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Abstract – Conjugate gradient method (CGM) is one of the most efficient numerical methods for solving unconstrained 

optimization problems. It is also known as an iterative method with simple formulation. The classical CGM has always been an 

interest to the current researchers in improving the formulation which are categorized into three-term (TTCGM), spectral (SCGM), 

hybrid and scaled CGM. Although there are many variations of the CGM available, choosing the most efficient and effective one 

for a particular problem can be a time-consuming process. In this study, spectral Hestenes-Stiefel (sHS) CGM with the greatest 

NOI and central processing time per unit (CPU time) is selected as the efficient method to be applied to the real-life problems in 

regression analysis. A data set of rainfall precipitation in Malaysia from year 2009 until 2019 is collected for data fitting purpose. 

The data set is transformed into a test function also defined as objective function. The approximate functions are generated from 

CG, Least Square, Trendline method for the relative error purpose. The estimation data for the year 2020 can be predicted using 

the approximate functions. The calculation of relative error of the linear and quadratic model for each method is calculated based 

on the estimation data for the year 2020 and its actual data. The numerical results show that the sHS CGM is a suitable and good 

alternative to solve the Least Square models. 

Keywords—Spectral Conjugate Gradient Method, Data Estimation, Regression Analysis, Linear Least Square Method, Rainfall 

Data.   
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1. INTRODUCTION  

The CGM, originally developed for solving large-scale systems of linear equations in scientific computing, is 

increasingly relevant in informatics and web engineering due to the growing need for efficient optimization algorithms. 

In web-based systems, massive datasets often arise from search engine indexing, recommendation systems, or user 

behaviour modelling. These datasets typically lead to high-dimensional optimization problems where matrix 

operations are too costly for direct methods. CGM offers an iterative, memory-efficient solution that scales well with 

 

https://doi.org/10.33093/jiwe.2025.4.3.29
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe
https://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Informatics and Web Engineering                               Vol. 4 No. 3 (October 2025) 

470 
 

such applications. Figure 1 shows why CGM was chosen since it needs less iteration to reach the solution point. The 

CGM is widely utilized across economics, engineering, and scientific disciplines due to its notable advantages [1]. It 

is commonly employed as an iterative algorithm to obtain numerical solutions [2].  

 

Figure 1. Difference between CGM and Other Gradient Methods 

 

2. LITERATURE REVIEW 

The method is typically applied to solve unconstrained optimization problems, which are formulated as follows:                                        

                                                                                 min
𝑥𝜖𝑅𝑛

𝑓(𝑥) 

 f: Rn → 𝑅 is known as continuous differentiable function and 𝑅𝑛 represents the n-dimensional Euclidean space. 

Based on the study by [3], Equation (1) define the sequence of point 𝑥𝑘+1 start from initial point 𝑥0,  

                                                                 𝑥𝑘+1 = 𝑥𝑘 + α𝑘𝑑𝑘 ,     𝑘 = 0,1,2, …    (1) 

where 𝑥𝑘 denotes the current iteration and αk > 0 indicates the step length obtained from line search. The step length 

is obtained by any preferable line search either exact or inexact [4], [5]. The exact line search equation is written below 

                                                           ϕ(𝑎) = 𝑓(𝑥𝑘 + αk𝑑𝑘), 𝑎 > 0 

The strong Wolfe-Powell (SWP) line search is a type of inexact line search and calculated by 

                                                            𝑓(𝑥𝑘 + α𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + δα𝑘𝑔𝑘
𝑇𝑑𝑘 

|𝑔(𝑥𝑘 + α𝑘𝑑𝑘)
𝑇𝑑𝑘| ≤ σ|𝑔𝑘

𝑇𝑑𝑘 

where 0 < δ < σ < 1 . Different CGMs lead to different search directions. The general search direction 𝑑𝑘  in 

Equation (2) is computed for classical, and the hybrid CGM. The formulation is described as 

𝑑𝑘 = {
−𝑔𝑘, 𝑘 = 0

−𝑔𝑘 + β𝑘𝑑𝑘−1, 𝑘 ≥ 1
 

(2) 

where 𝑔𝑘 = 𝑔(𝑥𝑘) and β𝑘  is the CG coefficient. There are five famous CG coefficients by previous researchers such 

as Hestenes-Steifel (HS) [6], Polak-Ribere-Polyak (PRP) ) [7], Fletcher-Reeves (FR) [8], Liu-Storey (LS) [9] and Dai-

Yuan (DY) [10]. Some of these classical CGMs are improved by combining two classical CGMs which are called 

hybrid CGMs. The examples of hybrid CGMs are HS-PRP [11], HS-LS [12], LS-DY [13] and FR-DY [14]. The 

improvement by previous researchers is not limited to the CG coefficient only where the search direction formulas are 

improved too. The modifications of CGM have been done vigorously since there are a lot of CG types that can be 

modified – TTCGM and SCGM. The search direction of TTCGM and SCGM consists of another parameter in its 

formulation. The TTCGM has three terms in its formulation which is written as in Equation (3) 

𝑑𝑘 = {
−𝑔𝑘 , 𝑘 = 0

−𝑔𝑘+β𝑘𝑑𝑘−1 − θ(𝑔𝑘 − 𝑔𝑘−1), 𝑘 ≥ 1
 

(3) 

where β𝑘   is the CG coefficient and θ𝑘 is parameter. The examples of TTCGM are introduced by [15], [16], [17].  
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Equation (4) shows the search direction of the SCGM which is defined as 

𝑑𝑘 = {
−𝑔𝑘 , 𝑘 = 0

β𝑘𝑑𝑘−1 − θ𝑘𝑔𝑘 , 𝑘 ≥ 1
 

(4) 

and β𝑘   refers to CG coefficient and θ𝑘 is spectral parameter. 

This study focuses on SCGM, which has been widely studied by recent researchers in solving real world problems. 

Implementing the CGM within the platform’s backend optimization pipeline enables - Reduced computation time, 

lower memory footprint and scalable deployment. [18] introduced a free-derivative SCGM to tackle nonlinear 

monotone equation systems with convex constraint. [19] modified Dai-Liao SCGM to solve signal processing problem. 

[20] implemented two sufficient descent SCGM in image restoration problems, as shown in Figure 2.  

 

Figure 2. An Application of CGM in Image Restoration [20] 

 

For application, this study focuses on applying the SCGM chosen to estimate the rainfall data and compare to other 

estimator tools. Rainfall is the result of atmospheric moisture falling to the Earth's surface due to gravity. It occurs 

when part of the atmosphere becomes saturated with water vapor, leading to condensation and the formation of 

precipitation. There are various forms of precipitation, such as rain, snow, hail, sleet and drizzle. In Malaysia, the only 

form for the precipitation is rainfall. Due to its uncontrollable and unpredictable, predicting rainfall data is crucial in 

reducing operational costs [21]. As it can maintain water levels for electricity generation, but it can also cause floods 

that threaten human lives. According to [22], [23], rainfall forecasts are commonly used to issue flash flood warnings 

earlier in an event, providing more time for preparation than relying on observations alone. 

The CGM has been applied to data estimation. Basically, this method is used to fit rainfall data to form mathematical 

models and make predictions about future rainfall patterns. With low data storage, efficiency and convergence speed 

of the classical CGM, SCGM is selected to solve this problem. A regression model is generated and computed from 

the best SCGM to estimate the precipitation of the rainfall data in Malaysia. 
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3. RESEARCH METHODOLOGY 

In this paper, the method used is CGM specifically on SCGM. SCGM is chosen as there have been modifications to 

that type, considering its simplicity and better convergence. The selection of SCGM is motivated by its advantages in 

solving unconstrained nonlinear optimization problems, particularly its robustness in terms of convergence behaviour 

and computational efficiency. The sHS variant was chosen due to its proven performance in minimizing objective 

functions with fewer iterations NOI and reduced CPU time, which are critical factors in large-scale environmental 

data modelling. 

 

3.1 Spectral Conjugate Gradient Method (SCGM)  

The SCGM is known as a two-term, SCGM which involves CG coefficient and parameter of θ𝑘 . Recently, there were 

many types of modified SCGM but in this study only four latest SCGM are chosen as shown in Equations (5) – (8). 

[24] proposed for spectral Rivaie, Mustafa, Ismail and Leong and it is denoted as sRMIL. This method is defined as 

𝛽𝑘
𝑠𝑅𝑀𝐼𝐿 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)||𝑑𝑘−1||

2

||𝑑𝑘−1||
2   , θ𝑘 = 1 −

𝑔𝑘
𝑇𝑑𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

 
(5) 

[25] studied a spectral Fletcher-Reeves (sFR) CGM where the parameters θk and β𝑘  are defined as 

𝛽𝑘
𝑠𝐹𝑅 =

||𝑔𝑘||
2

||𝑔𝑘−1||
2   , θ𝑘 =

𝑑𝑘−1
𝑇  (𝑔𝑘 − 𝑔𝑘−1)

||𝑔𝑘−1||
2  

(6) 

[26] proposed the spectral Conjugate Descent (sCD) which is given by 

𝛽𝑘
𝑠𝐶𝐷 = −

||𝑔𝑘||
2

𝑑𝑘−1
𝑇 𝑔𝑘−1

  , θ𝑘 = 1 −
𝑔𝑘

𝑇𝑑𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

 
(7) 

[27] proposed the sHS parameter is proposed by 

𝛽𝑘
𝑠𝐻𝑆 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

𝑑𝑘−1
𝑇 (𝑔𝑘 − 𝑔𝑘−1)

  , θ𝑘 = 1 −
𝑔𝑘

𝑇𝑔𝑘−1𝑔𝑘
𝑇𝑑𝑘−1

||𝑔𝑘 ||
2

𝑑𝑘−1
𝑇 (𝑔𝑘 − 𝑔𝑘−1)

 
(8) 

These selected SCGM are going to be tested on different number of test functions to evaluate their performance. The 

performance is analysed by the performance ration based on number of iterations (NOI) and CPU times. The least 

numbers of NOI and CPU give the best methods in terms of their efficiency. The algorithm of SCGM is shown in 

Algorithm 1. 

Algorithm 1: Algorithm of SCGM 

Based on the study by [28], the computation of algorithm process 

Step 1 : Initialization process and generate 𝑥0 starting with 𝑘 = 0. 

Step 2 : Compute the parameteβk r  based on (4), (5), (6) and (7). 

Step 3 : Compute search directions based on equation (3), if||𝑔𝑘|| = 0, stop. 

Step 4 : Compute step size, α𝑘 by line searches. 
Step 5 : Set xk+1 = xk + αkdk. Then, define βk+1 and compute θ𝑘+1 satisfying θk parameter. 

Step 6 : Set k = k + 1, go to Step 3. 

 

Once the most superior method is chosen, the method is then implemented to the rainfall dataset to estimate the data. 

The validity of the results is compared to the existing methods used in data estimation which is the least square 

method in linear regression analysis. 
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3.2 Linear Regression 

The implementation of the best SCGM coefficient is tested by using Least Square method of regression analysis. The 

best method of SCGM is selected to fit the precipitation rainfall data in Malaysia. The linear regression model is 

generated based on the data collected. The linear regression model formula represented by y = a0 + a1x1 + a2x2 +
⋯+ apxp + ϵ  where a0, a1, a2, . . . . , ap is the regression parameters. This formula forms a linear equation that can fit 

the data better.  

 

3.3 Least Square Method 

The relative error is calculated for the Least Square method purpose. The Least Squares method determines the optimal 

model by finding the difference between predicted and actual values. This error is calculated by comparing the 

estimated values to the observed data as shown in Equation (9). 

                                                  relative error =
|exact value−approximate value|

|exact value|
                     (9) 

The formula to minimize the sum of the residual error squares for the data given by Equations (10) and (11), 

  

𝑀𝑖𝑛 ∑ 𝐸𝑖
2

𝑚

𝑖=1

= ∑((𝑎0 + 𝑎1𝑥) − 𝑦𝑖)
2

𝑚

𝑖=1

 

𝑀𝑖𝑛 ∑𝐸𝑖
2

𝑚

𝑖=1

= ∑((𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2) − 𝑦𝑖)

2
𝑚

𝑖=1

 

 

 

(10) 

 

 

(11) 

The formula to obtain the values of 𝑎0 and 𝑎1 for a linear model is shown in Equation (12).  

[
 
 
 
 
 𝑚 ∑𝐸𝑖

2

𝑚

𝑖=1

∑𝐸𝑖
2

𝑚

𝑖=1

∑𝐸𝑖
2

𝑚

𝑖=1 ]
 
 
 
 
 

[
𝑎0

𝑎1
] =

[
 
 
 
 
 ∑𝑦𝑖

𝑚

𝑖=1

∑ 𝑥𝑖𝑦𝑖

𝑚

𝑖=1 ]
 
 
 
 
 

 

 

 

 

(12) 

 

The formula for finding values of 𝑎0, 𝑎1 and 𝑎2 for a quadratic model is in Equation (13). 

[
 
 
 
 
 
 
 
 
 

𝑚 ∑𝑥𝑖

𝑚

𝑖=1

∑𝑥𝑖
2

𝑚

𝑖=1

∑𝑥𝑖

𝑚

𝑖=1

∑𝑥𝑖
2

𝑚

𝑖=1

∑𝑥𝑖
3

𝑚

𝑖=1

∑ 𝑥𝑖
2

𝑚

𝑖=1

∑𝑥𝑖
3

𝑚

𝑖=1

∑𝑥𝑖
4

𝑚

𝑖=1 ]
 
 
 
 
 
 
 
 
 

[

𝑎0

𝑎1

𝑎2

] =

[
 
 
 
 
 
 
 
 ∑𝑥𝑖

𝑚

𝑖=1

∑𝑥𝑖

𝑚

𝑖=1

𝑦𝑖

∑ 𝑥𝑖
2

𝑚

𝑖=1

𝑦𝑖
]
 
 
 
 
 
 
 
 

 

 

 

 

 

(13) 

 

The functions of linear and quadratic models are given by Equations (14) and (15), 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 

(14) 

 

(15) 

respectively. The value of 𝑎0, 𝑎1 and 𝑎2 are obtained by formula in Equations (12) and (13). 
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Algorithm 2: Algorithm of Least Square method 

Step 1 : Identify the linear and quadratic formula from (12) and (13). 

Step 2 : Identify variables and the data calculation based on (12) and (13). 

Step 3 : Compute the value of 𝑎0, 𝑎1 and 𝑎2 

Step 4 : Formulate the approximate functions for linear and quadratic using real data. 

Step 5 : Find the error using by (9), (10) and (11). 

Step 6 : Model is estimated. 

 

From (10), (11), (12) and (13), Least Square method can transform into optimization problems for linear, Equation 

(16) and quadratic, Equation (17) model respectively as follows 

min
𝑥𝜖𝑅𝑛

𝑓(𝑥) = ∑((𝑎0 + 𝑎1𝑥) − 𝑦𝑖)
2

𝑚

𝑖=1

 

min
𝑥𝜖𝑅𝑛

𝑓(𝑥) =∑((𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2) − 𝑦𝑖)

2
𝑚

𝑖=1

 

 

(16) 

 

(17) 

 

Algorithm 3: Least Square Conjugate Gradient Algorithm 

Step 1 : Initialization. Let 𝑘 = 0, select 𝑥0 = (𝑎𝑜, 𝑎1) for linear and x0 = (ao, a1,a2) for quadratic. 

Solve (16) and (17). 

Step 2 : Compute βk  for sHS. 

Step 3 : If ||𝑔𝑘|| < ϵ, stop. Else, calculate the search direction 𝑑𝑘 by (3). 

Step 4 : Solve α𝑘 using line searches. 

Step 5 : Update new iterative point by using (1) and substitute the updated point in (14) and (15). 

Step 6 : If 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘) and ||gk|| < ϵ , stop. Otherwise, go to Step 2 with 𝑘 = 𝑘 + 1. 
 

 

 

3.4 Excel Trend Line Method 

The values of 𝑎0 and a1 also can be determined by the Excel Trend Line Method. A linear graph of precipitation of 

rainfall data versus months can be generated by this method. The linear regression model is generated automatically. 

Then, the comparison of real value and approximation value can be obtained by computing the relative error. 

 

4. RESULTS AND DISCUSSIONS 

Numerical experiments are done to test the method robustness and efficiencies. Ten optimization test functions of 

large-scale unconstrained optimization are selected from [29] to compute the methods chosen in equations (5) – (8). 

The experiment was done by implementing the coding to MATLAB program to test the NOI and CPU times for each 

method chosen. The numerical comparison among the SCGM (sRMIL, sFR, sCDand sHS) are then recorded based 

on NOI and CPU times using the performance profile.  

A set of test functions from Table 1 are solved by the four tested SCGM under strong Wolfe line search using 

MatlabR2023a subroutine programming. The numerical result of central processing unit (CPU) time and NOI of each 

spectral method are recorded to find the most efficient and robust method. 

The results obtained are interpreted into the performance profile as in Figure 3 and Figure 4. The 𝑃𝑠(𝜏) of performance 

profile represents the fraction of problems with a ratio parameter 𝜏. The higher the value of 𝑃𝑠(𝜏), the higher the 

efficiency of the solver. The most efficient SCGM represented the top curve in the graph. 
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Table 1. List of Test Function 

No Test Functions Variable Initial Points 

1 Six Hump 2 (2, 2), (5, 5), (12, 12), (20, 20) 

2 Zettl 2 (2, 2), (6, 6), (12, 12), (25, 25) 

3 Trecanni 2 (4, 4), (8, 8), (10, 10), (15, 15) 

4 Booth 2 (2, 2), (10, 10), (18, 18), (50, 50) 

5 Generalized Quartic 2 (2, 2), (12, 12), (25, 25), (32, 32) 

4 (2, …, 2), (5, …, 5), (10, …, 10), (18, …, 18) 

10 (2, …, 2), (5, …, 5), (10, …, 10), (25, …, 25) 

6 Extended Tridiagonal 1 2 (2, …, 2), (8, …, 8), (12, …, 12), (20, …, 20) 

4 (2, …, 2), (4, …, 4), (10, …, 10), (25, …, 25) 

10 (2, …, 2), (4, …, 4), (10, …, 10), (25, …, 25) 

7 FLETCHCR 2 (2, …, 2), (5, …, 5), (12, …, 12), (25, …, 25) 

4 (2, …, 2), (4, …, 4), (15, …, 15), (25, …, 25) 

10 (2, …, 2), (4, …, 4), (10, …, 10), (20, …, 20) 

8 Diagonal 4 2 (2, …, 2), (4, …, 4), (10, …, 10), (25, …, 25) 

4 (2, …, 2), (5, …, 5), (10, …, 10), (25, …, 25) 

10 (2, …, 2), (4, …, 4), (10, …, 10), (25, …, 25) 

500 (2, …, 2), (4, …, 4), (10, …, 10), (25, …, 25) 

1000 (2, …, 2), (4, …, 4), (10, …, 10), (25, …, 25) 

9 Extended Himmelblau 2,4,10, 500, 1000 (2, …, 2), (4, …, 4), (10, …, 10), (25, …, 25) 

10 Extended Rosenbrock 2,4,10, 500, 1000 (2, …, 2), (4, …, 4), (10, …, 10), (25, …, 25) 

 

 

Figure 3. Performance Profile Based on CPU Time 

 

The performance profile shows the performance ratio of all the tested solvers. The top left curve indicates the highest 

amount of test functions solved with the best NOI or CPU time. The top right curve indicates the amount of test 

function successfully solved. From the performance profile on the CPU time in Figure 3, the sRMIL method has the 

best efficiency followed by sHS, sCD and sFR but from the performance profile on NOI in Figure 4 shows that the 

sHS has the best efficiency followed by sRMIL, sCD and sFR. By comparing both performance profiles, even though 

the sRMIL method is more efficient than sHS in CPU time, the sHS method obviously has higher efficiency compared 

to sRMIL in term of NOI. Therefore, the sHS method is the best solver performance for the SCGM in this study. 
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Figure 4. Performance Profile Based on NOI 

 

4.1 Application on Rainfall Precipitation in Malaysia 

The implementation of the sHS CG coefficient can be done by using the Least Square method of regression analysis. 

The aim of the implementation is to show that the sHS CGM can be applied for analyzing real data in statistics. The 

precipitation of rainfall in Malaysia is estimated by using Least Square method, Least Square CGM and Excel Trend 

Line method for linear and quadratic models [30]. The collected data of the precipitation of rainfall in Malaysia for 

12 years (2009 to 2020) are tabulated in Table 2. This data is collected from the World Bank. The data in unit 

millimeters is the total amount of precipitation from January to December of each year. The numbers of data in Table 

2 denoted as variable while the precipitation (mm) denoted as variable. The data from the year 2009 to 2019 are 

selected for the data fitting process. The data for the year 2020 is used for error calculation. 

 

Table 2. Precipitation of Rainfall in Malaysia from 2009 to 2020 

Number of data Years Precipitation (mm) 

1 2009 3404.89 

2 2010 3104.02 

3 2011 3444.40 

4 2012 3222.64 

5 2013 3095.05 

6 2014 2808.69 

7 2015 2661.85 

8 2016 2829.83 

9 2017 3262.68 

10 2018 3242.89 

11 2019 2598.72 

12 2020 3054.01 

 

Let  𝑥𝑖 be the number of years and  𝑦𝑖 be the precipitation of rainfall in Malaysia. The linear and quadratic models are 

formulated using collected data from the year 2009 to 2019. The calculation of the data needed based on the Least 

Square formula in Equations (12) and (13) are given as follows. 

[
11 66
66 506

] [
𝑎0

𝑎1

] = [
33675.7

196814.6
] 

and 
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[
11 66 506
66 506 4356
506 4356 39974

] [

𝑎0

𝑎1

𝑎2

] = [
33675.7
196814.6
1491423

] 

The values of 𝑎0, 𝑎1 and 𝑎2 can be obtained by expanding and solving the above matric expression. The value of 𝑎0, 

𝑎1 and 𝑎2 calculated is then substitute into the formula (14) for linear and (15) for quadratic model. The approximate 

functions for both Least Square models are as below 

Linear Least Square model: 

𝑓(𝑥) = 3347.223636 − 47.63272727272733𝑥 

 

Quadratic Least Square model: 

𝑓(𝑥) = 3505.28424242424 − 120.583776223776𝑥 + 6.07925407925408𝑥2 

 

For Least Square CGM, the first eleventh years (2009 – 2019) in Table 2 are used to form linear and quadratic 

optimization problems in (16) and (17). The linear and quadratic models are generated using MATLAB and the 

functions obtained for both optimization model is as below 

𝑓(𝑎0, 𝑎1) = 11𝑎0
2 + 132𝑎0𝑎1 − 6.7351(104)𝑎0 + 506𝑎1

2 − 3.9363(105)𝑎1 + 1.0395(108) 

𝑓(𝑎0, 𝑎1, 𝑎2) = 11𝑎0
2 + 132𝑎0𝑎1 + 1012𝑎0𝑎2 − 6.7351(104)𝑎0 + 506𝑎1

2 + 8712𝑎1𝑎2 − 3.9363(105)𝑎1

+ 39974𝑎2
2 − 2.9828(106)𝑎2 +  1.0395(108) 

 

By setting the above optimization models as the test function and solved by the Least Square Conjugate Gradient 

Algorithm. The solution point for the value of ,  and  can be obtained by using any initial point. The result of 

linear and quadratic model for sHS CGM are given by 

Linear sHS CG model: 

𝑓(𝑥) = 3347.202727273334 − 47.629999995020𝑥 

 

Quadratic sHS CG model: 

𝑓(𝑥) = 3504.526969699340 − 120.241188825254𝑥 + 6.050932402436𝑥2 

 

For Excel Trend Line method, the values of 𝑎0 and 𝑎1 also can be determined by the Excel Trend Line Method. A 

linear graph of precipitation of rainfall data versus year can be generated by this method. The linear regression model 

will be generated automatically. The linear and quadratic trend line are computed from the data from Table 2. The 

trend line indicates the best fit line. The graph based on the equations in (14) and (15) are generated by using Microsoft 

Excel software. The models generated are 

Linear Trend Line model: 

𝑓(𝑥) = 3347.2063636363600 − 47.6304545454542𝑥 

 

Quadratic Trend Line model: 

𝑓(𝑥) = 3505.22787878782000 − 120.56346153845500𝑥 +  6.07775058275115𝑥2 
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The graphs of the linear and quadratic models are shown in Figures 5 and 6. 

 

Figure 5. Linear Trend Line for Precipitation of Rainfall in Malaysia 

 

 

Figure 6. Quadratic Trend Line for Precipitation of Rainfall in Malaysia 

 

The efficiency of a method can be identified by the relative absolute error. The data for the year 2020 is chosen to be 

estimated by each model i.e when x=12. By comparing the actual and estimated data, the relative errors are calculated 

from each of the models by formula in Equation (9). Table 3 shows the calculation of the relative error for each model. 

Table 3. Estimation Values and Relative Errors 

Methods Estimation Values Relative Error 

Linear Least Square 2775.63090872727 0.0911519907507606 

Quadratic Least Square 2933.69151515152 0.0393968863391018 

Linear sHS CG 2775.64272733309 0.0911481208859533 

Quadratic sHS CG 2932.96696974708 0.0396341302919507 

Linear Trend Line 2775.64090909091 0.0911487162481754 

Quadratic Trend Line 2933.66242424253 0.0394064118183864 

y = -47.6304545454542x + 3,347.2063636363600
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Based on Table 3, the relative error of the Quadratic sHS CGM is smaller than Linear Least Square, Linear sHS CGM 

and Linear Trend Line method, but it is approximately similar compared to the relative error of Quadratic Least Square 

and Quadratic Trend Line Method. The best method is the Quadratic Least Square Method with the smallest relative 

error compared to other methods. Although the relative error difference between the SCGM approach and the 

conventional statistical method may appear relatively small, it is important to note that statistical methods are 

traditionally and widely used for data estimation in many fields. However, the results from this study highlight the 

potential of SCGM, particularly the sHS variant, as a reliable and competitive alternative for data estimation tasks. 

Beyond the comparable accuracy, SCGM demonstrates superior computational efficiency, as evidenced by its faster 

convergence rate in achieving the lowest NOI and reduced CPU processing time during performance evaluations. 

These advantages indicate that SCGM is not only capable of providing accurate estimations but also offers a more 

efficient computational solution, making it highly suitable for large-scale or real-time forecasting applications. 

 

5. CONCLUSION 

In conclusion, the SCGM method, particularly the sHS method demonstrates strong performance, making it a robust 

approach due to its ability to achieve the lowest NOI and the shortest CPU time. The application of the sHS method 

in data estimation demonstrates that the quadratic model, combined with the strong Wolfe line search, is highly 

effective for estimating rainfall precipitation in Malaysia. This model surpasses the linear approach by producing a 

lower relative error. The estimated rainfall value generated is 2932.97 mm with a relative error of 0.0396. Although 

the difference in relative error compared to the statistical method which was commonly used for data estimation may 

appear minimal, the results clearly show that SCGM is a superior and effective data estimation method. This is further 

supported by its superior convergence performance, as evidenced by the lowest NOI and reduced CPU time during 

testing.  
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