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Abstract - The adoption of Artificial Intelligence (AI) in cardiovascular disease prediction has significantly improved risk 

stratification, offering new avenues for early diagnosis and preventive care. With the growing availability of electronic health 

records and structured clinical datasets, Machine Learning (ML) and Deep Learning (DL) models have demonstrated strong 

predictive capabilities. However, despite their performance, its adoption in healthcare is often constrained by the lack of 

transparency and interpretability in many ML and DL models. This lack of explainability undermines clinical trust and raises ethical 

concerns. In high-stakes domains such as Cardiovascular Disease (CVD) prediction, clinicians require not only accurate outputs 

but also clear explanations of how those predictions are derived. This paper presents a comparative evaluation of Explainable AI 

(XAI) techniques applied to both conventional ML models such as Logistic Regression, Support Vector Machine, Decision Tree, 

and Random Forest and DL architectures including AutoInt, FT-Transformer, and Category Embedding. Using the Framingham 

Heart Study dataset, this study integrates Shapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic 

Explanations (LIME) to assess model interpretability and feature relevance. Results show that conventional models offer superior 

explainability with comparable predictive accuracy, while DL models, although slightly less interpretable, demonstrate potential 

with advanced XAI techniques. The findings advocate hybrid approaches that balance accuracy and interpretability, supporting 

ethical and practical AI deployment in healthcare. 
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1. INTRODUCTION 

Cardiovascular Disease (CVD) continues to be one of the most significant causes of death globally. It is primarily 

caused by the narrowing or blockage of blood vessels, which can result in serious and potentially fatal complications 

such as heart attacks, angina (chest pain), and heart failure. These conditions present major public health concerns due 

to their high mortality and morbidity rates. For over 15 years, CVD has consistently remained the leading cause of 

death worldwide. According to the World Health Organization (WHO), CVD was responsible for approximately 15 
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million deaths in 2015. By 2020, this number had risen to 17.9 million, with forecasts predicting the toll could exceed 

23.6 million by 2030 [1].  

With the advent of Artificial Intelligence (AI) for preemptive detection of CVD, the possibility of misdiagnosis via 

prediction is significantly reduced. However, one of the most critical oversights that many AI systems suffer is 

transparency or the lack thereof in model development. Many AI models are "black box" models that fail to disclose 

how they arrive at predictions, which presents significant barriers to clinical use. Lack of transparency breeds mistrust 

for the clinician and the patient, and without understanding how a model result was concluded, it cannot be part of the 

decision-making process [2-3]. With the CVD and its mortality complications that account for an increasingly 

disproportionate percentage of global death, the predictive models must be developed with intentionality, accuracy, 

and transparency. Transparent models maintain the trust factor of the clinician, appropriate ethical application, and 

regulatory observation. In addition, with the onset of big data increasingly available due to Electronic Health Record 

(EHR) accessibility, genomics, and lifestyle factors, the ability for personal risk prediction is on the rise. Still, it can 

only be fulfilled through explainable AI models that disclose how they come to their decisions. Explainable AI (XAI) 

solves this problem by assessing the reason behind AI generated predictions [4]. Thus, the main contribution of this 

study is to assess the explainability potential of traditional Machine Learning (ML) and Deep Learning (DL) generated 

models via two applications of XAI: the Local Interpretable Model-Agnostic Explanations (LIME) and Shapley 

Additive Explanations (SHAP) technique. By doing this, we can explore the trade-offs between interpretability and 

accuracy and offer insights into the practical deployment of XAI-powered diagnostic tools in clinical decision-making. 

The paper is organized as follows: Literature works are discussed in Section 2. The research methodology is presented 

in Section 3 while Section 4 demonstrates and discusses results. Section 5 provides the conclusion and future work. 

 

2. LITERATURE REVIEW 

2.1 The Rise of AI in Cardiovascular Prediction 

AI approaches claim to transform healthcare diagnostics by determining whether patients are at risk for disease. 

However, many practitioners still favour standard ML techniques like Logistic Regression (LR) and Decision Tree 

(DT), which are interpretable and uncomplicated [5-7]. For example, in the researcher’s analysis of cardiovascular 

risk, Rudin argues that simpler, easier models to understand, such as DTs, should dominate over more complex 

techniques. Simpler ones are often faster and more accurate relative to ill-defined black box operations, as 

demonstrated by successfully learning from the Framingham dataset [8]. 

Conventional ML techniques often struggle to replicate and predict results for complicated or high-dimensional 

datasets. When data involves nonlinear relationships or cannot be separated using simple binary classification, these 

models reach a point of diminishing returns. When trained on robust datasets over time relative to aggregates of health 

data, whether medical imaging, genomic data, or signals from monitoring sessions, DL techniques outperform routine 

predictive accuracies [9]. Thus, when assessing thousands of variables related to health risks including but not limited 

to demographics, clinical history, Electrocardiograms (ECGs), and medical imaging, DL will better determine health 

risk accurately. 

Yet such accuracy does not always succeed when merged within a clinical practice setting. The significant hurdle for 

implementation is transparency. Many ML and DL models operate as a "black box" where little about how output 

came to be through hidden layers is known. For ethical, trustworthy, quality decision-making, physicians must 

understand how and why AI determined what it produced to integrate such findings legally and ethically effectively. 

Context is critical in an ambiguous medical environment [10]. Therefore, XAI was born to establish that techniques 

existed to provide transparency. XAI provides the possibility of several techniques making model output explorable. 

It offers transparency among clinicians, regulators, and patients alike; more informed decisions create safer 

implementations of AI in healthcare. 

 

2.2. Explainable AI Techniques: SHAP and LIME 

The field has implemented SHAP and LIME for explainability. SHAP provides global and local explainability because 

it aims to explain how predicted values can be attributed to given input features [11]. LIME is more locally driven, as 
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it takes features of interest to create a more simple, explainable model that can approximate the complex black box 

model in the local region around the prediction of interest [12]. 

For example, when estimating an individual 10-year risk of developing CVD, You et al. explored many ML models 

like Light Gradient Boosting Machine (LGBM), eXtreme Gradient Boosting Machine (XGBoost), Random Forest 

(RF), LR, K-Nearest Neighbours (KNN), Support Vector Machine (SVM) and Artificial Neural Networks (ANN) that 

were applied to the data gathered from their research [13]. While many of these models were black boxes, applying 

SHAP allowed them to explain their findings by essentially “breaking the black box.” Li et al. predicted the risk of 

brain metastases from the structured EHR data using Reverse Time AttentIoN (RETAIN) model. The decision results 

of the model were interpreted using SHAP values based on a feature attribution to identify the factors contributing to 

the model [14].  

Rezk et al. presented a framework that utilized hybrid ensemble learning models which combined LightBoost and 

XGBoost algorithms together with SHAP and LIME analysis to create an explainable heart disease prediction model. 

By integrating LIME with ML techniques, the system offers a comprehensive framework to enhance the efficacy and 

reliability of the heart disease prediction model by showing the features that are important to the prediction. In addition 

to SHAP, LIME has been employed to generate local, instance-specific explanations, allowing clinicians to understand 

the reasoning behind individual risk predictions. These case-by-case insights are especially valuable in clinical settings 

where personalized interpretation is essential.  

Overall, incorporating XAI techniques into CVD prediction models enhances their transparency and interpretability. 

By clearly identifying influential features such as ST slope, oldpeak, chest pain type, max heart rate and cholesterol, 

the model could potentially help with a clear understanding of its decision-making process [15]. Similarly, Petmezas 

et.al. presented a prediction model of heart failure using Extremely Randomized Trees (Extra-Trees) and non-linear 

correlation measures to enhance mortality prediction in HF patients. This model also utilized SHAP to improve the 

interpretability of the model [16]. XAI facilitates the translation of complex model decisions into actionable, clinically 

meaningful information. This interpretability is key to building trust among healthcare professionals and promoting 

the adoption of AI-driven tools in medical practice. 

 

2.3 Balancing Accuracy and Interpretability 

Research suggests a trade-off between model performance and explainability. For instance, DTs and LRs offer clarity 

but may underperform on complex tasks. In contrast, ensemble and DL models achieve high accuracy but require XAI 

tools to bridge the interpretability gap. 

 

2.3.1 AutoPrognosis vs. Clinical Scores 

Alaa et al. compared an automated ML ensemble (AutoPrognosis) to the Framingham Risk Score in predicting 

cardiovascular events. AutoPrognosis, an optimized ensemble of many models, was significantly more accurate, 

achieving an AUC of 0.77 and correctly predicting 368 more cases of CVD over 5 years than Framingham. 

AutoPrognosis combined hundreds of features and models (a clear example of black box to clinicians). This 

exemplifies the accuracy gain vs loss of interpretability. Interestingly, the study noted that adding a wealth of novel 

risk factors (e.g. walking pace, health rating) boosted accuracy more than the choice of complex model itself, 

suggesting richer data plus moderately complex models may represent a balanced approach [17]. 

 

2.3.2 Hybrid Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) 

Hossain et al. proposed a hybrid DL model combining a CNN and LSTM to identify CVD. Also, the model combines 

feature engineering and explainable AI to enhance the accuracy and interpretability of the prediction. The proposed 

model achieved an accuracy of 73.52%. These studies showed that creatively designed ensembles prediction model 

with explainable components can balance performance and interpretability [18]. 
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2.3.3 Atrial Fibrillation Monitoring With XAI 

She et al. introduced an explainable AI tool named “AF’fective” to assist cardiologists in monitoring patients with 

atrial fibrillation following catheter ablation. In a real-world pilot study, the system processed ECG data and other 

patient inputs to predict the risk of AF recurrence. Its output was both a prediction with an associated explanation i.e., 

a portion of an ECG with deviation and the output number of episodes/year and an explanation without input. These 

outputs served as a suggested, but not definitive, diagnosis to the cardiologist, such as “number of previous ablation 

attempts.” The need for explanations was validated through workshops and focus group sessions with cardiologists 

who needed to align their medical experience with the AI-generated results [19]. 

Nevertheless, even with the benefits of using XAI in cardiovascular risk assessment, some challenges persist. First, 

despite attempts at external validation of clinically created models, few achieve success using larger, reputable 

databases with known applicability to the real world like the Framingham Heart Study. This creates generalizability 

concerns for many results, especially those from multicenter, heterogeneous patient populations [20]. Second, many 

models fail to address seamless clinical implementation or intended end-user use. A significant percentage of the 

articles published focus on breakthroughs related to the algorithm as opposed to yielding strong implementation 

considerations through clinically practicable and usable interpretability [21]. This is crucial for everyday use, as 

clinicians require results that are accurate, sensitive, and specific; they also require that AIs can demonstrate the output 

that can be practically applicable to assessing patient risk to make a difference. Accomplishing this requires a paradigm 

shift in AI so that quality of transparency, and quality of relevant output exist only then does reliable implementation 

of AI into modern medicine become feasible [22]. 

 

3. RESEARCH METHODOLOGY 

This study adopts a four-stage Define-Collect-Select-Apply (DCSA) methodology where conventional ML and DL 

are employed through XAI for CVD diagnosis. The subsequent procedures are sequential and expounded upon in 

Figure 1. 

  

Figure 1. XAI-Driven Explainability for CVDs Prediction Research Process 



Journal of Informatics and Web Engineering               Vol. 5 No. 1 (February 2026) 

171 
 

The aim of this research is to find the best prediction models of CVD within an XAI paradigm that makes results 

interpretable and clinically applicable to the following independent variables linked to the estimated prior expected 

chance of having CVD as a dependent variable: clinical variables (cholesterol, blood pressure), demographic variables 

(age, sex), lifestyle variables (smoking, exercise), socioeconomic variables (income, education). Therefore, the 

research question was set to explore and achieve the research intention:  

What is the performance of different AI prediction models in assessing cardiovascular risk when combined with XAI 

strategies? 

 

3.1 Data Collection 

This study employs data obtained from the Teaching Request Department of the National Heart, Lung, and Blood 

Institute (NHLBI). The dataset, derived from the Framingham Heart Study (FHS), was provided upon formal request 

and with the institutional approval. It consists of 4,434 participants, with a total of 11,627 recorded observations. It 

includes 39 features, encompassing a broad spectrum of demographic, behavioural, medical, and physical health 

indicators, such as age, gender, smoking habits, blood pressure, cholesterol levels, BMI, glucose levels, and a medical 

history of diabetes or hypertension.  

 

3.2 Data Pre-processing and Feature Engineering 

The data preprocessing phase involved several key steps to ensure data integrity and readiness for analysis. The 

category variables like age groups and gender (female vs. male) were used as independent variables. The reason for 

this inclusion is that by using these as categorical independent variables, the study can analyze risk by specific 

subgroup, thereby also creating equity in the XAI results across a diverse population in its findings. Column names 

were standardized for consistency, and redundant fields were removed to enable us to focus on the columns needed 

mainly for prediction. Missing values were addressed using the pandas null methods to identify the null values in each 

attribute of the dataset. It was discovered that the High-Density Lipoprotein Cholesterol (HDLC) and Low-Density 

Lipoprotein Cholesterol (LDLC) columns had 73% null values in the dataset, and these columns could not be imputed 

due to the large percentage of null values. Therefore, these columns were removed. Other columns with less than 20% 

missing data were treated using appropriate imputation techniques. Duplicate entries were identified by using the 

pd.duplicates() method with all the columns in the dataset as subsets and it was discovered that the dataset has no 

duplicate records, data types were verified to understand the type of analysis that would be done on each column, and 

outliers were identified using boxplots and z-score analysis across continuous variables. Variables such as systolic 

blood pressure and Body Mass Index (BMI) exhibited mild to moderate skewness, which was noted for consideration 

during model selection and evaluation. While no outliers were removed at this stage, their presence informed the 

choice of robust algorithms that are less sensitive to distributional variance.  

Categorical variables, such as gender were encoded using one-hot encoding, this technique creates separate binary 

variables for each category within a feature, ensuring that the model treats them as distinct entities. One-hot encoding 

is especially useful for nominal categorical variables, where categories lack a natural ranking or hierarchical structure. 

To mitigate the influence of varying feature scales on ML algorithms, continuous variables were normalized using 

Standard Scaling transforming them into a mean of zero and a standard deviation of one. This ensures balanced feature 

contribution during model training, especially for algorithms sensitive to feature magnitude. 

We also checked the CVD variable, which was the target variable for the prediction model. The record of CVD 

variables showed a class imbalance between normal (which is 0, with 8,728 records) and Coronary Artery Disease 

(CAD) diagnosed (which is 1, with 2,899 records). Therefore, the Synthetic Minority Oversampling Technique 

(SMOTE) was implemented to handle class imbalance in the training dataset. 

 

3.3 Model Selection 

This study employed LR, SVM, DT, and RF as the primary models for assessing cardiovascular risk. These models 

were selected due to their balance between predictive accuracy and interpretability, which is essential for 

implementing XAI techniques. Each model contributes unique advantages, enabling both precise predictions and 
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transparent insights into the factors influencing cardiovascular health. Below is a breakdown of each model and its 

relevance to XAI.  

 

3.4 Model Development 

For model development, conventional ML algorithms, LR, SVM, RF and DT were employed to predict the occurrence 

of CVD. For the DL models, algorithms such as FTT Model, AutoInt, and Category Embedding were utilized. The 

dataset was split into training and testing subsets in the ratio of 70:30, with models trained on the former and evaluated 

on the latter. With a solid foundation established through preprocessing and model training, Explainable AI techniques 

were integrated to enhance model transparency. Tools such as LIME and SHAP were applied to both ML and DL 

models to interpret prediction outputs. This allowed for the identification of the most influential features contributing 

to each model’s decisions and facilitated a comparative analysis of interpretability across algorithms. 

 

3.5 Model Evaluation 

In this work, four evaluation metrics were utilized: Accuracy, Precision, Recall, and F1-score. These metrics are 

commonly used in classification problems and provide valuable insights into the performance of the algorithms. To 

evaluate and compare the effectiveness of different classifiers, a comparative analysis was conducted based on these 

indicators. For comparing the performance of the different prediction models with XAI techniques, the dataset for 

testing the models was prepared during the data preprocessing step. This same dataset was used to train and test the 

selected models, as presented in the Model Selection section. The performance results from each model were recorded 

to enable comparison later. 

 

4. RESULTS AND DISCUSSIONS 

This section presents the comparative performance evaluation of the models used in this study, highlighting their 

effectiveness based on key metrics, as shown in Table 1. 

Table 1. Comparative Performance Evaluation of Models 

Metrics Model 

Conventional ML DL 

LR DT SVM RF AutoInt FTT Model 
Category 

Embedding 

Accuracy 90.10% 93.50% 91.40% 93.40% 77.14% 88.14% 86.96% 

Avg.Precision 86.00% 93.00% 92.00% 93.00% 57.27% 89.39% 86.83% 

Avg.Recall 88.00% 89.00% 85.00% 89.00% 75.68% 88.14% 75.84% 

Avg. F1-score 87.00% 91.00% 88.00% 91.00% 65.20% 88.51% 85.86% 

Explainability 

 

High Very 

High 

Moderate 

(Post hoc 

with 

SHAP/LIME) 

Moderate Moderate 

(Post hoc 

with 

SHAP) 

Low (Post 

hoc 

with Deep 

SHAP) 

Moderate 

(Post hoc 

with 

SHAP) 

 

In response to the research question identified earlier, we analysed the performance of many conventional and DL 

techniques that utilized XAI techniques in the model. These models were assessed based on accuracy, F1-score and 

explainability. As reflected by Table 1, conventional models have good prediction abilities and are relatively 

transparent with less computational burden. For instance, LR provides 90.10% accuracy and 87.00% F1-score, 

establishing a confident, anticipated baseline. In addition, it is completely interpretable as its model coefficients reflect 

positive or negative contributions of each feature relative to the output; thus, it is clinically aligned with risk scoring. 
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Decision trees outperform LR with 93.50% accuracy and 91.00% F1-score yet also possess high interpretability and 

low computational burden. Their structure of if-then rules closely mimics the if-then considerations clinical 

professionals make. Although decision trees tend to overfit, hyperparameter tuning showed commendable 

performance statistics with low complexity. SVMs also showed competitive performance (91.40% accuracy, 88.00% 

F1), but their limited transparency, especially with non-linear kernels, reduces their applicability in clinical 

environments. RF, an ensemble of decision trees, matched the accuracy and F1-score of individual decision trees 

(93.40%, 91.00%) while improving generalization. However, this came at the cost of reduced interpretability, as 

individual decision paths are less traceable.  

Post-hoc XAI tools such as SHAP and feature importance plots were employed to mitigate this limitation and support 

model transparency. DL models, including transformer-based architectures, were also evaluated. AutoInt, despite its 

potential to capture complex feature interactions, underperformed with 77.14% accuracy and a 65.20% F1-score likely 

due to dataset limitations and overfitting. The FT-Transformer (FTT) improved upon this, achieving 88.14% accuracy 

and 88.51% F1-score by leveraging attention mechanisms to model feature dependencies. However, its default opacity 

necessitated the use of Deep SHAP to interpret predictions. The most important predictors out of all three trained 

models were Time since CVD diagnosis (TIMECVD), Time since Angina Pectoris (TIMEAP), and Time to Death 

(TIMEDTH) regardless of RF, ANN, or decision tree classification. In addition, SHAP was the XAI application that 

increased explainability via the traditional and DL approach as it assessed visually the contribution of each specific 

input feature over the others. The most effective models in accuracy achievement were decision tree and LR (90-93% 

accuracy), which were also the most explainable without any XAI application due to their inherent interpretability 

features. This indicates that explainability does not come at the cost of accuracy. 

The convergence of findings from the coefficient-based analysis and the SHAP analysis strengthens our confidence 

in the results. Both methods identified TIMECVD, TIMEAP, and TIMEDTH as the primary drivers of the model’s 

predictions, indicating that these time-to-event measures are critical factors in the outcome under study. Using the LR 

coefficients, we gained a clear, quantitative sense of each feature’s global effect. The SHAP analysis provided insights 

into the local behavior of the model; it tells us how much each feature is contributing to each individual’s risk 

prediction. This is particularly advantageous for complex or non-linear models. However, even in our LR (which is 

linear by design), SHAP helped visualize the consistency of effects across individuals and detect any potential outliers 

or interaction effects. One strength of SHAP is that it can handle feature interactions and non-linear relationships by 

attributing contributions in a game-theoretic manner. In our case, the largely linear pattern in the SHAP plots suggested 

that there were no strong interaction effects driving the predictions. The model behaved as a mostly additive, linear 

combination of features, which is expected to give the LR framework. A slight limitation of SHAP is that it is 

computationally more intensive and can be trickier to explain to stakeholders not familiar with the concept. In contrast, 

odds ratios from LR are a long-standing common language in clinical research. 

There are benefits and shortcomings with independent research as subjects to projects. For instance, there are gaps in 

the analysed domain knowledge, where ideally multi-disciplinary professions should fill these collaborative efforts 

[23]. For example, information input from clinicians- or at least feedback with a peer review-would have added a 

comprehensive layer of understanding, confirming whether the research found an expected conclusion or beyond 

expectation. Additionally, if effective feedback was given, revisions could have added a deeper nuanced understanding 

to the research intent. Another challenge lies in the computational demands of advanced XAI techniques. Methods 

such as SHAP and LIME on DL models require substantial processing power, which can hinder their application in 

resource-constrained environments. During model testing, performance significantly slowed. This highlighted the 

potential impracticality of deploying such techniques in real-time clinical settings without high-performance 

computing resources [24]. Finally, not all measures of interpretability are feasible. There are no agreed-upon metrics 

or frameworks adopted by industry that allow determination of how understandable AI systems are. Thus, because no 

clinician was involved in the discussions, it was increasingly hard to determine if the generated predictive outputs 

made sense for diagnostics or if they aligned with clinically understood options that would work for professional 

practitioners [25]. 

 

5. CONCLUSION AND FUTURE WORK 

This comparative evaluation underscores the critical trade-offs between accuracy, interpretability, and computational 

cost necessary to derive explainable AI for healthcare. Ultimately, the more simplistic approaches-LR and decision 

trees-provided not only appropriate levels of accuracy (~90–93%) but also the transparency needed for healthcare 
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adoption in a clinical setting. Notably, the decision tree, among the most interpretable models, was one of the top 

performers, affirming that high explainability does not require sacrificing performance. LR also remains attractive for 

its simplicity and direct risk attribute.  

In contrast, while DL models (transformers and embedding-based networks) offered additional modelling power, they 

introduced interpretability challenges and higher computational demands. In clinical settings, where understanding 

and trust are paramount, marginal improvements in accuracy may not justify the use of opaque models. XAI tools 

such as SHAP are vital for making complex models more transparent. By applying these techniques, we aimed to 

“open the black box” and translate model decisions into actionable insights for clinicians. Evidence suggests that clear 

and interpretable explanations increase trust in AI-driven predictions and are an essential factor in healthcare 

applications. 

To build upon the current research, future work should prioritize integrating multidisciplinary collaboration, 

particularly with clinicians and biomedical informaticians. Incorporating expert-annotated datasets and domain-

guided feature engineering could enhance model interpretability and improve the clinical validity of feature attribution 

methods such as SHAP and LIME. Addressing the computational overhead associated with advanced XAI techniques 

is also critical. Future implementations should explore distributed computing environments, GPU-accelerated 

frameworks, or cloud-based platforms (e.g., AWS SageMaker, Google Cloud AI Platform) to support the real-time 

generation of explanations on a scale.  
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