conclusion, this comparative analysis of GANified-SMOTE and GANified-SMOTE with Latent Factor 

demonstrates significant advancements in solving the issues related to imbalanced data. With the integration of GANs 

and the traditional augmentation techniques like SMOTE, the models diversify the data and improve model 

performance. However, there are challenges to be met, particularly regarding scalability as well as computational cost. 

As the size of datasets grows, the resources required to train GANs may become so costly that real-time applications 

in fields like medicine and fraud prevention might be limited.  

To address these challenges, future research should focus on enhancing training algorithms for GANs to scale better, 

possibly employing mini-batch training or distributed computing. Examining hybrid approaches where GANified-

SMOTE is integrated with other augmentation methods might go further toward building model robustness. Further, 

investigation into other latent factor extraction protocols may yield even better representations for complex 

relationships within data. Finally, using these techniques on multiple domains and developing new metrics for 

measurement will yield comprehensive model performance analysis, paving the way for further innovation in 

imbalanced learning and data augmentation.  
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