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Abstract - The huge rise in the number of medical images has caused a major problem in radiology departments. Radiologists are 

now working harder than ever, which affects the quality of their diagnoses and patient care. It takes 15 to 30 minutes to write a 

manual radiological report for each case, and different people may see things differently. Modern departments process over 230 

cases a week, which causes long delays in diagnosis. Automated report generation systems that are already in use have a lot of 

problems, such as not being able to be interpreted clinically, not having enough Digital Imaging and Communications in Medicine 

(DICOM) integration, and not having the right deployment architectures. This makes it hard for medical artificial intelligence to 

be widely used in clinical settings. This work shows a new automated web-based system for making radiologist reports from chest 

X-ray pictures using cutting-edge deep learning methods.  We suggest using a CheXNet-based convolutional neural network (CNN) 

with attention mechanisms and Gated Recurrent Units (GRU) to make diagnostic summaries that are useful in a clinical setting.  

The system is fully compatible with DICOM and uses Streamlit, Docker, and Amazon Web Services (AWS) cloud services to 

make clinical workflows operate together smoothly. The Indiana University Chest X-ray dataset, which has 7,491 pictures and 

3,955 reports, was used for training and testing.  The system did much better than the best methods available, with BLEU-1, BLEU-

2, BLEU-3, and BLEU-4 scores of 0.685, 0.595, 0.533, and 0.482, respectively, as well as a METEOR score of 0.392 and a 

ROUGE-L score of 0.718. The deployed web application provides real-time report generation with attention heatmap visualisations 

enabling clinicians to understand model decision-making processes. This interpretability feature addresses critical trust barriers in 

clinical Artificial Intelligence (AI) adoption whilst supporting radiologists with diagnostic assistance for routine chest imaging 

cases. 
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1. INTRODUCTION  

Medical imaging services are very important to healthcare because they help doctors make better diagnoses with tools 

like X-rays, Computed Tomography (CT) scans, Magnetic Resonance Imagings (MRIs), and ultrasounds.  These 

methods are important for identifying different disorders and are becoming an important part of how healthcare is 

delivered today.  The digital transformation of healthcare has led to a huge increase in the number of medical imaging 

studies. For example, modern digital radiography systems process an average of 230 adults and 57 paediatric patients 

per week [1]. This puts a lot of pressure on radiologists' workloads and could slow down the delivery of healthcare. 

Radiologists are highly trained professionals who turn complicated visual information into detailed written findings.  

These reports provide important discoveries, evaluations by doctors, and important suggestions for how to manage 

patients.  This process can take a long time and be unpredictable, especially since there are more and more medical 

imaging investigations that are putting a lot of stress on radiologists' workloads. 

Automated radiology report creation has become an important topic of research in the last several years. It sits at the 

crossroads of artificial intelligence, medical imaging, and healthcare informatics.  This study makes new contributions 

by combining advanced attention mechanisms with the CheXNet architecture to make it easier to understand, using 

full Digital Imaging and Communications in Medicine (DICOM) metadata preservation for clinical workflows, and 

creating a scalable web-based deployment architecture using modern containerisation and cloud technologies. 

Several research groups have tried to make automated radiology report production to make the work of radiologists 

easier.  Chen et al. produced R2Gen, which uses memory-driven transformers to make reports that make more sense 

[2].  Alfarghaly et al. suggested using transformer-based methods that mix visual encoders with language models to 

make text production better [3].  Raminedi et al. came up with vision-transformer architectures to make visual-textual 

alignment better [4].  To make sure that facts stay the same in generated reports, Zhang et al. created attention-based 

networks [5]. 

However, these current systems have major flaws that make it hard for them to be used in many clinical settings.  

Current state-of-the-art systems don't do very well on clinical evaluation measures; most of them produce BLEU-4 

scores below 0.3, which isn't good enough for reliable clinical use.  More crucially, these systems don't have the ability 

to be understood, which is necessary for clinical trust. They also do not work with existing medical imaging standards 

(DICOM) and do not have architectures that are ready for use in healthcare settings.  

Evidence confirms that the radiology reporting crisis persists despite these research efforts. Recent workforce studies 

indicate radiologist shortages continue growing, with imaging volume increasing 3 to 4% annually while radiologist 

supply grows much slower [6]. No automated report generation systems have achieved routine clinical deployment, 

and manual reporting remains the standard practice globally. This demonstrates that while existing research has 

advanced the field technically, fundamental barriers to real-world clinical implementation remain unaddressed. 

This study shows how to develop a complete automated system for making radiology reports from chest X-ray images, 

with a focus on the impression portion of clinical reports. We use a CheXNet-based Convolutional Neural Network 

(CNN) to extract complex features, together with an attention mechanism and a Gated Recurrent Unit (GRU) to create 

reports in order. We chose GRU over Long Short-Term Memory (LSTM) networks or Transformer architectures 

because our empirical analysis showed that GRU works better for generating medical text with short sequences, is 

easier to compute, and converges better for clinical vocabulary.  

The system is designed as a modern web-based application utilising contemporary software engineering practices, 

including Streamlit for user interface development, Docker for containerisation, and Amazon Web Services (AWS) 

for scalable cloud deployment. 

 

2. LITERATURE REVIEW  

2.1 Deep Learning Applications in Medical Image Analysis  

The rapid rise of medical imaging data has made it necessary to have advanced computer systems that can quickly 

and accurately analyse and interpret the data.  Recent advances in deep learning have changed the way medical images 

are processed. CNNs, for example, have been shown to operate very well in many diagnostic settings. Litjens et al. 

performed an extensive assessment of deep learning applications in medical imaging, emphasising the revolutionary 
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potential of these technologies across various modalities and clinical applications [7]. CheXNet is a major step forward 

in medical AI because it can find pneumonia in chest X-rays with the same accuracy as a radiologist.  CheXNet is 

based on DenseNet121 architecture and was trained on the ChestX-ray14 datasets. It has set the stage for more research 

into automated chest radiography processing.  The model works well because it can pick up on little pathological traits 

while yet being fast enough to be used in clinical settings. 

But the ways that automated radiology report generation is done now typically don't fully connect the parts that analyse 

images with the parts that write in natural language.  This work fixes these problems by suggesting a single architecture 

that smoothly blends extracting visual features with generating reports that make sense linguistically. It also makes 

the reports easier to understand by using attention processes. 

Recent developments indicate that transformer-based design can surpass conventional CNN-Recurrent Neural 

Network (RNN) frameworks in the creation of radiological reports.  Alfarghaly et al. [3] presented CDGPT2, a hybrid 

model that integrates CheXNet's dense feature encoding with GPT-2 for text synthesis.  Their model exhibited 

enhanced fluency and domain alignment in generated reports with the use of clinical semantic embeddings and cross-

domain pretraining. Raminedi et al. [4] presented ViGPT2, which combines a Vision Transformer (ViT) as the encoder 

with GPT-2 as the decoder. The architecture was designed to better semantic alignment between visual features and 

textual descriptions, resulting in notable improvements in Bilingual Evaluation Understudy (BLEU) and Recall-

Oriented Understudy for Gisting Evaluation (ROUGE) scores on the Indiana dataset. 

Zhang et al. [5] developed a Contrastive Attention Network that improves factual consistency by explicitly linking 

radiological evidence to disease diagnosis through contrastive learning. This strategy generates reports that are both 

coherent and supported by visual evidence, crucial for clinical credibility. These models reflect a growing trend in 

radiology Natural Language Processing (NLP) towards using large-scale pre-trained language models, multimodal 

fusion strategies, and attention-based alignment techniques. 

The evolution from traditional computer-aided diagnosis systems to deep learning approaches represents a paradigm 

shift in medical imaging. Early systems relied heavily on manually constructed features and rule-based algorithms, 

which encountered difficulties due to the complexity and diversity of medical images.   The emergence of deep 

learning architecture, particularly CNNs, has enabled automatic feature extraction from raw image data, significantly 

improving diagnostic accuracy in multiple medical disciplines, including ophthalmology, dermatology, and pathology. 

Collectively, these studies indicate a paradigm shift from conventional sequential CNN–RNN models toward 

multimodal transformers that enable end-to-end learning of visual–textual relationships. In contrast, our proposed 

system maintains the interpretability and efficiency of a GRU-based decoder while incorporating hierarchical attention 

and leveraging the CheXNet backbone. This strikes a balance between clinical reliability and state-of-the-art 

performance, particularly in resource-constrained deployment scenarios. 

 

2.2. Attention Mechanisms and Interpretability in Medical AI  

Attention mechanisms have revolutionised computer vision and natural language processing by enabling models to 

selectively focus on regions of interest in input data during processing [8]. In medical imaging tasks, the attention 

mechanism is helpful because it captures primary interpretability benefits by weighing specific anatomical regions 

with the highest contribution to diagnostic decisions. Interpretability is vital in clinical applications, where 

understanding the reasoning behind automatic choices is needed to build trust and ensure safe deployment. 

Clinical validation tests have indicated that attention-based visualisations may often overlap with areas of interest in 

diagnosis highlighted by experienced radiologists. The coincidence of computerised attention maps with clinical 

thinking provides a foundation for building trust in AI-assisted diagnostic protocols. 

Xu et al. suggested the "Show, Attend, and Tell" framework to illustrate how visual attention can increase image 

captioning systems' accuracy and clarity [8]. The model has also been successfully applied to medical use, with 

visualisation of model attention providing valuable insights into automatic diagnosis tasks. More recent medical 

imaging applications of attention mechanisms have attained high accuracy and clinical acceptance improvements. 

Merging attention mechanisms with medical image analysis addresses a critical void in the existing literature by 

making automated decision-making transparent. Unlike typical black-box methods, attention-based models generate 

explainable visualisation that can be audited by clinical experts, hence enhancing trust and facilitating clinical adoption. 
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2.3 Automated Report Generation and Advanced NLP Techniques  

The evolution of technology for the automatic generation of medical reports has progressed from template-based 

methods to advanced neural language models.  Prior systems employed rule-based methodologies and fixed templates, 

which were inadequate for addressing the complexity and diversity of clinical language. The current approaches utilise 

sequence-to-sequence learning and other sophisticated natural language processing techniques to generate more 

natural and precise descriptions of clinics. 

Recently, Parres et al. conducted a study that proved the synergy of reinforcement learning with text augmentation 

methods, leading to more effective performance based on radiology report quality and diversity [9]. This approach 

has established new standards for the metrics of BLEU, METEOR, and ROUGE scores [10-12] while addressing the 

issue of generating clinically pertinent and diverse reports. 

Recent advances in automated radiology reporting have shown promising results across different imaging modalities. 

Singh and Singh [13] developed ChestX-Transcribe using multimodal transformers, while Jorg et al. [14] focused on 

workflow integration challenges. Nakaura et al. [15] conducted preliminary assessments comparing AI-generated 

reports with radiologist reports, highlighting both opportunities and limitations in current approaches. 

However, the literature presents a severe shortage of inclusive evaluation tools encompassing both quantitative 

measures and qualitative clinical assessment. Many studies depend on text similarity measures independently, lacking 

validation from clinical experts, which restricts evaluations of in vivo clinical utility.  This study incorporates 

radiologist reviews to evaluate in conjunction with standard measures. 

 

2.4 Web-Based Medical AI Systems and Clinical Integration 

The implementation of AI systems in healthcare necessitates advanced web engineering technologies to tackle issues 

concerning scalability, security, privacy, and integration with clinical workflows.  Contemporary containerisation 

technologies, exemplified by Docker, alongside cloud solutions like AWS, facilitate the creation of scalable and 

resilient medical AI applications suitable for deployment across diverse healthcare settings. 

Clinical integration is one of the greatest challenges to the deployment of medical AI. Problem-free integration into 

already deployed Picture Archiving and Communication Systems (PACS), Electronic Health Records (EHRs), and 

other healthcare information systems is required. The DICOM standard plays a major role here, providing a 

standardised format for medical image data that enables interoperability between different systems and vendors. 

Recent studies focus little on complete DICOM metadata retention and clinical workflow integration into automated 

reporting systems. This study introduces new approaches to preserving and presenting essential DICOM metadata 

fields necessary for clinical decision-making in diagnostic integrity maintenance through automated reporting. 

 

3. RESEARCH METHODOLOGY  

This study presents a comprehensive deep learning framework for automatic generation of radiology reports from 

chest X-ray images, as a modern web-based system. The methodology comprises several integrated components, 

including advanced image processing, sophisticated deep learning architectures, attention mechanisms for 

interpretability, and a robust web deployment infrastructure.  

Automated radiology report generation research necessitates a dataset that meets several essential criteria to facilitate 

robust model development and reliable evaluation.  Essential requirements consist of:  

• sufficient scale with minimum 5,000 image-report pairs for adequate training diversity 

• high-quality reports written by certified radiologists following clinical standards 

• standardised high-resolution medical imaging compatible with clinical workflows 

• public availability enabling research reproducibility and comparative evaluation 

• diverse pathological representation reflecting real-world clinical practice. 

The Indiana University Chest X-ray dataset was chosen due to its comprehensive fulfilment of all specified criteria.  

The dataset comprises 7,491 chest X-ray images and 3,955 corresponding clinical reports, offering an adequate scale 
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for effective training while adhering to clinical quality standards.  The dataset is publicly accessible, well-documented 

in academic literature, and encompasses a variety of pathological cases from actual clinical practice, rendering it 

suitable for the development and assessment of automated report generation systems in chest radiography applications. 

 

3.1 Novel Contributions  

This research enhances radiology report generation via three principal innovations:  

1) Attention-based clinical interpretability - involves the implementation of attention visualisation mechanisms 

that emphasise anatomical regions impacting report generation, thereby addressing the significant "black 

box" issue hindering clinical adoption.  

2) Complete clinical integration - involves the development of comprehensive DICOM metadata preservation 

and PACS compatibility to ensure seamless integration within healthcare workflows, a feature that existing 

research prototypes currently lack.  

3) Production-ready deployment architecture - creating a scalable web-based system with containerisation and 

cloud infrastructure that enables real-world clinical deployment rather than laboratory demonstration.  

These contributions bridge the significant gap between research achievements and practical clinical implementation 

requirements. 

 

3.2 Dataset Description and Characteristics  

The chest X-ray dataset used in this study is available to the public and comes from Indiana University [9]. It is one 

of the largest and most often used resources for AI research in radiology.   There are 7,491 frontal and lateral chest X-

ray images in the dataset, together with 3,955 XML-formatted radiologist reports that go with them.   This dataset is 

a strong foundation for training and testing automated report generating systems since it includes a wide range of 

pathological cases and reporting styles that are similar to what happens in real clinical practice. 

We used stratified sampling to split the dataset into three groups: training (70%), validation (15%), and test (15%). 

This made sure that each group was a good representation of the whole dataset.   This way of dividing the data makes 

sure that the abnormal findings are evenly spread out across all subsets, which makes it easier to get a good picture of 

how well the model works. 

Although extensive datasets like MIMIC-CXR and ChestX-ray14, each containing over 100,000 images, are 

accessible and commonly used in research, the Indiana University dataset was chosen for this study due to research 

needs.  The Indiana University dataset offers a comprehensive collection of well-structured radiology reports, 

featuring distinct findings and impression sections, crucial for the training of report generation models.  This dataset 

has been widely utilised as a benchmark in the literature on automated report generation, facilitating direct 

comparisons with established baselines and state-of-the-art methods. 

The dataset size of 7,491 images with 3,955 corresponding reports provides sufficient data for robust model training 

and evaluation whilst being computationally manageable for comprehensive experimentation and hyperparameter 

optimisation. This scale has been validated in numerous previous studies demonstrating successful automated report 

generation performance, confirming its adequacy for achieving reliable research outcomes. 

 

3.3 Data Preprocessing and Preparation 

3.3.1 Image Preprocessing Pipeline 

All chest X-ray images undergo a standardised preprocessing pipeline designed to ensure consistency and optimise 

model performance. Images are resized to 512×512 pixels to standardise input dimensions whilst preserving sufficient 

detail for accurate analysis. Pixel value normalisation is performed to map all intensity values to the range [0, 1], 

ensuring consistency across different imaging systems and acquisition parameters. 
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3.3.2 Text Preprocessing and Tokenisation 

The impression section of each radiology report is carefully extracted and processed to create suitable training targets 

for the sequence generation model. Special tokens <START> and <END> are strategically added to indicate sequence 

boundaries. The text is tokenised using the Keras Tokenizer with a vocabulary size of 5,000 most frequent words, and 

the maximum sequence length is set to 28 tokens based on a statistical analysis of impression lengths in the training 

dataset. 

 

3.4 Deep Learning Model Architecture 

3.4.1 The Encoder Architecture Design 

The encoder component employs CheXNet-based CNN architecture specifically optimised for chest X-ray analysis. 

CheXNet, built upon DenseNet121 architecture and pre-trained on the ChestX-ray14 dataset, provides robust feature 

extraction capabilities. The final fully connected layers are removed to function as a feature extractor, with a Global 

Average Pooling layer added to reduce dimensionality whilst maintaining spatial information. The overall 

architectural design of the CheXNet model is illustrated in Figure 1. 

 
Figure 1. Architectural Design of the CheXNet Model with Pre-Trained DenseNet Blocks. Adapted from [9] 

 
The choice to select GRU instead of LSTM networks or Transformer architectures is deliberate. It is supported by 

empirical assessment and the requirements of medical text creation. GRU networks surpass their counterparts in tasks 

with restricted sequence lengths (<28 tokens), necessitating 25% fewer parameters than LSTM networks while 

achieving comparable performance. Furthermore, GRU networks provide enhanced convergence characteristics for 

clinical terminology and diminished computational cost, rendering them the optimal selection for real-time clinical 
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implementation contexts. Recent work by Akbar et al. [16] has also demonstrated the effectiveness of GRU-based 

approaches for chest X-ray report generation, supporting our architectural choice. 

 

3.4.2 Attention Mechanism Implementation 

A sophisticated global attention mechanism enables the model to focus selectively on relevant regions of input images 

during report generation. The attention mechanism calculates weights αt, i for each spatial location i at decoding step 

t as shown in Equation (1). 

𝛼{𝑡,1} = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑠𝑐𝑜𝑟𝑒(ℎ{𝑡−1}, ℎ𝑖))                                                               (1)  

Where ht-1 represents the previous decoder's hidden state and hi represents the encoder output at spatial location i. 

The context vector ct is computed as a weighted sum of encoder outputs, providing focused visual information for 

each generation step.  

 

3.4.3 The Decoder Architecture and Sequential Generation 

The decoder has an embedding layer with 256 dimensions, a GRU layer with 512 hidden sizes, and a dense output 

layer with softmax activation.  The GRU processes the previous word embedding and the context vector from the 

attention mechanism at each decoding step. 

 

3.4.4. The Overall Architecture 

 The complete system integrates CheXNet feature extraction with attention-guided sequence generation, as illustrated 

in Figure 2. 

 
Figure 2. Complete System Architecture with CheXNet, Attention, and GRU Integration 

 

3.5 Training Configuration and Hyperparameters 

The model training employs carefully optimised hyperparameters determined through systematic grid search 

validation. The selected hyperparameters and their justifications are summarised in Table 1. 
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Table 1. Model Training Hyperparameters and Justification 

Parameter 

 

Value Justification 

Learning Rate 0.001 Optimal convergence rate validated through learning curves 

Batch Size 32 Memory-performance trade-off for 512×512 images 

Epochs 50 Sufficient for convergence without overfitting 

Optimizer Adam Superior performance for medical imaging tasks 

Loss Function Sparse Categorical 

Cross-entropy 

Appropriate for multi-class word prediction 

Dropout Rate 0.3 Prevents overfitting in GRU layers 

 

Teacher forcing is applied during training with a decay schedule, starting at 100% and reducing to 50% over training 

epochs to improve model robustness. 

 

3.6 DICOM Integration and Clinical Workflow Support 

The system provides comprehensive DICOM support, enabling direct processing of standard medical imaging formats 

used throughout the healthcare industry. Critical DICOM metadata fields are preserved and displayed. An illustration 

of the DICOM metadata extraction interface is shown in Figure 3. 

 

Figure 1: DICOM Metadata Extraction Interface 

• Study Date/Time for temporal context 

• Modality specifications (CR, DX) for technical context 

• Patient demographics and study identifiers 

• Acquisition parameters and technical settings 

 

3.7 Evaluation Methodology 

The performance of the model is measured using several metrics that work together. 
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• BLEU Scores (1–4): These show how much the generated and reference reports share n-grams. 

• Metric for Evaluation of Translation with Explicit ORdering (METEOR) Score: Uses stemming and 

synonym to check for semantic similarity 

• ROUGE-L Score: Measures how similar the longest common subsequence is 

• Perplexity: Shows how sure the model is about its predictions 

 

3.8 Web-Based Deployment Architecture 

Contemporary web engineering practices for healthcare applications must address both user accessibility and 

systematic documentation requirements to ensure robust deployment [17-18]. The deployment architecture utilises 

contemporary web engineering methodologies.  

The frontend is created in Streamlit framework, which offers an intuitive interface that facilitates: 

• DICOM file transfer via drag-and-drop 

• Real-time report generation 

• Interactive visualisation of attention maps 

• Extensive metadata presentation 

However, the Docker containers ensure consistent deployment across environments, packaging dependencies, libraries, 

and configuration files. Multi-stage builds optimise container size whilst maintaining functionality. 

The AWS Elastic Container Service (ECS) provides scalable hosting with: 

• Auto-scaling based on demand 

• Load balancing for high availability 

• Secure HTTPS endpoints 

• Automated backup and monitoring 

 

4. RESULTS AND DISCUSSIONS  

4.1 Training Performance and Learning Dynamics 

The training process demonstrated stable convergence with consistent improvement across multiple epochs. Training 

and validation losses were continuously monitored to assess learning effectiveness and generalisation capability as 

shown in Figure 4. 

 

Figure 4. Training and Validation Loss Curves Over 10 Epochs. The Model Shows Steady Convergence with 

Decreasing Training Loss and Stabilised Validation Loss 

The training curves demonstrate consistent convergence across 10 epochs, exhibiting performance enhancements 

without signs of overfitting. The concluding training loss of 0.30 and validation loss of 0.55 indicate proficient learning 

and generalisation.  
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The training loss diminished from 1.78 to 0.30, while the validation loss reduced from 0.80 to 0.55. This pattern 

validates the model's capacity to acquire visual-to-text associations and generalise to novel data. 

 

4.2 Comprehensive Quantitative Performance Evaluation 

Extensive evaluation using multiple metrics provides a comprehensive assessment of model performance across 

different aspects of text generation quality, as shown in Table 2.  

Table 2. Comprehensive Performance Metrics Comparison 

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METE

OR 

ROUGE-

1 

ROUGE-

2 

ROUGE-

L 

CheXNet + 

Attention + 

GRU 

0.685 0.595 0.533 0.482 0.392 0.74 0.718 0.685 

CheXNet + 

LSTM 

0.189 0.087 0.043 0.014 0.232 0.195 0.085 0.191 

InceptionV3 + 

GRU 

0.312 0.213 0.145 0.086 0.201 0.198 0.089 0.195 

EfficientNet + 

GRU 

0.298 0.189 0.124 0.071 0.218 0.186 0.082 0.183 

 

The comprehensive evaluation reveals that while CheXNet with attention mechanism demonstrates strong 

performance in semantic understanding metrics (METEOR: 0.250), the interpretability benefits justify the 

performance characteristics compared to simpler architectures. The ROUGE scores demonstrate effective content 

overlap with reference reports. 

 

4.3 Attention Visualisation and Interpretability Analysis 

Attention maps generated by the CheXNet attention model provide valuable insights into the model's decision-making 

process by highlighting specific regions of chest X-rays that influence report generation. Systematic analysis of 

attention patterns reveals clinically appropriate focus areas: 

• Pulmonary findings: Attention concentrates on relevant lung fields when describing parenchymal 

abnormalities 

• Cardiac assessments: Mediastinal focus during cardiac-related descriptions 

• Skeletal observations: Appropriate attention to bony structures when relevant 

Quantitative analysis of attention entropy demonstrates that the model exhibits focused attention (mean entropy = 2.34) 

compared to random attention patterns (entropy = 4.12), indicating meaningful attention allocation. 

 

4.4 Comparative Analysis with State-of-the-Art Systems 

Comparison with published systems demonstrates competitive performance whilst providing enhanced interpretability, 

as shown in Table 3. 

The proposed model demonstrates superior performance when compared to recent state-of-the-art systems across all 

major evaluation metrics. As shown in Table 2, our system outperforms previously published approaches such as 

ViGPT2 (Raminedi et al. [4]), and Junior et al. [19], particularly in higher-order n-gram metrics (BLEU-3, BLEU-4) 

and semantic alignment measures (METEOR and ROUGE-L). These improvements validate the effectiveness of 
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integrating CheXNet's dense feature representation with attention-enhanced GRU decoding. Unlike many prior 

models that focus solely on generation quality, our system also incorporates attention visualisation, enabling 

interpretability and clinicians oversight a critical requirement for deployment in real-world medical settings. This 

attention-driven architecture contributes not only to improved report coherence but also enhances trust and 

transparency in AI-assisted diagnostics. 

Table 3. Comparison with State-of-the-Art 

System BLEU-

1 

BLEU-

2 

BLEU-3 BLEU-4 METEOR ROUGE-1 ROUGE-L 

Our System 

(CheXNet + 

Attention + GRU) 

0.685 0.595 0.533 0.482 0.392 0.74 0.718 

Niksaz et al.  

(ResNeXt + BioBert) 

0.178 0.146 0.135 0.102    

Junior et al. 0.377 0.239 0.168 0.124 0.322  0.3 

Raminedi et al. 

(ViGPT2) 

0.571 0.385 0.291 0.226   0.433 

Akbar et al. 0.558 0.463 0.311 0.097   0.448 

 

4.5 Web Application Performance and User Experience 

The deployed Streamlit application successfully provides a user-friendly interface enabling healthcare professionals 

to upload chest X-ray images and receive generated reports in real-time. The Streamlit interface also features an 

attention heatmap, as shown in Figure 5. 

 

Figure 2: Complete Streamlit Application Interface with Attention Visualisation 

 

The Docker containerisation ensures consistent performance across different deployment environments, whilst AWS 

hosting provides reliable availability and automatic scaling capabilities 
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4.6 Performance Analysis and Benchmarking 

 

The results show our system performs well compared to previous work. We achieved BLEU-1 scores of 0.685, which 

is much higher than the 0.178 reported by Niksaz et al. [19] and 0.377 by Junior et al. [20]. The METEOR score of 

0.392 shows the system understands meaning well, not just matching words. 

 

Some newer transformer systems report different performance levels, but it's hard to compare directly since everyone 

uses slightly different evaluation methods. What makes our system different is that it's designed for practical 

deployment, most other systems are just research prototypes. 

 

The attention maps help show why the system made certain decisions, which could be valuable for medical 

applications. The ROUGE-L score of 0.718 means the reports have good structure and flow. These metrics suggest 

the system generates coherent, meaningful reports. 

 

The main advantages are practical design features: it generates reports quickly, works with medical imaging standards 

through DICOM compatibility, provides interpretability through attention visualisation, and has a complete web-based 

deployment architecture rather than just experimental code. 

 

The performance across different metrics shows the system works reliably on the test dataset. The training was stable 

and didn't overfit, suggesting the architecture is sound for this type of text generation task. 

 

5. CONCLUSION  

This study presented a comprehensive automated system for generating radiology reports from chest X-ray images, 

addressing critical gaps in existing literature through novel contributions in interpretability, comprehensive evaluation, 

and web-based deployment. The CheXNet attention-based architecture achieved exceptional performance across 

multiple evaluation metrics whilst providing essential transparency through attention visualisation capabilities. 

The comprehensive evaluation methodology, incorporating quantitative metrics (BLEU, METEOR, ROUGE-L), 

demonstrates the system's state-of-the-art performance levels. The substantial improvements over existing systems in 

BLEU-1 scores compared to baseline approaches indicate significant advancement in automated radiology report 

generation capabilities. 

The successful web-based deployment using modern engineering practices (Streamlit, Docker, AWS) demonstrates 

practical scalability and integration capabilities essential for healthcare environments. The comprehensive DICOM 

metadata preservation ensures clinical workflow compatibility whilst maintaining diagnostic integrity throughout the 

automated reporting process. 

The novel contributions are as follows: 

1. State-of-the-art performance with CheXNet attention mechanism achieving BLEU-4 score of 0.482 

2. Comprehensive attention visualisation for enhanced interpretability in radiology report generation 

3. Robust DICOM metadata preservation for clinical workflow integration 

4. Scalable web-based deployment architecture for real-world clinical environments 

Nevertheless, the current system exhibits limitations in handling rare pathological presentations and complex multi-

finding cases. Additionally, the focus on impression sections limits comprehensive reporting capabilities. Future work 

should address these limitations through expanded training datasets and multi-section report generation. 

Some future works include planned enhancements, expanding multi-modal imaging (CT, MRI), implementing 

transformer architectures for improved sequence modelling, developing multi-section report generation capabilities, 

and conducting large-scale clinical trials to validate workflow integration and efficiency improvements. 

This research demonstrates that AI-powered automated reporting systems can achieve clinically acceptable 

performance levels whilst providing essential interpretability features. The web-based deployment model offers 

significant potential for widespread clinical adoption and integration into existing healthcare infrastructure.  
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