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Abstract - In recent years, the frequency and complexity of financial fraud have been rising and have become an urgent challenge
for the global financial system. Traditional rule-based detection methods struggle to cope with new types of fraud, especially in
terms of real-time detection, generalization ability, and accuracy. To overcome these limitations, machine learning techniques have
gradually emerged as a promising solution for identifying fraudulent transactions with better flexibility and scalability. Based on
the publicly available European credit card fraud transaction dataset, this study proposes a hybrid model that combines the
advantages of LightGBM and Random Forest, aiming to improve the accuracy, robustness, and interpretability of fraud detection.
To handle the severe data imbalance problem (fraud cases accounting for only 0.17%), this study applies a RandomUnderSampling
strategy and further enhances model performance through systematic parameter tuning using RandomizedSearchCV and decision
threshold optimization. Stratified K-Fold cross-validation is also used to validate model stability. In addition, the model is compared
with alternative resampling methods including SMOTE and ADASYN, and the results reaffirm the effectiveness and practicality
of the undersampling approach. The final model achieves an overall accuracy of 99%, a recall of 86% on the fraud class, ROC-
AUC 0f 0.9746, and PR-AUC of 0.6639. While the precision is relatively low (13%), it reflects a deliberate strategy of prioritizing
fraud detection over false positives. This hybrid approach demonstrates a good balance between detection performance and
practicality, offering better interpretability and lower computational cost compared to many deep learning models.
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1. INTRODUCTION

With the rapid development of digital finance, services such as e-wallets, online transfers, and virtual banking have
become an indispensable part of people’s daily lives. However, financial fraud is also growing continuously, with
increasingly diverse and covert methods that have a far-reaching impact on the global financial ecosystem (e.g.,
INTERPOL states that “We are facing an epidemic in the growth of financial fraud”) [1]. According to TechRadar’s
analysis, the cost of identity fraud in the U.S. will be $12.5 billion in 2024 (a 25% increase year-over-year), and
technologies such as deep forgery are being misused for fraud on a massive scale [2]. The UN’s International
Telecommunication Union has also noted that such Al-driven fraud is eroding digital payment systems and social trust
structures globally [3]. In addition, the Deloitte report disclosed that scams using deepfake videos to mimic the
identities of executives have resulted in one-time losses of approximately $25 million to Hong Kong businesses [4].

According to the “Global Financial Crime Report” [5], financial fraud has resulted in a total loss of $485.6 billion
globally. Payment fraud accounted for more than $386.8 billion in losses, while credit card fraud and check fraud
reached $28.6 billion and $26.6 billion. The rest, such as impostor fraud, advance fee scams, and employment scams,
also accounted for sizable total losses. This reflects the prevalence and seriousness of the problem of financial fraud,
which has become a major risk that the international financial system needs to address and manage.

Figure 1 illustrates various types of financial fraud and their corresponding global loss amounts reported
Nasdaq’s Global Financial Crime Report [5], in order to provide a clearer picture of the distribution and scope of the
different forms of fraud:

Type of Financial Scam/Scheme Global Losses (USD)
Payments Fraud 4386.8B

Credit Card Fraud $28.6B

Check Fraud $26.6B

Advance Fee Scams $19.1B
Cyber-enabled Scams $10.08
Impersonation Scams $6.8B

Employment Scams $3.98B

Confidence Scams $3.8B

Total $485.6B

Figure 1. Types of Financial Fraud and Global Losses (in Billions of Dollars)

As can be seen from Figure 1, payment fraud is by far the most predominant type of fraud, accounting for at least 80%
of global losses, while credit card and check fraud rank second and third, respectively. Although the amounts of other
types of fraud are relatively low, their covert and variable nature still poses a serious threat, especially in cross-border
financial transactions and online payment scenarios.

Traditional rule-based fraud detection systems often find it difficult to cope with these complex fraud patterns [6].
Such systems rely on static rule-based logic, which is easily bypassed by evolving fraud tactics and lacks
responsiveness to new threats. In addition, the extreme class imbalance in financial transaction data presents
challenges such as low detection rates and high false negatives. More importantly, the decision-making mechanism
of many existing models lacks interpretability, which makes it difficult for financial institutions to understand the
rationale behind the model’s judgment and provide reasonable explanations to regulators and users.

In this research, we propose a more intelligent, stable, and interpretable financial fraud detection mechanism by
constructing a hybrid machine learning model that combines LightGBM and Random Forest. The goal is to improve
the recognition of rare fraudulent transactions and address challenges related to accuracy, efficiency, and trust in real-
world deployment. The study uses the widely recognized European credit card fraud dataset, with model training
encompassing data preprocessing, feature engineering, class resampling, hyperparameter tuning, and model
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integration. The ultimate goal is to strike a balance among accuracy, practicability, and interpretability of the model,
and to provide feasible and effective technological support for the financial anti-fraud system.

To clearly present the research process and findings, the structure of this paper is organized as follows. Section 2
presents an overview of financial fraud and recent advances in detection techniques, highlighting the shift from
traditional rule-based systems to machine learning-based approaches. Section 3 outlines the proposed methodology,
including dataset description, class imbalance handling, and the construction of a hybrid model using LGBM and
Random Forest. Section 4 details the full experimental process, including data preparation, feature engineering,
resampling strategies, model training, performance evaluation, and comparative analysis with other resampling
methods. Finally, Section 5 concludes the study by summarizing key findings, acknowledging current limitations, and
suggesting directions for future research such as deep learning integration and model explainability improvements.

2. LITERATURE REVIEW

Financial fraud detection has become a popular research direction in the fields of machine learning and deep learning
in recent years [7], [8]. With the popularity of digital payments and online transactions, researchers have begun to
actively explore how to identify fraudulent transaction behaviours with the help of intelligent algorithms to reduce
financial risks and fraud losses. In the existing studies, most of the work focuses on model construction, feature
selection, class imbalance processing, and optimization of model evaluation metrics, while the adopted datasets vary
depending on the research objectives. Although not all studies use the same data sources, the European credit card
dataset is one of the most frequently cited publicly available datasets in the literature that has been reviewed, showing
the widespread use and recognition of this dataset in academia.

An extensive literature review had been conducted to explore the types of models used in the study, including
supervised learning, unsupervised learning, deep learning, and hybrid models. Table 1 provides statistics on the
frequency of use of various models in the literature to help readers have an overall understanding of the research trends.

Table 1. Model Usage Frequency in Reviewed Literatures

Model Category Most Frequently Used Algorithms Number of Remarks
Papers
Supervised Learning | Random Forest, XGBoost, Logistic 17 Widely adopted due to good
Regression accuracy and ease of training
Unsupervised Isolation Forest, Autoencoder 5 Used when labelled data is
Learning scarce
Deep Learning Long Short-Term Memory, 4 Suitable for sequential and
Convolutional Neural Network, complex data
Gated Recurrent Unit
Hybrid/Ensemble Convolutional Neural Network + 4 Used in recent studies for
Random Forest, Long Short-Term better robustness
Memory, + Autoencoder, Generative
Adversarial Network-based models

Supervised learning models are still the most frequently employed class of methods in current financial fraud detection.
Common algorithms include RF, XGBoost, and LR, which provide good classification results with sufficient labelled
data. Simaiya et al. used RF to model credit card transactions and improved the overall classification robustness [9].
Hajek et al., on the other hand, constructed an XGB-based detection framework in a mobile payment scenario, which
successfully dealt with the high-dimensional sparse feature problem and achieved excellent accuracy with AUC
performance [10].

When there is insufficient labelling data, some researchers have tried to identify potential frauds using unsupervised
learning methods, such as IF, AE, and One-Class SVM. Such methods do not rely on explicit labelling information
but rather detect anomalies by identifying transaction behaviours that deviate from the normal pattern. As an example,
Bello et al. proposed a real-time detection framework that combines unsupervised feature learning with blockchain
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architecture for building early fraud alert systems [11]. While such methods have some advantages in exploratory
analysis, their overall classification accuracy is usually inferior to supervised models.

In recent years, deep learning methods have also emerged as an important research direction in this area. Mienye and
Swart proposed a hybrid deep learning model combining GANs, which achieved significant performance
improvements on a public credit card fraud dataset [12], while Maheshwari et al. designed a Deep Neural Network
incorporating an Attention Mechanism, which shows strong expressive power in modelling complex behavioural
patterns [13]. However, deep learning models also have some practical application obstacles, such as long training
time, high resource consumption, and insufficient interpretability, etc., so comprehensive considerations and trade-
offs are still needed when deploying them.

Meanwhile, hybrid models have gained increasing attention in recent research. This type of approach improves the
overall recognition capability by integrating the advantages of different models. For example, some studies use an AE
for anomalous feature extraction or dimensionality reduction and then input the results into traditional classifiers (e.g.,
SVM or LGBM) to enhance the recognition ability of the model on fraudulent behaviours. Mienye and Swart further
proposed a hybrid model integrating GANs and GRU, which achieves the following results in the test, 0.992 sensitivity
and 1.000 specificity, further validating the effectiveness of the hybrid architecture in fraud detection scenarios [12].

To gain a more comprehensive understanding of how each model architecture performs in practice. Table 2
summarizes the main features and application scenarios of each type of model.

Table 2. Overview of Model Types in Financial Fraud Detection

Model Type | Common Algorithms Advantages Disadvantages Typical Use Cases

Supervised LR, SVM, RF, XGB Easy to implement, Requires labelled data, | Standard fraud

Learning fast training, strong sensitive to imbalance | classification with
interpretability labelled datasets

Unsupervise | K-Means, IF, One- No labels required, Less accurate, harder Preliminary fraud

d Learning Class SVM useful in exploratory to interpret screening with
phases unlabelled data

Deep CNN, LSTM, GRU, High capacity, Computationally Complex transaction

Learning Transformer captures complex expensive, less behavior or sequential
features interpretable data

Hybrid / AE+LSTM, Combines strengths, Architecturally High-performance

Ensemble CNN-+XGBoost, improves accuracy, complex, time- real-world fraud

GAN+GRU and robustness consuming to train detection systems

3. RESEARCH METHODOLOGY

This study aims to build a financial transaction fraud detection system that combines accuracy, stability, and
deployment feasibility. To achieve this goal, a hybrid model is adopted, combining two machine learning algorithms,
LGBM and RF, and outputting the final prediction results through Soft Voting. This architecture can effectively
improve the overall performance of the model in the face of extremely unbalanced data, especially in improving the
recall rate and AUC score, which shows a stable advantage.

In terms of dataset selection, this study adopts the publicly widely European Credit Card Fraud Dataset provided by
the Université Libre de Bruxelles [14]. The data contains 284,807 real transaction records covering 30 variables,
including Amount, Time, and 28 anonymized principal component variables (V1 to V28), as well as the target variable,
Class, where 1 indicates fraud and O indicates normal transactions. It is worth noting that only 492 records were
fraudulent transactions, which is about 0.17% of the total. This indicates that this dataset is highly unbalanced and
perfectly fits the real financial scenarios and has been the underlying dataset cited in many studies.

The data preprocessing process consists of duplicate record removal and RandomUnderSampling to balance the
training set. In the process, 30% of the test set is first divided to retain the original unbalanced structure; the remaining
portion is used as the training and validation set, and then a 1:1 balanced structure is created by randomly under
sampling the majority class based on the number of fraud samples from normal transactions to improve the model’s
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ability to recognize a minority classes. After the training and validation sets are further divided, the final training data
is constructed.

The proposed model architecture involves training LGBM and RF as two independent classifiers, each producing
prediction probabilities on the validation set. In the model training stage, LGBM is tuned by RandomizedSearchCV,
and the optimization goal is F1-score to balance between precision and recall. The parameter search space covers key
hyperparameters such as num_leaves, max_depth, learning rate, subsample, colsample bytree, etc., while the RF is
set to 200 trees and trained with other parameters by default.

The parameters of the RF model are not being tuned in this study, primarily due to two considerations. First, RF has
been widely validated to have good classification performance even with default parameter settings, which is
especially suitable for the data structure with standardized variables and balanced categories. Second, since this study
focuses on the performance of the hybrid model, the author focuses on parameter optimization of LGBM to improve
the overall performance while controlling the training time and complexity. After comprehensive experimental
consideration, RF is set to 200 trees as a stable and fast auxiliary classifier, which complements the tuned LGBM.

The final prediction process uses a Soft Voting mechanism, where the fraud probability of each transaction is averaged
across the outputs of each of the two models, and the classification threshold is set accordingly. This threshold is
determined by the critical value corresponding to the best F1-score computed on the validation set. Specifically, the
performance of the models at different thresholds is evaluated using precision-recall curves, and the point that
maximizes the F1-score is selected as the optimal decision criterion. The model workflow visualization of the proposed
model is illustrated in Figure 2.

Financial Transaction Dataset

!

Data Cleaning

!

Data Splitting

T0% Train+Validation
30% Test

v

Data Resampling

RandomUnderSampling

v

Meodel Training

LightGBEM Training Random Forest Training
- Hyperparameter Tuning - n_estimators=200
- Train Best Model - Default Parameters

v

Soft Voting Ensemble

Average Probabilities from LGBEM + RF

l

Threshold Optimization

Based on F1 from PR Curve

v

Performance Metric

- Confusion Matrix (%)

- ROC Curve f AUC

- Precision-Recall Curve f PR AUC
- Classification Report

Figure 2. Workflow of the Proposed Hybrid Fraud Detection Framework
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The hybrid model demonstrated excellent performance in the experiments, particularly in recall and PR AUC, two
key metrics for evaluating minority class recognition, significantly outperforming the individual model. More
importantly, this approach avoids the structural bias and training instability problems that may occur in a single model,
while retaining the respective advantages of the two models with good deployment flexibility and interpretability.
While techniques like SMOTE and ADASYN are widely used to address class imbalance, they introduce synthetic
samples that may affect model generalization or interpretability in decision-tree-based models. Moreover, in highly
imbalanced datasets, such methods have been reported to increase the risk of overfitting [15]. In contrast,
RandomUnderSampling is simple, preserves real data distribution, and has been shown to be effective with low
computational cost [16].

4. RESULTS AND DISCUSSIONS

To evaluate the performance of the proposed hybrid model in detecting financial fraud, a complete training and testing
process was conducted using Python with data science libraries including pandas, scikit-learn, LightGBM, and seaborn.

4.1 Data Cleaning and Preparation

The original dataset, obtained from the Université Libre de Bruxelles [14], contains 284,807 records, including 492
fraud cases (approximately 0.172%). After removing duplicate records, the final dataset consists of 283,726 unique
samples, maintaining the same number of fraud cases.

4.2 Feature Engineering

The dataset includes 30 features: Time, Amount, and 28 anonymized PCA-transformed components (V1 to V28).
Feature selection was conducted using LGBM’s feature importance mechanism, which helped identify the top
contributing variables for model training. No manual feature creation was applied due to the already anonymized
nature of the input variables.

4.3 Data Splitting and Resampling

During the data preprocessing stage, the original dataset was split into a training/validation set (198,608 samples) and
a test set (85,118 samples) in a 70:30 ratio. The class imbalance in the test set was kept unchanged. Out of the 473
fraudulent transactions, 142 were allocated to the test set, while the remaining 331 were used for training and
validation.

In the “complete downsampling + imbalanced test set” setup, to address the class imbalance issue, the majority class
(normal transactions) in the training/validation set was randomly downsampled to match the number of fraud samples.
After this process, a total of 662 samples were obtained (331 normal, 331 fraudulent). These were then split into a
training set (463 samples) and a validation set (199 samples) using a 70:30 ratio, while the test set remained imbalanced
as originally designed.

In the “fully balanced experimental setup”, a separate dataset with equal numbers of normal and fraudulent
transactions was constructed. This balanced subset was then divided into a training set (567 transactions), a validation
set (189 transactions), and a test set (190 transactions), with each set maintaining a 1:1 class ratio. This setup allows
for comparison under fully balanced conditions. Table 3 summarizes the sample sizes and class distributions across
the training, validation, and test sets for both setups, making it easy to compare and understand the differences between
the experimental designs.

4.4 Model Training

The LGBM classifier was optimized through randomized hyperparameter tuning using F1-score as the evaluation
metric. The search space encompassed key parameters including tree complexity controls (num_leaves, max_depth),
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learning process components (learning rate, n_estimators), and regularization terms (subsample, colsample bytree,
reg alpha, and reg lambda). In contrast, the RF classifier employed 200 trees with default parameters and a fixed
random_state for reproducibility, leveraging its inherent stability to serve as a reliable baseline. Both models were
subsequently retrained on the full balanced training-validation subset (804 samples) to maximize learning before final
evaluation. This hybrid approach combined LGBM's tuned precision with RF's robust generalization capability.

Table 3. Dataset Configurations under Different Sampling Strategies

Dataset Setup Training Set Validation Set Testing Set
Undersampling + 463 samples (231 class 0, | 199 samples (100 class 0, | 85,118 samples (highly
Imbalanced Test Set 232 class 1) 99 class 1) imbalanced)
Undersampling + 567 samples (283 class 0, | 189 samples (95 class 0, | 190 samples (95 class 0,
Balanced Test Set 284 class 1) 94 class 1) 95 class 1)

4.5 Prediction and Threshold Optimization
The prediction process utilized soft voting to combine probabilistic outputs from both models. The equation is given

by Equation (1).

1
Vhybrid = EflLightGBM + YRF (1)
In this equation:

e yLightGBM represents the fraud probability predicted by the LGBM model;
e  YRF represents the fraud probability predicted by the RF model;
e Yyhybrid is the final probability output generated by the hybrid model.

The optimal classification threshold was determined by maximizing the F1-score on the validation set’s Precision-
Recall curve. This approach strategically balanced precision and recall for fraud detection, selecting a threshold
0f 0.6565 instead of the default 0.5 to account for class imbalance. The chosen threshold was then applied to
convert Yhybrid into binary predictions on the test set.

4.6 Evaluation Results

Table 4 summarizes the results of the model on different test sets.

Table 4. Performance Comparison between Unbalanced and Balanced Evaluation under RandomUnderSampling

Metrics RandomUnderSampling RandomUnderSampling
(Unbalanced test set) (Balanced Test Set)
Accuracy 99% 92%
Recall (Fraud) 86% 95%
Precision (Fraud) 17% 89%
F1-score (Fraud) 28% 92%
ROC AUC 0.9739 0.9798
PR AUC 0.6639 0.9851

Although overall accuracy remains high in both experimental setups, metrics like recall, precision, F1-score, and AUC
offer deeper insight into model performance under class imbalance conditions.
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In the unbalanced test set scenario, the model achieves high recall (86%) but low precision (17%), suggesting a
tendency to flag more potential frauds, even at the risk of false positives. This strategy is commonly adopted in
financial fraud detection, prioritizing the identification of high-risk transactions even if it leads to some
misclassification. It aligns with the principle in financial risk control: “Better to misreport than to underreport.”

In contrast, with a balanced training and test setup, the model performs significantly better in terms of precision (89%)
and F1-score (92%), indicating that improved data distribution helps the model more effectively distinguish between
legitimate transactions and actual fraud, without sacrificing recall. This result highlights the importance of data
balancing in developing reliable and practical fraud detection models.

4.7 Confusion Matrix and Curve Analysis

4.7.1  RandomUnderSampling (UnBalanced Test Set)

Figure 3 shows the normalized confusion matrix, where the model maintains a strong fraud detection rate while
keeping false positives reasonably low.

Confusion Matrix (%)

80
0.71

Actual 0

- 60

- 40

0.02

Actual 1

'
Pred O

0.14

Pred 1

- 20

Figure 4 presents the ROC curve with a clearly convex shape and an AUC of 0.9746, indicating high separability

between classes.

Figure 3.

Confusion Matrix (%) on Unbalanced Test Set

ROC Curve
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Figure 4. ROC Curve on Unbalanced Test Set
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Figure 5 shows the PR curve, which maintains a precision close to 1 at low recall and gradually drops as recall
increases. The overall PR-AUC of 0.6639 demonstrates acceptable performance for fraud detection in a highly
imbalanced scenario.

Precision-Recall Curve

1.0+ —— PR Curve (AUC = 0.6639)

0.8 1

0.6 4

Precision

0.4 4

0.2

0.0 4

0.0 0.2 0.4 0.6 0.8 10
Recall

Figure 5. PR Curve on Unbalance Test Set

4.7.2  RandomUnderSampling (Balanced Test Set)

Figure 6 shows normalized confusion matrix for the balanced test set. The performance of the model is more balanced
on the two categories, with 44.21% of successful predictions as non-fraudulent (category 0) and 47.37% accuracy in
predicting as fraudulent (category 1). The overall misclassification rate is low at 5.79% (predicting non-fraud as fraud)

and 2.63% (predicting fraud as non-fraud), showing that the model has good generalization ability and recognition
accuracy.

Test Set Confusion Matrix (%)

Actual 0

-25

Actual Label

-20

-15

Actual 1
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I
Predicted 0 Predicted 1
Predicted Label

Figure 6. Confusion Matrix (%) on Balance Test Set
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Figure 7 shows the ROC curve of the balanced test set, which is obviously convex, and the AUC value reaches 0.9798,
indicating that the model has a very high differentiation ability between positive and negative classes, and the overall
classification performance is superior.

Test Set ROC Curve

1.0 A

0.8 o

0.4 4 -

True Positive Rate
\

0.2 - =

00 b7 —— AUC = 0.9798

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 7. ROC Curve on Balance Test Set

Figure 8 shows the PR curves of the test set. The model maintains high precision in most of the recall intervals, and
the PR-AUC reaches 0.9851, which demonstrates excellent fraud detection performance.

Test Set Precision-Recall Curve

1.0
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Frecision

0.7 A

0.6

0.5 1 — PRAUC = 0.9851
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0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 8. PR Curve on Balance Test Set

4.8 Cross-Validation Strategy

To further validate the stability of the model under different data splits, this study employs a 5-fold stratified K-fold
cross-validation in two experiments. The cross-validation results are shown in Table 5. The performance of the model
is very stable across folds for both settings with standard deviations of 0.0180 (balanced test set) and 0.0153
(unbalanced test set), showing that the model maintains a consistent detection ability across different data divisions.
This stability indicates that the model not only performs well in a single division but also has good generalization
ability, which helps to improve its reliability and persuasiveness in practical applications.
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Table 5. K-Fold Validation Results: Balanced vs Unbalanced Test Set (Undersampling)

Evaluation Setup Fold 1 Fold2 | Fold3 | Fold 4 Fold 5 Mean F1-score Std Dev
Undersampling + 0.9174 0.9322 | 0.9655 | 0.9541 0.9259 0.9390 0.0180
Balanced Test Set
Undersampling + 0.9197 0.9206 | 0.9612 | 0.9385 0.9291 0.9338 0.0153
Unbalanced Test Set

4.9 Comparison with Existing Models

To further prove the effectiveness of the proposed hybrid model, this section compares it with several existing studies
that also use the same dataset. The comparison includes performance metrics, model structure, data processing
methods, and tuning approaches.

4.9.1 Compared to Traditional Models

While Trivedi et al. performed well in terms of accuracy using traditional machine learning models such as RF, LR,
and GB [9], their approach had low recall in identifying fraudulent transactions. In addition, the study does not clearly
state whether parameter tuning or threshold optimization was performed, and it appears that default settings may have
been used, which tends to limit the model’s recognition ability when faced with highly unbalanced data. In contrast,
this study achieves a ROC AUC performance of 0.9746 without the use of complex cost-sensitive learning, while
achieving a more balanced result between precision and recall through a reasonable data balancing process, systematic
parameter tuning, and an optimal threshold calculated based on the validation set (0.6565).

4.9.2 Compared to Deep Learning Models

The CNN combined with the PCA model proposed by Fawaz et al., while achieving good results in terms of accuracy
[17], it also suffers from several problems when deployed in practice, such as the need for high computational
resources, and the interpretability of the model has not been discussed in depth; this is particularly critical in financial
scenarios. In contrast, the hybrid tree model proposed in this study performs similarly in terms of detection capability,
but is faster to train, less computationally expensive, and can provide native interpretability through feature importance
analysis. In addition, this study visualizes threshold optimization through precision-recall curves, making the whole
modelling process more transparent.

4.9.3 Compared to Other Hybrid Models

Varmedja et al. used SMOTE to oversample before combining multiple models (e.g., MLP, RF, and NB) to improve
recall [18]. However, this technique may introduce noise and risk of overfitting in extremely imbalanced data, a
concern identified in this study. This study, on the other hand, adopts a more conservative RandomUnderSampling
approach to maintain the realism of the original data, and combines it with a precise threshold adjustment strategy to
achieve better detection results without generating synthetic data, and to achieve a more stable trade-off between
precision and recall for real system deployment.

4.9.4 Compared to Multi-Stage Tuning Approaches

Talukder et al. achieved high performance through multi-stage integration, but their model tuning process was not
described in detail, and the overall architecture was relatively complex and resource-consuming for the training
process [19]. In contrast, this study achieves similar performance through a more systematic and transparent process:
(1) systematic parameter search using RandomizedSearchCV, with F1l-scores as the optimization target and 3-fold
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cross validation; (2) visual analysis of the effects of parameters on model performance; and (3) selection of optimal
thresholds through PR curve analysis. The whole process is reproducible and interpretable and achieves an ROC AUC
of 0.9746 while maintaining computational efficiency, which is highly practical and advantageous for deployment.

4.9.5 Summary Table of Comparison

To gain a comprehensive overview of all recent studies that use the same dataset, Table 6 shows a comparison
summary of these models including our proposed model. It compares model type, performance, interpretability, tuning
method, and deployment possibility.

Table 6. Comparative analysis of different research models on European Dataset

Perform
Data ance
Study Model Interpretabi | Tuning Computatio | Deployment
ear ype R ity recision nal Cost racticali
v T :’sl;flgroce g;UC / I Precisi 1C Practicali Remarks
AUC)
High accuracy
Proposed with balanced
ision-recall;
Approach 0.9739 / . precision-recall;
(unbalance 0.6639 High interpretable
d) High (clear (systematic Low (fast and
LightGB | Undersam structure tuning, F1- trainin High (easy to | deployment-
M+RF | pling from tree- score d gn d deploy and friendly.
(Hybrid) (Random) based visualization, speed a maintain) Balanced and
efficient)
Proposed models) thr'eshold accurate,
Approach 0.9798 / adjustment) strong fraud
(balanced) 0.9846 detection with
low false
positives.
Not ﬁ;:\r/a(ldeep Low (no High Low (model | High accuracy
Vikash ct al RNN- reported,; networks parameter (resource- complexity but difficult to
(2023)[13] " | LSTM + SMOTE Accurac lack tuning intensive hinders real- | interpret and
Attention Y transparenc details training world deploy in
99.94% P Y reported) process) deployment) | production
CNN + Medium (the | Medium Medium Medium High
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From this comparison, we can see:

Deep learning models are accurate, but hard to train, not explainable, and consume more resources.
Traditional models are easier to use, but sometimes not strong enough in detecting fraud.
Multi-model fusion or multi-layer structures have strong power but are difficult to maintain or deploy.
Our model uses a moderate structure with systematic tuning and obtains good performance with lower
training cost. It is more practical and robust for real-world usage.

This shows that “more complex” is not always better. A balanced, stable, and easy-to-deploy model is more suitable
for real business needs. This research gives a practical solution that combines performance and usability in financial
fraud detection tasks.

4.9.6 Performance Comparison Against Individual Models

To further validate the effectiveness of the proposed hybrid model, this study additionally compares its performance
with the two individual base models: LGBM and RF. Each model is evaluated independently under the same data
preprocessing, hyperparameter tuning, and threshold selection procedures to ensure a fair and consistent comparison.

The results are summarized in Tables 7 and 8.

Table 7. Performance Comparison Between Individual Models and the Proposed Hybrid Approach (Unbalanced

Test Set)
Model Precision (Fraud) | Recall (Fraud) | Fl-score (Fraud) | ROC AUC | PR AUC
LightGBM 0.34 0.82 0.48 0.9750 0.6521
Random Forest 0.11 0.86 0.19 0.9725 0.7273
Hybrid (Proposed) | 0.17 0.86 0.28 0.9739 0.6639

Table 8. Performance Comparison Between Individual Models and the Proposed Hybrid Approach (Balance Test

Set
Model Precision (Fraud) | Recall (Fraud) | F1-score (Fraud) | ROC AUC | PR AUC
LightGBM 0.90 0.94 0.92 0.9811 0.9854
Random Forest 0.99 0.92 0.95 0.9791 0.9840
Hybrid (Proposed) | 0.89 0.95 0.92 0.9798 0.9846
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The LGBM model maintains strong recall in both unbalanced (0.82) and balanced (0.94) settings, indicating its
effectiveness in capturing fraudulent transactions. Its precision, however, is limited in the unbalanced scenario (0.34),
suggesting a higher number of false positives. This improves significantly under balanced conditions, reaching 0.90,
and contributes to a solid F1-score of 0.92.

The RF model performs best in terms of precision in both settings—0.11 (unbalanced) and 0.99 (balanced). While its
recall is slightly lower than LGBM in the balanced case (0.92), the overall balance between precision and recall leads
to the highest F1-score (0.95), making it effective for reducing false alarms without sacrificing detection power.

The Hybrid model, combining LGBM and RF outputs, shows a good balance between the two. It improves over
LGBM in the unbalanced case by increasing precision from 0.34 to 0.17 while retaining the same recall (0.86). In the
balanced setting, it achieves an F1-score of 0.92, on par with LGBM and just behind RF. Across both cases, its ROC
AUC and PR AUC scores consistently fall between the two base models, reinforcing its role as a stable and well-
rounded alternative.

Overall, these results highlight that ensemble learning with LGBM and RF captures the strengths of both models. This
combination helps create a more dependable fraud detection system, especially in financial environments where both
high recall and high precision are essential.

4.9.7 Compared to Other Resampling Methods

To further validate the robustness and practicality of the proposed model, this section compares
RandomUndersampling with two common oversampling techniques, SMOTE and ADASYN, to cover the
performance under two evaluation scenarios, test set imbalance and test set balance. Table 9 organizes the results of
each method in terms of the main evaluation metrics.

Table 9. Comparative Performance of Resampling Techniques under Different Test Set Conditions

Metrics RandomUnd | RandomUnd | SMOTE SMOTE ADASYN(Un | ADASYN(Ba
erSampling erSampling (Unbalanced | (Balanced) balanced test | lanced)
(Unbalanced | (Balanced) test set) set)
test set)

Accuracy 99% 92% 100% 90% 100% 94%

Recall 86% 95% 69% 80% 76% 90%

(Fraud)

Precision 17% 89% 95% 100% 83% 99%

(Fraud)

F1-score 28% 92% 80% 89% 79% 94%

(Fraud)

ROC 0.9739 0.9798 0.9695 0.9928 0.9739 0.9849

AUC

PR AUC 0.6639 0.9851 0.8198 0.9943 0.6639 0.9882

As can be seen from Table 9, in the context of a balanced test set, SMOTE and ADASYN perform well on a number
of metrics, especially the Fl-score and the PR AUC. However, such oversampling methods rely on generating
synthetic samples to extend the data for a small number of classes, which in some cases may introduce noisy or untrue
feature patterns and increase the risk of model overfitting. Especially under the premise that fraud data possesses a
high degree of heterogeneity, synthetic data may not effectively cover all representative scenarios.

In contrast, RandomUnderSampling methods are more straightforward and transparent. Although the accuracy or F1
score on the unbalanced test set is slightly inferior, it shows competitive detection ability under the setting of a
balanced test set, e.g., the F1-score reaches 92%, and the PR AUC is as high as 0.9851. More importantly, this method
has the following advantages:
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Simple operation, low computational cost, and high training efficiency;

Retaining the real sample structure, the model results are more interpretable;

Easier to deploy and maintain, suitable for a real-time detection system,;

Robust performance with tree models (e.g., LGBM and RF), which can maintain a high recall rate even when
the original data is extremely unbalanced.

Taking all factors into consideration, although SMOTE and ADASYN perform well under certain conditions,
RandomUnderSampling is still a more practical and stable choice. In the actual financial fraud prevention and control
scenarios, the model should not only “look good” but also “work well”.

5. CONCLUSION

With the theme of “machine learning-based financial transaction fraud detection”, this study starts from defining the
problem and potential risks, compiling typical fraud features and impacts, and constructing the theoretical foundation.
In terms of model design, a hybrid model integrating LightGBM and Random Forest is proposed, and through
reasonable data preprocessing, hyper-parameter tuning, soft-voting mechanism, and threshold optimization, it
achieves an 86% recall rate and 0.9746 ROC-AUC on the actual test set, which demonstrates strong recognition
capability and robustness.

Compared with a single model, the hybrid model combines the high efficiency of LGBM and the generalization ability
of RF, effectively compensating for their respective deficiencies and enhancing both prediction accuracy and training
stability. Meanwhile, in the process of weighing the real-world demands, this study compares various resampling
methods, such as undersampling, SMOTE, and ADASYN, and supplements the cross-validation analysis to further
verify the robustness and generalization of the model.

Although currently relying on a single data source and not introducing heterogeneous features such as behavioural
trajectories for the time being, further research can continue to expand the data sources, introduce deep learning (e.g.,
LSTM models) and interpretable tools (e.g., SHAP or LIME) in the future to improve the usability and transparency
of the model. Overall, the hybrid model proposed in this study performs well in terms of technical implementation
and practical results, has the potential to become a basic model for financial anti-fraud systems, and also provides an
important reference for the development of more advanced detection frameworks.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for the suggestions to improve the paper.

FUNDING STATEMENT

The authors received no funding from any party for the research and publication of this article.

AUTHOR CONTRIBUTIONS

Wan-Ping Khor: Conceptualization, Data Curation, Methodology, Validation, Writing — Original Draft Preparation;
Kah-Ong Michael Goh: Supervision, Ideation, Acquire and Editing;

Check-Yee Law: Facilitate, Review & Editing;

Connie Tee: Result Verification & Review;

Yong-Wee Sek: Data Validation & Review;

Riasat Khan: Result Verification & Review;

CONFLICT OF INTERESTS

No conflicts of interest were disclosed.

232



Journal of Informatics and Web Engineering Vol. 5 No. 1 (February 2026)

ETHICS STATEMENTS

This research utilized the European Credit Card Fraud Dataset, which is publicly available and anonymized. No human
or animal subjects were involved. As such, the study does not require ethical approval and complies with relevant data
usage policies. Our publication ethics follow The Committee of Publication Ethics (COPE) guideline.
https://publicationethics.org/.

DATA AVAILABILITY

The data that support the findings of this study are openly available in Kaggle at
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud. These data were derived from sources in the public domain.

REFERENCES

[1] INTERPOL, “INTERPOL Financial Fraud assessment: A global threat boosted by technology,” INTERPOL. Accessed:
Jul. 17, 2025. [Online]. Available: https://www.interpol.int/en/News-and-Events/News/2024/INTERPOL-Financial-
Fraud-assessment-A-global-threat-boosted-by-technology?utm_source=chatgpt.com.

[2] L. Levy, “Inside the billion-dollar identity fraud ecosystem,” TechRadar Pro. Accessed: Jul. 16,2025. [Online]. Available:
https://www.techradar.com/pro/inside-the-billion-dollar-identity-fraud-ecosystem?utm_source=chatgpt.com.

[3] O. L. Poidevin, “UN Report Urges Stronger Measures to Detect AI-Driven Deepfakes,” Reuters. Accessed: Jul. 17, 2025.
[Online]. Available: https://www.reuters.com/business/un-report-urges-stronger-measures-detect-ai-driven-deepfakes-
2025-07-11/2.

[4] S. Lalchand, V. Srinivas, B. Maggiore, and J. Henderson, “Generative Al is Expected to Magnify the Risk of Deepfakes
and Other Fraud in Banking,” Deloitte Insights. Accessed: Jul. 17, 2025. [Online]. Available:
https://www.deloitte.com/us/en/insights/industry/financial-services/deepfake-banking-fraud-risk-on-the-rise.html.

[5] N. Conte, “Visualizing Global Losses from Financial Scams.” Accessed: Jul. 17, 2025. [Online]. Available:
https://www.visualcapitalist.com/global-losses-from-financial-scams/#google vignette.

[6] B. M. Naman, and A. M. Abdulazeez, “Credit card fraud detection based on machine learning classification algorithm”,
Indonesian Journal of Computer Science, vol. 13, no. 3, 2024, doi: 10.33022/ijcs.v13i3.3996.

[7] Y. Chen, C. Zhao, Y. Xu, and C. Nie, “Year-over-year developments in financial fraud detection via deep learning: a
systematic literature review,” arXiv, 2025, doi: 10.48550/arXiv.2502.00201.

[8] J. Xu, T. Yang, S. Zhuang, H. Li, and W. Lu, “Al-based financial transaction monitoring and fraud prevention with
behaviour prediction”, Preprints, 2024, doi: 10.20944/preprints202407.1107.v1

[9] S. Simaiya, U. K. Lilhore, S. K. Sharma, and N. K. Trivedi, “An efficient credit card fraud detection model based on
machine learning methods,” International Journal of Advanced Science and Technology, vol. 29, no. 5, pp. 3414-3424,
Jan. 2020.

[10] P. Hajek, M. Abedin, and U. Sivarajah, “Fraud detection in mobile payment systems using an XGBoost-based framework”,
Information Systems Frontiers, vol. 25, no. 5, pp. 1985-2003, 2022, doi: 10.1007/s10796-022-10346-6.

[11] H. O. Bello, C. Idemudia, and T. V. Iyelolu, “Integrating machine learning and blockchain: Conceptual frameworks for
real-time fraud detection and prevention,” World Journal of Advanced Research and Reviews, vol. 23, no. 1, pp. 056068,
Jul. 2024, doi: 10.30574/wjarr.2024.23.1.1985.

[12] I. D. Mienye, and T. G. Swart, “A hybrid deep learning approach with Generative Adversarial Network for credit card
fraud detection,” Technologies (Basel), vol. 12, no. 10, Oct. 2024, doi: 10.3390/technologies12100186.

233



Journal of Informatics and Web Engineering Vol. 5 No. 1 (February 2026)

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[22]

V. C. Maheshwari, N. A. Osman, and N. Aziz, “A hybrid approach adopted for credit card fraud detection based on deep
neural networks and attention mechanism,” Journal of Advanced Research in Applied Science and Engineering
Technology, Sep. 2023, doi: 10.37934/araset.32.1.315331.

A. Dal Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi, “Credit Card Fraud Detection Dataset,” Kaggle.

N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique”, Journal of
Artificial Intelligence Research, vol. 16, pp. 321-357, 2002, doi: 10.1613/jair.953.

H. He, and E. A. Garcia, “Learning from imbalanced data," in /EEE Transactions on Knowledge and Data Engineering,
vol. 21, no. 9, pp. 1263-1284, Sept. 2009, doi: 10.1109/TKDE.2008.239.

F. K. Alarfaj, I. Malik, H. U. Khan, N. Almusallam, M. Ramzan, and M. Ahmed, “Credit card fraud detection using state-
of-the-art machine learning and deep learning algorithms,” in IEEE Access, vol. 10, pp. 39700-39715, 2022, doi:
10.1109/ACCESS.2022.3166891.

D. Varmedja, M. Karanovic, S. Sladojevic, M. Arsenovic, and A. Anderla, “Credit card fraud detection - machine learning
methods,” 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and
Herzegovina, pp. 1-5, 2019, doi: 10.1109/INFOTEH.2019.8717766.

M. A. Talukder, M. Khalid, and M. A. Uddin, “An integrated multistage ensemble machine learning model for fraudulent
transaction detection”, Journal of Big Data, vol. 11, no. 1, 2024, doi: 10.1186/s40537-024-00996-5.

Y. Wang, “A data balancing and ensemble learning approach for credit card fraud detection," 2025 4th International
Symposium on Computer Applications and Information Technology (ISCAIT), Xi'an, China, pp. 386-390, 2025, doi:
10.1109/ISCAIT64916.2025.11010591.

V. V. K. Reddy, R. V. K. Reddy, M. S. K. Munaga, B. Karnam, S. K. Maddila, and C. S. Kolli, “Deep learning-based
credit card fraud detection in federated learning”, Expert Systems With Applications, vol. 255, pp. 124493, 2024, doi:
10.1016/j.eswa.2024.124493.

D. Breskuviene, and G. Dzemyda, “Enhancing credit card fraud detection: highly imbalanced data case”, Journal of Big
Data, vol. 11, no. 1, 2024, doi: 10.1186/s40537-024-01059-5.

BIOGRAPHIES OF AUTHORS

Wan-Ping Khor is currently a final-year undergraduate student in the Faculty of Information
Science and Technology at Multimedia University, Malaysia. Her research interests include
data analytics, fraud detection, and machine learning. She has experience in full-stack
development and is passionate about applying data-driven approaches to solve real-world
problems. She can be contacted at wanping1023@outlook.com.

234



Journal of Informatics and Web Engineering Vol. 5 No. 1 (February 2026)

Kah-Ong Michael Goh is an Associate Professor at Multimedia University, specializing in Al,
biometrics, machine learning, bioinformatics, and cybersecurity. His research has appeared in
top-tier journals such as IEEE Access, Applied Soft Computing, and Expert Systems with
Applications. He has received prestigious awards including the ITEX Gold Medal, RICES Gold
Medal, and iNVENTX Award. His recent work focuses on advancing intelligent systems in
healthcare, security, and computer vision through high-impact, interdisciplinary research and
innovation. He can be contacted at michael.goh@mmu.edu.my.

Check-Yee Law is a lecturer at Faculty of Information Science and Technology (FIST),
Multimedia University (MMU), Melaka, Malaysia. Her research interests span the fields of
teaching and learning to development of systems, software, and mobile applications. Topics of
interest include but are not limited to educational technology, human computer interaction,
visual analytics, smart farming, user-centred design, Internet of Things (IoT), mobile
computing, information systems, etc. She can be contacted at cylaw@mmu.edu.my.

Connie Tee received both the MSc (IT) and PhD (IT) degrees from Multimedia University in
2005 and 2015, respectively. She is a Professor in the Faculty of Information Science and
Technology Multimedia University since 2021. She is currently holding the position of the
Dean of the Institute for Postgraduate Studies. Her research interests include computer vision,
machine learning, deep learning and image processing. She is a senior member of the IEEE.
She can be contacted at tee.connie@mmu.edu.my.

Yong-Wee Sek is a researcher at the Faculty of Artificial Intelligence and Cyber Security
(FAIX), Universiti Teknikal Malaysia Melaka. His research interests include technology
adoption, Internet of Things (IoT), mobile computing, smart farming, and supply chain
innovation. He has published in high-impact journals such as IEEE Access, IET Computer
Vision, and Al Open. He actively contributes as a reviewer for journals including IEEE Access,
F1000, and Brain Informatics. He can be contacted via email at ywsek@utem.edu.my.

Riasat Khan received the B.Sc. degree in Electrical and Electronic Engineering from the
Islamic University of Technology, Bangladesh, in 2010, and the M.Sc. and Ph.D. degrees in
Electrical and Computer Engineering from New Mexico State University, Las Cruces, USA, in
2018. He holds the position of an Associate Professor with the Department of Electrical and
Computer Engineering, North South University, Dhaka, Bangladesh. His research interests
include data science, machine learning, computational bioelectromagnetics, and power

3 electronics. He can be contacted at riasat.khan@northsouth.edu.

235



