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Abstract - The adoption of Artificial Intelligence (AI) in cardiovascular disease prediction has significantly improved risk
stratification, offering new avenues for early diagnosis and preventive care. With the growing availability of electronic health
records and structured clinical datasets, Machine Learning (ML) and Deep Learning (DL) models have demonstrated strong
predictive capabilities. However, despite their performance, its adoption in healthcare is often constrained by the lack of
transparency and interpretability in many ML and DL models. This lack of explainability undermines clinical trust and raises ethical
concerns. In high-stakes domains such as Cardiovascular Disease (CVD) prediction, clinicians require not only accurate outputs
but also clear explanations of how those predictions are derived. This paper presents a comparative evaluation of Explainable Al
(XAI) techniques applied to both conventional ML models such as Logistic Regression, Support Vector Machine, Decision Tree,
and Random Forest and DL architectures including Autolnt, FT-Transformer, and Category Embedding. Using the Framingham
Heart Study dataset, this study integrates Shapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic
Explanations (LIME) to assess model interpretability and feature relevance. Results show that conventional models offer superior
explainability with comparable predictive accuracy, while DL models, although slightly less interpretable, demonstrate potential
with advanced XAI techniques. The findings advocate hybrid approaches that balance accuracy and interpretability, supporting
ethical and practical Al deployment in healthcare.

Keywords—Cardiovascular Disease, Explainable Al, Shapley Additive Explanations, Local Interpretable Model-Agnostic
Explanations, Deep Learning, Conventional Model.

Received: 12 July 2025; Accepted: 18 October 2025, Published: 16 February 2026
This is an open access article under the CC BY-NC-ND 4.0 license.

E% MG MDD

1. INTRODUCTION

Cardiovascular Disease (CVD) continues to be one of the most significant causes of death globally. It is primarily
caused by the narrowing or blockage of blood vessels, which can result in serious and potentially fatal complications
such as heart attacks, angina (chest pain), and heart failure. These conditions present major public health concerns due
to their high mortality and morbidity rates. For over 15 years, CVD has consistently remained the leading cause of
death worldwide. According to the World Health Organization (WHO), CVD was responsible for approximately 15
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million deaths in 2015. By 2020, this number had risen to 17.9 million, with forecasts predicting the toll could exceed
23.6 million by 2030 [1].

With the advent of Artificial Intelligence (Al) for preemptive detection of CVD, the possibility of misdiagnosis via
prediction is significantly reduced. However, one of the most critical oversights that many Al systems suffer is
transparency or the lack thereof in model development. Many Al models are "black box" models that fail to disclose
how they arrive at predictions, which presents significant barriers to clinical use. Lack of transparency breeds mistrust
for the clinician and the patient, and without understanding how a model result was concluded, it cannot be part of the
decision-making process [2-3]. With the CVD and its mortality complications that account for an increasingly
disproportionate percentage of global death, the predictive models must be developed with intentionality, accuracy,
and transparency. Transparent models maintain the trust factor of the clinician, appropriate ethical application, and
regulatory observation. In addition, with the onset of big data increasingly available due to Electronic Health Record
(EHR) accessibility, genomics, and lifestyle factors, the ability for personal risk prediction is on the rise. Still, it can
only be fulfilled through explainable Al models that disclose how they come to their decisions. Explainable Al (XAI)
solves this problem by assessing the reason behind Al generated predictions [4]. Thus, the main contribution of this
study is to assess the explainability potential of traditional Machine Learning (ML) and Deep Learning (DL) generated
models via two applications of XAI: the Local Interpretable Model-Agnostic Explanations (LIME) and Shapley
Additive Explanations (SHAP) technique. By doing this, we can explore the trade-offs between interpretability and
accuracy and offer insights into the practical deployment of XAI-powered diagnostic tools in clinical decision-making.
The paper is organized as follows: Literature works are discussed in Section 2. The research methodology is presented
in Section 3 while Section 4 demonstrates and discusses results. Section 5 provides the conclusion and future work.

2. LITERATURE REVIEW
2.1 The Rise of Al in Cardiovascular Prediction

Al approaches claim to transform healthcare diagnostics by determining whether patients are at risk for disease.
However, many practitioners still favour standard ML techniques like Logistic Regression (LR) and Decision Tree
(DT), which are interpretable and uncomplicated [5-7]. For example, in the researcher’s analysis of cardiovascular
risk, Rudin argues that simpler, easier models to understand, such as DTs, should dominate over more complex
techniques. Simpler ones are often faster and more accurate relative to ill-defined black box operations, as
demonstrated by successfully learning from the Framingham dataset [8].

Conventional ML techniques often struggle to replicate and predict results for complicated or high-dimensional
datasets. When data involves nonlinear relationships or cannot be separated using simple binary classification, these
models reach a point of diminishing returns. When trained on robust datasets over time relative to aggregates of health
data, whether medical imaging, genomic data, or signals from monitoring sessions, DL techniques outperform routine
predictive accuracies [9]. Thus, when assessing thousands of variables related to health risks including but not limited
to demographics, clinical history, Electrocardiograms (ECGs), and medical imaging, DL will better determine health
risk accurately.

Yet such accuracy does not always succeed when merged within a clinical practice setting. The significant hurdle for
implementation is transparency. Many ML and DL models operate as a "black box" where little about how output
came to be through hidden layers is known. For ethical, trustworthy, quality decision-making, physicians must
understand how and why Al determined what it produced to integrate such findings legally and ethically effectively.
Context is critical in an ambiguous medical environment [10]. Therefore, XAl was born to establish that techniques
existed to provide transparency. XAl provides the possibility of several techniques making model output explorable.
It offers transparency among clinicians, regulators, and patients alike; more informed decisions create safer
implementations of Al in healthcare.

2.2. Explainable AI Techniques: SHAP and LIME

The field has implemented SHAP and LIME for explainability. SHAP provides global and local explainability because
it aims to explain how predicted values can be attributed to given input features [11]. LIME is more locally driven, as
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it takes features of interest to create a more simple, explainable model that can approximate the complex black box
model in the local region around the prediction of interest [12].

For example, when estimating an individual 10-year risk of developing CVD, You et al. explored many ML models
like Light Gradient Boosting Machine (LGBM), eXtreme Gradient Boosting Machine (XGBoost), Random Forest
(RF), LR, K-Nearest Neighbours (KNN), Support Vector Machine (SVM) and Artificial Neural Networks (ANN) that
were applied to the data gathered from their research [13]. While many of these models were black boxes, applying
SHAP allowed them to explain their findings by essentially “breaking the black box.” Li et al. predicted the risk of
brain metastases from the structured EHR data using Reverse Time AttentloN (RETAIN) model. The decision results
of the model were interpreted using SHAP values based on a feature attribution to identify the factors contributing to
the model [14].

Rezk et al. presented a framework that utilized hybrid ensemble learning models which combined LightBoost and
XGBoost algorithms together with SHAP and LIME analysis to create an explainable heart disease prediction model.
By integrating LIME with ML techniques, the system offers a comprehensive framework to enhance the efficacy and
reliability of the heart disease prediction model by showing the features that are important to the prediction. In addition
to SHAP, LIME has been employed to generate local, instance-specific explanations, allowing clinicians to understand
the reasoning behind individual risk predictions. These case-by-case insights are especially valuable in clinical settings
where personalized interpretation is essential.

Overall, incorporating XAl techniques into CVD prediction models enhances their transparency and interpretability.
By clearly identifying influential features such as ST slope, oldpeak, chest pain type, max heart rate and cholesterol,
the model could potentially help with a clear understanding of its decision-making process [15]. Similarly, Petmezas
et.al. presented a prediction model of heart failure using Extremely Randomized Trees (Extra-Trees) and non-linear
correlation measures to enhance mortality prediction in HF patients. This model also utilized SHAP to improve the
interpretability of the model [16]. XAl facilitates the translation of complex model decisions into actionable, clinically
meaningful information. This interpretability is key to building trust among healthcare professionals and promoting
the adoption of Al-driven tools in medical practice.

2.3 Balancing Accuracy and Interpretability

Research suggests a trade-off between model performance and explainability. For instance, DTs and LRs offer clarity
but may underperform on complex tasks. In contrast, ensemble and DL models achieve high accuracy but require XAl
tools to bridge the interpretability gap.

2.3.1 AutoPrognosis vs. Clinical Scores

Alaa et al. compared an automated ML ensemble (AutoPrognosis) to the Framingham Risk Score in predicting
cardiovascular events. AutoPrognosis, an optimized ensemble of many models, was significantly more accurate,
achieving an AUC of 0.77 and correctly predicting 368 more cases of CVD over 5 years than Framingham.
AutoPrognosis combined hundreds of features and models (a clear example of black box to clinicians). This
exemplifies the accuracy gain vs loss of interpretability. Interestingly, the study noted that adding a wealth of novel
risk factors (e.g. walking pace, health rating) boosted accuracy more than the choice of complex model itself,
suggesting richer data plus moderately complex models may represent a balanced approach [17].

2.3.2 Hybrid Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM)

Hossain et al. proposed a hybrid DL model combining a CNN and LSTM to identify CVD. Also, the model combines
feature engineering and explainable Al to enhance the accuracy and interpretability of the prediction. The proposed
model achieved an accuracy of 73.52%. These studies showed that creatively designed ensembles prediction model
with explainable components can balance performance and interpretability [18].
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2.3.3 Atrial Fibrillation Monitoring With XAl

She et al. introduced an explainable Al tool named “AF’fective” to assist cardiologists in monitoring patients with
atrial fibrillation following catheter ablation. In a real-world pilot study, the system processed ECG data and other
patient inputs to predict the risk of AF recurrence. Its output was both a prediction with an associated explanation i.e.,
a portion of an ECG with deviation and the output number of episodes/year and an explanation without input. These
outputs served as a suggested, but not definitive, diagnosis to the cardiologist, such as “number of previous ablation
attempts.” The need for explanations was validated through workshops and focus group sessions with cardiologists
who needed to align their medical experience with the Al-generated results [19].

Nevertheless, even with the benefits of using XAl in cardiovascular risk assessment, some challenges persist. First,
despite attempts at external validation of clinically created models, few achieve success using larger, reputable
databases with known applicability to the real world like the Framingham Heart Study. This creates generalizability
concerns for many results, especially those from multicenter, heterogeneous patient populations [20]. Second, many
models fail to address seamless clinical implementation or intended end-user use. A significant percentage of the
articles published focus on breakthroughs related to the algorithm as opposed to yielding strong implementation
considerations through clinically practicable and usable interpretability [21]. This is crucial for everyday use, as
clinicians require results that are accurate, sensitive, and specific; they also require that Als can demonstrate the output
that can be practically applicable to assessing patient risk to make a difference. Accomplishing this requires a paradigm
shift in Al so that quality of transparency, and quality of relevant output exist only then does reliable implementation
of Al into modern medicine become feasible [22].

3. RESEARCH METHODOLOGY

This study adopts a four-stage Define-Collect-Select-Apply (DCSA) methodology where conventional ML and DL
are employed through XAI for CVD diagnosis. The subsequent procedures are sequential and expounded upon in
Figure 1.
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Figure 1. XAI-Driven Explainability for CVDs Prediction Research Process
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The aim of this research is to find the best prediction models of CVD within an XAl paradigm that makes results
interpretable and clinically applicable to the following independent variables linked to the estimated prior expected
chance of having CVD as a dependent variable: clinical variables (cholesterol, blood pressure), demographic variables
(age, sex), lifestyle variables (smoking, exercise), socioeconomic variables (income, education). Therefore, the
research question was set to explore and achieve the research intention:

What is the performance of different Al prediction models in assessing cardiovascular risk when combined with XAl
strategies?

3.1 Data Collection

This study employs data obtained from the Teaching Request Department of the National Heart, Lung, and Blood
Institute (NHLBI). The dataset, derived from the Framingham Heart Study (FHS), was provided upon formal request
and with the institutional approval. It consists of 4,434 participants, with a total of 11,627 recorded observations. It
includes 39 features, encompassing a broad spectrum of demographic, behavioural, medical, and physical health
indicators, such as age, gender, smoking habits, blood pressure, cholesterol levels, BMI, glucose levels, and a medical
history of diabetes or hypertension.

3.2 Data Pre-processing and Feature Engineering

The data preprocessing phase involved several key steps to ensure data integrity and readiness for analysis. The
category variables like age groups and gender (female vs. male) were used as independent variables. The reason for
this inclusion is that by using these as categorical independent variables, the study can analyze risk by specific
subgroup, thereby also creating equity in the XAl results across a diverse population in its findings. Column names
were standardized for consistency, and redundant fields were removed to enable us to focus on the columns needed
mainly for prediction. Missing values were addressed using the pandas null methods to identify the null values in each
attribute of the dataset. It was discovered that the High-Density Lipoprotein Cholesterol (HDLC) and Low-Density
Lipoprotein Cholesterol (LDLC) columns had 73% null values in the dataset, and these columns could not be imputed
due to the large percentage of null values. Therefore, these columns were removed. Other columns with less than 20%
missing data were treated using appropriate imputation techniques. Duplicate entries were identified by using the
pd.duplicates() method with all the columns in the dataset as subsets and it was discovered that the dataset has no
duplicate records, data types were verified to understand the type of analysis that would be done on each column, and
outliers were identified using boxplots and z-score analysis across continuous variables. Variables such as systolic
blood pressure and Body Mass Index (BMI) exhibited mild to moderate skewness, which was noted for consideration
during model selection and evaluation. While no outliers were removed at this stage, their presence informed the
choice of robust algorithms that are less sensitive to distributional variance.

Categorical variables, such as gender were encoded using one-hot encoding, this technique creates separate binary
variables for each category within a feature, ensuring that the model treats them as distinct entities. One-hot encoding
is especially useful for nominal categorical variables, where categories lack a natural ranking or hierarchical structure.
To mitigate the influence of varying feature scales on ML algorithms, continuous variables were normalized using
Standard Scaling transforming them into a mean of zero and a standard deviation of one. This ensures balanced feature
contribution during model training, especially for algorithms sensitive to feature magnitude.

We also checked the CVD variable, which was the target variable for the prediction model. The record of CVD
variables showed a class imbalance between normal (which is 0, with 8,728 records) and Coronary Artery Disease
(CAD) diagnosed (which is 1, with 2,899 records). Therefore, the Synthetic Minority Oversampling Technique
(SMOTE) was implemented to handle class imbalance in the training dataset.

3.3 Model Selection

This study employed LR, SVM, DT, and RF as the primary models for assessing cardiovascular risk. These models
were selected due to their balance between predictive accuracy and interpretability, which is essential for
implementing XAI techniques. Each model contributes unique advantages, enabling both precise predictions and
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transparent insights into the factors influencing cardiovascular health. Below is a breakdown of each model and its
relevance to XAl

3.4 Model Development

For model development, conventional ML algorithms, LR, SVM, RF and DT were employed to predict the occurrence
of CVD. For the DL models, algorithms such as FTT Model, Autolnt, and Category Embedding were utilized. The
dataset was split into training and testing subsets in the ratio of 70:30, with models trained on the former and evaluated
on the latter. With a solid foundation established through preprocessing and model training, Explainable Al techniques
were integrated to enhance model transparency. Tools such as LIME and SHAP were applied to both ML and DL
models to interpret prediction outputs. This allowed for the identification of the most influential features contributing
to each model’s decisions and facilitated a comparative analysis of interpretability across algorithms.

3.5 Model Evaluation

In this work, four evaluation metrics were utilized: Accuracy, Precision, Recall, and F1-score. These metrics are
commonly used in classification problems and provide valuable insights into the performance of the algorithms. To
evaluate and compare the effectiveness of different classifiers, a comparative analysis was conducted based on these
indicators. For comparing the performance of the different prediction models with XAl techniques, the dataset for
testing the models was prepared during the data preprocessing step. This same dataset was used to train and test the
selected models, as presented in the Model Selection section. The performance results from each model were recorded
to enable comparison later.

4. RESULTS AND DISCUSSIONS

This section presents the comparative performance evaluation of the models used in this study, highlighting their
effectiveness based on key metrics, as shown in Table 1.

Table 1. Comparative Performance Evaluation of Models

Metrics Model
Conventional ML DL
LR DT SVM RF Autolnt | FTT Model | 3801y
Embedding
Accuracy 90.10% 93.50% 91.40% 93.40% 77.14% 88.14% 86.96%
Avg.Precision 86.00% 93.00% 92.00% 93.00% 57.27% 89.39% 86.83%
Avg.Recall 88.00% 89.00% 85.00% 89.00% 75.68% 88.14% 75.84%
Avg. Fl-score 87.00% 91.00% 88.00% 91.00% 65.20% 88.51% 85.86%
Explainability High Very Moderate Moderate | Moderate | Low (Post Moderate
High (Post hoc (Post hoc hoc (Post hoc
with with with Deep with
SHAP/LIME) SHAP) SHAP) SHAP)

In response to the research question identified earlier, we analysed the performance of many conventional and DL
techniques that utilized XAl techniques in the model. These models were assessed based on accuracy, F1-score and
explainability. As reflected by Table 1, conventional models have good prediction abilities and are relatively
transparent with less computational burden. For instance, LR provides 90.10% accuracy and 87.00% F1-score,
establishing a confident, anticipated baseline. In addition, it is completely interpretable as its model coefficients reflect
positive or negative contributions of each feature relative to the output; thus, it is clinically aligned with risk scoring.
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Decision trees outperform LR with 93.50% accuracy and 91.00% F1-score yet also possess high interpretability and
low computational burden. Their structure of if-then rules closely mimics the if-then considerations clinical
professionals make. Although decision trees tend to overfit, hyperparameter tuning showed commendable
performance statistics with low complexity. SVMs also showed competitive performance (91.40% accuracy, 88.00%
F1), but their limited transparency, especially with non-linear kernels, reduces their applicability in clinical
environments. RF, an ensemble of decision trees, matched the accuracy and F1-score of individual decision trees
(93.40%, 91.00%) while improving generalization. However, this came at the cost of reduced interpretability, as
individual decision paths are less traceable.

Post-hoc XAl tools such as SHAP and feature importance plots were employed to mitigate this limitation and support
model transparency. DL models, including transformer-based architectures, were also evaluated. Autolnt, despite its
potential to capture complex feature interactions, underperformed with 77.14% accuracy and a 65.20% F1-score likely
due to dataset limitations and overfitting. The FT-Transformer (FTT) improved upon this, achieving 88.14% accuracy
and 88.51% F1-score by leveraging attention mechanisms to model feature dependencies. However, its default opacity
necessitated the use of Deep SHAP to interpret predictions. The most important predictors out of all three trained
models were Time since CVD diagnosis (TIMECVD), Time since Angina Pectoris (TIMEAP), and Time to Death
(TIMEDTH) regardless of RF, ANN, or decision tree classification. In addition, SHAP was the XAl application that
increased explainability via the traditional and DL approach as it assessed visually the contribution of each specific
input feature over the others. The most effective models in accuracy achievement were decision tree and LR (90-93%
accuracy), which were also the most explainable without any XAI application due to their inherent interpretability
features. This indicates that explainability does not come at the cost of accuracy.

The convergence of findings from the coefficient-based analysis and the SHAP analysis strengthens our confidence
in the results. Both methods identified TIMECVD, TIMEAP, and TIMEDTH as the primary drivers of the model’s
predictions, indicating that these time-to-event measures are critical factors in the outcome under study. Using the LR
coefficients, we gained a clear, quantitative sense of each feature’s global effect. The SHAP analysis provided insights
into the local behavior of the model; it tells us how much each feature is contributing to each individual’s risk
prediction. This is particularly advantageous for complex or non-linear models. However, even in our LR (which is
linear by design), SHAP helped visualize the consistency of effects across individuals and detect any potential outliers
or interaction effects. One strength of SHAP is that it can handle feature interactions and non-linear relationships by
attributing contributions in a game-theoretic manner. In our case, the largely linear pattern in the SHAP plots suggested
that there were no strong interaction effects driving the predictions. The model behaved as a mostly additive, linear
combination of features, which is expected to give the LR framework. A slight limitation of SHAP is that it is
computationally more intensive and can be trickier to explain to stakeholders not familiar with the concept. In contrast,
odds ratios from LR are a long-standing common language in clinical research.

There are benefits and shortcomings with independent research as subjects to projects. For instance, there are gaps in
the analysed domain knowledge, where ideally multi-disciplinary professions should fill these collaborative efforts
[23]. For example, information input from clinicians- or at least feedback with a peer review-would have added a
comprehensive layer of understanding, confirming whether the research found an expected conclusion or beyond
expectation. Additionally, if effective feedback was given, revisions could have added a deeper nuanced understanding
to the research intent. Another challenge lies in the computational demands of advanced XAI techniques. Methods
such as SHAP and LIME on DL models require substantial processing power, which can hinder their application in
resource-constrained environments. During model testing, performance significantly slowed. This highlighted the
potential impracticality of deploying such techniques in real-time clinical settings without high-performance
computing resources [24]. Finally, not all measures of interpretability are feasible. There are no agreed-upon metrics
or frameworks adopted by industry that allow determination of how understandable Al systems are. Thus, because no
clinician was involved in the discussions, it was increasingly hard to determine if the generated predictive outputs
made sense for diagnostics or if they aligned with clinically understood options that would work for professional
practitioners [25].

5. CONCLUSION AND FUTURE WORK

This comparative evaluation underscores the critical trade-offs between accuracy, interpretability, and computational
cost necessary to derive explainable Al for healthcare. Ultimately, the more simplistic approaches-LR and decision
trees-provided not only appropriate levels of accuracy (~90-93%) but also the transparency needed for healthcare
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adoption in a clinical setting. Notably, the decision tree, among the most interpretable models, was one of the top
performers, affirming that high explainability does not require sacrificing performance. LR also remains attractive for
its simplicity and direct risk attribute.

In contrast, while DL models (transformers and embedding-based networks) offered additional modelling power, they
introduced interpretability challenges and higher computational demands. In clinical settings, where understanding
and trust are paramount, marginal improvements in accuracy may not justify the use of opaque models. XAl tools
such as SHAP are vital for making complex models more transparent. By applying these techniques, we aimed to
“open the black box” and translate model decisions into actionable insights for clinicians. Evidence suggests that clear
and interpretable explanations increase trust in Al-driven predictions and are an essential factor in healthcare
applications.

To build upon the current research, future work should prioritize integrating multidisciplinary collaboration,
particularly with clinicians and biomedical informaticians. Incorporating expert-annotated datasets and domain-
guided feature engineering could enhance model interpretability and improve the clinical validity of feature attribution
methods such as SHAP and LIME. Addressing the computational overhead associated with advanced XAl techniques
is also critical. Future implementations should explore distributed computing environments, GPU-accelerated
frameworks, or cloud-based platforms (e.g., AWS SageMaker, Google Cloud Al Platform) to support the real-time
generation of explanations on a scale.
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