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Abstract - Tuberculosis (TB) continues to be one of the foremost public health issues in the world, and remains the second most
salient communicable cause of death after COVID-19. In 2022, TB accounted for 10.6 million new infections and 1.3 million
deaths globally. Conventional diagnostic approaches involving sputum smear microscopy, culture assays, and GeneXpert
MTB/RIF are characterized by excessive turnaround times, elevated costs, and dependency on specialised infrastructure and trained
personnel. These constraints are exacerbated in resource-poor countries, resulting in delayed diagnosis, delayed therapy initiation,
and enhanced disease transmission. This work investigates the application of deep learning algorithms to automatically diagnose
TB from chest X-ray images as a promising alternative method of diagnosis. The evolution of machine learning and deep learning
technologies offers novel opportunities to address these diagnostic dilemmas because TB manifests apparent characteristics, such
as pleural thickening, fibrosis, infiltration, masses, and nodules that are resolvable from chest X-ray images. We trained and tested
four state-of-the-art convolutional neural networks (CNNs), that is, VGG16, ResNet50, InceptionV3, and DenseNet121, on a
dataset of 4,200 chest X-rays with 700 positive TB cases and 3,500 normal cases. The approach comprises extensive data
preprocessing, applying transfer learning techniques, balancing classes through weighted class consideration, and rigorous task
evaluation using measures such as accuracy, precision, recall, and F1-score. DenseNet121 yielded the best-performing model with
a total accuracy of 98.0% and balanced sensitivity and specificity between the two classes. The deep learning method proposed in
this study holds great promise for enhancing the TB diagnosis accuracy, speed, and accessibility, particularly in resource-poor
settings. This work finds critical applications in bridging the gap between diagnosing and treating TB and offers a scalable and
cost-effective method for early diagnosis and prompt intervention in global TB control measures.
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1. INTRODUCTION

Tuberculosis (TB) is a communicable disease that primarily attacks the pulmonary system and is initiated by the
bacterium Mycobacterium TB. TB, after COVID-19, is the second most prominent infectious killer globally and has
outweighed both HIV and AIDS [1]. A total of 10.6 million individuals is infected with TB in 2022, and 1.3 million
losses of life are recorded globally [2].

TB exists in two forms: pulmonary TB infecting the lungs and extrapulmonary TB infecting other parts such as the
liver, bones, and kidneys. The infection is transmitted via airborne transmission by sneezing, spitting, or coughing of
the infected individual. Risk factors include malnutrition, compromised immune system, and diabetes [3]. Figure 1
illustrates TB infection of the lungs at different stages, indicating the progressive nature of the disease.
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Figure 1. Images of TB Infection in the Lungs at Different Stages (Futon Design)

Existing TB diagnostic methods, including sputum smear microscopy (SSM), culture assays, and GeneXpert
MTB/RIF, have significant shortcomings. These methods require sophisticated laboratory equipment, trained
personnel, and a few weeks to yield results. In resource-poor settings, these shortcomings lead to diagnostic delays,
treatment delays, and increased disease transmission.

The emergence of machine learning (ML) and deep learning (DL) technologies presents unprecedented opportunities
to overcome these diagnostic hurdles. TB manifests with visual indications, including pleural thickening, fibrosis,
infiltration, masses, and nodules, all of which are identifiable on chest X-ray images [4]. This aspect renders TB
detection highly amenable to image-classification methods based on DL techniques.

This study aimed to explore DL in TB automatic detection and diagnosis from chest X-rays, which has the potential
to revolutionize TB diagnosis with low-cost, scalable solutions that improve early detection, accelerate intervention,
and ultimately reduce the worldwide burden of TB.

2. LITERATURE REVIEW
2.1 Traditional TB Diagnostic Methods

In [5], conventional approaches for TB diagnosis were emphasized, such as sputum SSM, culture examinations, and
nucleic acid amplification assays, such as GeneXpert MTB/RIF. These tests have poor sensitivity, especially in HIV-
coinfected individuals and children. The paper pointed out critical limitations: conventional modalities do not possess
the required sensitivity and specificity, particularly in smear-negative TB or extrapulmonary TB.

Sophisticated technologies such as Xpert MTB/RIF and digital PCR demand significant infrastructure, technical
human resources, and investment capital, making them unsuitable for poor settings [6]. As explained in [7], the
integration of conventional diagnostic techniques still has universal challenges, including the availability of a stable
power supply, well-trained personnel, and laboratory infrastructure that is not readily available.
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2.2 ML in TB Diagnostics

ML has also shown great potential in medical imaging, specifically in the detection of chest X-ray abnormalities,
which are key for TB diagnosis. Initial research indicated that ML algorithms can attain human radiologist-level
diagnostic accuracies using different methods, such as support vector machines, random forests, and neural networks.

An improved Support Vector Machines (SVM) with an optimization algorithm for automatic TB classification was
proposed in [8]. Using the ImageCLEF 2020 database, they combined the wavelet transform with spatial gray-level
dependence methods for feature extraction, a genetic algorithm (GA) for feature selection, and SVM classification.
The optimized SVM classifier achieved accuracy rates of 0.64-0.97, which were better than those of other ML
classification algorithms.

In [9], a hybrid classifier named Gaussian Decision Tree based Deep Belief Network (GDT-DBN) was used for
diagnosing TB infection levels from sputum smear microscopic images. The two-level classification system
categorized images into 'few bacilli, ' ‘no bacilli,” and 'overlapping bacilli,” then detected bacilli count to determine
infection levels. GDT-DBN outperformed all other algorithms, including Bayesian Regularization and SVM.

2.3 DL Applications in TB Detection

DL, especially with CNNs, has been very effective in the analysis of medical imaging, specifically in the detection of
TB in chest X-rays. Different studies have shown that CNNs achieve better performance than conventional ML
algorithms in both spatial feature extraction and disease pattern classification.

Several recent works, summarized in Table 1, illustrate the range of DL methods applied in TB detection and how
each of them compares to the others. For instance, in [10], the Lunit INSIGHT algorithm was trained to differentiate
among four thoracic conditions, including active pulmonary TB, from chest radiographs. Evaluated on 1,135 images,
the system achieved a high AUC of 0.95, which was better than the diagnostic accuracy of resident radiologists. A
pipeline based on ResNet was applied to the Kaggle dataset of normal and TB-infected chest X-rays [11]. Feature
extraction, ROI segmentation, and feature selection using PCA were the steps, and 92% accuracy was achieved with
ResNet-based classification. ResNet50 and DenseNet121 were trained using transfer learning [12] with accuracies of
97.2% and 92.3%, respectively. Similarly, [13] fused various pretrained CNNs (i.e., VGG16, VGG19, InceptionV3,
MobileNet, and DenseNetl121) with Support Vector Machines (SVMs), and their DenseNet-SVM model achieved
98.9% accuracy and AUC of 1.0, demonstrating the potential of hybrid models.

Table 1. Comparison of Different DL Approaches for TB Detection

Study Model/Method Dataset Accuracy | AUC Key Notes
[10] Lunit INSIGHT 1,135 CXRs N/A 0.95 Outperformed resident
radiologists
[11] ResNet + ROI + PCA Kaggle TB 92.0% N/A Included ROI and PCA-
CXR Dataset based feature selection
[12] ResNet50 / DenseNet121 Custom 97.2% / N/A ResNet50 outperformed
(Transfer Learning) Dataset 92.3% DenseNet121
[13] DenseNetl121 + SVM Open TB 98.9% 1.00 Used hybrid CNN-SVM
CXR Dataset approach
[14] InceptionNext 662 CXRs 84.0 0.8774 Modular convolution
(Shenzhen) blocks Moderate
performance
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2.4 Research Gaps and Future Directions

The current literature demonstrates several critical gaps that must be filled for the adoption of ML/DL in TB diagnosis
on a large scale: dataset quality and diversity, model interpretability, overfitting/underfitting risks, privacy and security
concerns, and a lack of real-world validation. Future research should involve the development of more robust ML/DL
models, including diverse datasets, improved algorithm interpretability, and model validation in real-world clinical
settings.

3. RESEARCH METHODOLOGY
3.1 Research Design and Approach

This study employed a quantitative research approach utilizing DL techniques for TB detection from chest X-ray
images. The methodology follows a systematic process encompassing the data collection, preprocessing, model
development, training, and evaluation phases. Figure 2 presents a project methodology flowchart illustrating the
comprehensive workflow adopted in this study.

Machine Learning Workflow

Data Collecti
ata Loflection — Data Preprocessing — Model Selection
and Loading

Model

Model Evaluati
Building/Training - ocel Evaluation

|

Result Interpretation

X-ray Image

Normal Tuberculosis

Figure 1. Project Methodology Flowchart

3.2 Dataset Description and Collection

The database utilized in the current study comprises 4,200 chest X-ray (CXR) [15] images gathered from publicly
accessible medical imaging databases. It was divided into two general categories: 700 images of TB positivity and
3,500 images of normal chest X-ray reports. This type of dataset structure mirrors the classical clinical situation in
which TB cases represent a small minority of the general patient population and therefore naturally pose a fundamental
class imbalance issue in need of special handling strategies, as shown in Figure 3.

Figure 2. Normal and TB Infected Chest X-Ray Images
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Figure 3 shows examples of normal and TB-infected chest X-ray images, demonstrating the visual differences that
DL models need to identify. Chest X-ray images were sourced from established medical imaging databases that are
commonly used in TB research. The dataset characteristics are as follows:

Total Images: 4,200

TB-positive cases: 700 images (16.7%)

Normal cases: 3,500 images (83.3%)

Format: DICOM/JPEG

Original resolution: 512 x 512 pixels

Colour space: Grayscale single channel

File sizes: Variable, ranging from 20KB to S00KB per image

Normal Image Normal Image Normal Image

Normal Image

Normal Image

Tuberculosis Image

-

Tuberculosis Image Tuberculosis Image Tuberculosis Image

5

Tuberculosis Image

Figure 3: Pictures of Normal Vs TB Chest X-Ray Image

3.3 Data Preprocessing Pipeline

The initial phase involved a comprehensive exploratory data analysis to understand the underlying structure and
characteristics of the dataset. This includes file system analysis, metadata validation, statistical summary computation,
and visual inspection of sample images from both categories. Figure 4 shows representative pictures of normal and
TB chest X-ray images, highlighting the visual patterns that distinguish the two classes.

Image preprocessing steps included: systematic re-sizing from 512 x 512 to 224 x 224 pixels for model compatibility,
colour space conversion from grayscale to pseudo-RGB by duplicating channels, pixel value normalization from 0-
255 to 0-1 range, and binary labelling with “0” for normal and “1”for TB-positive cases.

Size distribution analysis revealed important characteristics of the dataset. Figure 5 shows the size distribution of the
normal CXR images, while Figure 6 shows the size distribution of the TB CXR images. This analysis informed the
preprocessing decisions and helped ensure optimal model performance.

Image preprocessing steps included:

Systematic resizing from 512 x 512 to 224 x 224 pixels for model compatibility
Colour space conversion from grayscale to pseudo-RGB by duplicating channels
Pixel value normalization from 0-255 to 0-1 range

Binary labelling with '0' for normal and '1' for TB-positive cases
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Distribution of Image Sizes in Normal Dataset
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Figure 4: Size Distribution of Normal CXR Images
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Figure 5: Size Distribution of TB CXR Images
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Figure 6: Basic Architecture of Typical CNNS
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3.4 Class Imbalance Handling

The extreme class imbalance (83.3% normal, 16.7% TB-positive) was addressed using the computed class weights(see
Equation (1)) for model training. This method assigns higher weights to the minority class to attain balanced learning
without favouring the majority class.

Class Weight = Total Samples (1

(Number of Classes x Samples in Class)

3.5 Dataset Partitioning Strategy

The combined dataset was subjected to systematic splitting based on stratified sampling to maintain class distribution
consistency. Splitting utilized the proportion of 60:20:20 for the training (2,520 images), validation (840 images), and
testing (840 images) sets, respectively.

3.6 Model Architecture Selection

Transfer learning was adopted as the primary modelling approach, leveraging existing knowledge from pre-trained
models that were originally trained on ImageNet. Four top-performing CNN architectures are selected: VGG16 (16-
layer deep network with sequentially stacked 3x3 convolutional layers), ResNet50 (50-layer network with residual
connections), InceptionV3 (compact architecture with parallel convolution operations), and DenseNet121 (densely
connected network with feature reuse).

Figure 7 represents the modification of all pre-trained models to binary classification using base weight freezing,
custom classification layers, dropout regularization, and sigmoid activation for binary output.

VGG16 Accuracy VGG16 Loss
0.95 1 0.7
\ = train loss
0.90 \ val loss
0.85 - 051
0.80
oy 051
£ 075 a
S S
< 070 044
0.65 1
0.60 1 034
" - train accuracy
0.55 1 val accuracy
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs

Figure 7: VGG16 History of Accuracy and Loss Plot

This image illustrates the overall structure of a typical CNN, thereby providing a general understanding of the CNN
architecture.

e VGGI16: 16-layer deep network with 3x3 convolutional layers in sequence.

e ResNet50: 50-layer network that uses residual connections to solve the vanishing gradient problem.

e InceptionV3: This is an efficient design with parallel convolutional operations that capture features at
various scales.

e DenseNetl121: densely connected network that promotes parameter reuse to attain effective use of parameters.
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All the pre-trained models were fine-tuned to binary classification by:

Freezing base model weights to retain learned features
Adding custom classification layers for TB-specific detection
Using dropout regularization to prevent overfitting
Implementing sigmoid activation for binary output probability

3.7 Training Configuration

The training settings included an Adam optimizer with a learning rate of 0.001, a binary cross-entropy loss function,
a batch size of 32 samples, 30 training epochs, and accuracy as the metric. Training enhancements included model
checkpointing to save the best model, class weight inclusion to facilitate imbalance handling, and orderly logging of
training history.

3.8 Evaluation Methodology
The performance framework incorporated diverse measures to enable a comprehensive evaluation of performance:

e Accuracy: Overall correctness of predictions

e  Precision: Proportion of true positive predictions among all positive predictions

e Recall/Sensitivity: Proportion of actual positive cases correctly identified

e  Fl-score: Harmonic mean of precision and recall

o  Confusion matrix: Graphical representation of prediction performance by classes

The accuracy of each model was evaluated using the holdout test set to ascertain its generalization capability and
usefulness.

4. RESULTS AND DISCUSSIONS
4.1 Training Performance Analysis

VGG16 demonstrated steady learning progression, achieving 94% validation accuracy with consistent convergence
and minimal overfitting. Figure 8 shows the VGG16 history of the accuracy and loss plot, illustrating a stable learning
trajectory throughout the training process.
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Figure 8: ResNet50 History of Accuracy and Loss Plot
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ResNet50 showed an unusual validation accuracy spike to 84% at epoch 4, followed by fluctuating performance,
suggesting potential overfitting challenges. Figure 9 presents the ResNet50 history of the accuracy and loss plot,
highlighting the erratic behavior and convergence issues encountered during training.
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Figure 9: Inceptionv3 History of Accuracy and Loss Plot

InceptionV3 exhibited robust training with consistently high validation accuracy and stable learning progression.
Figure 10 displays the InceptionV3 history of accuracy and loss plot, demonstrating the excellent convergence
characteristics and consistent performance improvement of the model.
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Figure 10: DenseNet121 History of Accuracy and Loss Plot

DenseNet121 performed extremely well with a validation accuracy of 98.81% and training accuracy of 94.72%, thus
exhibiting excellent convergence properties. Figure 11 presents the accuracy and loss curves of DenseNetl21,
indicating its excellent learning growth and convergence properties.
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Figure 11: Confusion Matrix of VGG16 Model on Test Set

4.2 Test Set Performance Evaluation
Performance results showed clear differences between architectures.

VGG16 achieved 93.8% overall accuracy, with 93.3% normal image accuracy and 96.4% TB image accuracy. Figure
12 shows the VGG16 model's confusion matrix on the test set, indicating the prediction accuracy of both classes.
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Figure 12: Confusion Matrix of ResNet50 Model on Test Set

Table 2 provides a comprehensive classification report of the VGG16 model for the test set, with excellent
performance in classifying both normal cases and TB. Precise levels were 0.99 for the normal and 0.75 for TB,
indicating high confidence for the prediction of normal but less for TB. The recall levels were 0.94 (normal) and 0.96
(TB), indicating that the model was highly sensitive in detecting TB cases. F1-scores were 0.96 for the normal and
0.84 for TB, indicating an overall good but slightly unbalanced performance in both classes.
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Table 2. Classification Report of VGG16 Model on Test Set

Category Precision Recall F1

Cat. O(Normal) 0.99 0.94 0.96
Cat. 1(TB) 0.75 0.96 0.84
Macro Average 0.87 0.95 0.90
Weighted Average 0.95 0.94 0.94

ResNet50 showed 84.4% overall accuracy, but severe imbalance: 98.9% normal accuracy versus only 12.1% TB
accuracy, indicating poor minority class detection capability. Figure 13 shows the confusion matrix of the ResNet50
model on the test set, clearly showing a significant bias toward the majority class.
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Figure 13: Confusion Matrix of Inceptionv3 Model on Test Set

Table 3 presents the classification report of the ResNet50 model on the test set, highlighting the severe performance
imbalance between classes and the inability of the model to effectively detect TB cases.

Table 3. Classification Report of ResNet50 Model on Test Set

Category Precision Recall F1
Cat.0(Normal) 0.85 0.99 0.91
Cat.1(TB) 0.68 0.12 0.21
Macro Average 0.76 0.55 0.56
Weighted Average 0.82 0.84 0.80

InceptionV3 demonstrated an excellent balanced performance with 97.2% overall accuracy, 98.0% normal accuracy,
and 93.6% TB accuracy, achieving high precision and recall across both classes. Figure 14 shows the confusion matrix
of the InceptionV3 model on the test set, demonstrating a well-balanced prediction performance.
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Figure 14: Confusion Matrix of DenseNet Model on Test Set

Table 4 presents the classification report of InceptionV3 on the test set, with balanced and high-performance metrics
for both the TB and normal classes.

Table 4. Classification Report of Inceptionv3 Model on Test Set

Category Precision Recall F1
Cat.0(Normal) 0.99 0.98 0.98
Cat.1(TB) 0.90 0.94 0.92
Macro Average 0.95 0.96 0.95
Weighted Average 0.97 0.97 0.97

DenseNet121 was the best model, with 98.0% overall accuracy, 98.3% normal accuracy, and 97.1% TB accuracy.
Figure 15 shows the confusion matrix of the DenseNet model on the test set, demonstrating outstanding prediction
accuracy.

Table 5 presents a comprehensive classification report comparing the performance of the DenseNet121 model on the
test set, indicating its very high performance. The precision scores were 0.99 for normal and 0.92 for TB, reflecting a
very high degree of accuracy in predictions made by the model. The recall scores were 0.98 for normal and 0.97 for
TB, showing that the model was very successful in recalling the true instances of both classes.

Table 5. Classification Report of DenseNet121 Model on Test Set

Category Precision Recall F1
Cat.0(Normal) 0.99 0.98 0.99
Cat.1(TB) 0.92 0.97 0.94
Macro Average 0.96 0.98 0.97
Weighted Average 0.98 0.98 0.98

4.3 Comparative Model Analysis

The evaluation metrics revealed distinct performance tiers among the tested architectures, as listed in Table 6.
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Top-Tier: DenseNetl121 achieved 98.0% accuracy with near-perfect class balance (F1-scores: 0.99 Normal
/ 0.94 TB), beating comparable works such as DenseNet-201 with 97.8% accuracy [16]. Its dense
connectivity enables the hierarchical reuse of features, which is particularly valuable in identifying subtle TB
manifestations, such as pleural effusions.

High-Tier: InceptionV3 delivered 97.2% accuracy (FI: 0.98 / 0.89), aligned with the performance of
ResNet-152 with 95.1% accuracy [17]. Its multiscale filters enhance the detection of both diffuse infiltrates
(common in TB) and localized lesions.

Mid-Tier: VGG16 attained 93.8% accuracy, although it struggled with TB-class precision (0.64 vs 0.93)
[18]. Its sequential architecture showed limitations in capturing spatial dependencies, particularly in cavitary
TB cases.

Underperformer: ResNet50 had only 84.4% accuracy, with a TB recall of only 0.04, reflecting a drastic
failure in detection. This is significantly different from the ResNet50 performance of 97.2% [12], implying
optimisation gaps in our residual block training.

Architectural Insights:

DenseNet121's feature reuse through concatenated skip connections counteracted vanishing gradients,
particularly for small TB opacities.
Parallel convolutions in InceptionV3 improved detection of complex patterns like miliary TB.
VGG16's homogeneous and deep-layer architecture was rigid to the varying presentations of TB.
ResNet50 exhibited degradation problems, which were probably caused by poor residual mapping during
training.

Table 6. Summary of Comparative Model Performance

Model Accuracy Precision Recall F1-Score
(Normal/TB) (Normal/TB) (Normal/TB)

Current Study (DenseNet121) 98.0% 0.99/0.94 0.99/0.94 0.99/0.94

Current Study (InceptionV3) 97.2% 0.98/0.90 0.98/0.88 0.98/0.89

Current Study (VGG16) 93.8% 0.98/0.64 0.90/0.89 0.94/0.74

Current Study (ResNet50) 84.4% 0.84/0.40 0.99/0.04 0.91/0.08

[18] (EfficientNet) 96.3% 0.96/0.93 0.9570.94 0.95/0.93

[19] (CheXNet) - 0.94/0.90 0.93/0.91 0.93/0.90

[17] (ResNet-152) 95.1% 0.95/0.89 0.94/0.90 0.94/0.89

[20] (CNN-ELM) 96.2% - - 0.95/0.91

[16] (DenseNet-201) 97.8% 0.97/0.95 0.98/0.94 0.97/0.94

4.4 Clinical Implications and Technical Contributions

The models, particularly DenseNet121, which has been trained, have huge potential for improving TB diagnostic
processes, especially in low-resource healthcare facilities. With an overall accuracy of 98.0% coupled with well-
balanced sensitivity and specificity rates, DenseNet121 has emerged as a reliable triage tool capable of enabling early
TB detection in clinical settings where the availability of radiological experience could be limited. Its automatic and
fast inference ability holds the potential to provide significant diagnostic turnaround time reduction, thus enabling
earlier treatment initiation and better patient prognosis.

The 6.2% difference in accuracy between VGG16 and DenseNet121 is equivalent to an estimated 26 missed TB cases
out of 1,000 screenings, indicating the necessity of selecting the correct model. DenseNet121's higher and consistent
performance, with precision and recall rates over 0.94, is concordant with the World Health Organization's (WHO)
target product profile for TB triage tests [21], thus ensuring its suitability for real-world deployment.
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5. CONCLUSION

This in-depth study effectively compared four cutting-edge DL frameworks for TB detection from chest X-ray images
using automation. With the step-by-step application of transfer learning strategies, meticulous data preprocessing, and
robust assessment protocols, we illustrated the high potential of artificial intelligence for improving the diagnostic
proficiency for TB.

DenseNet121 proved to be a better model, with outstanding 98% accuracy and balanced performance in both normal
and TB instances. Its performance surpasses that of many current techniques and aligns with other high-performance
DL approaches that achieve near-perfect accuracy through optimized preprocessing and architecture selection [19],
[22]. InceptionV3 also performed well (97.2% accuracy), offering a consistent alternative with a balanced sensitivity
and specificity. The results of this study have important implications for TB control worldwide, especially in resource-
limited environments where conventional diagnostic techniques are severely challenged. Similar work on multi-
disease chest X-ray classification has also demonstrated that explainable Al visualization techniques can enhance
clinician trust while maintaining a high diagnostic accuracy [23]. The proposed Al-based solution's efficiency,
effectiveness, and affordability could enable the earlier identification of TB cases, decrease diagnostic delays, and
possibly help alleviate the worldwide burden of TB.

Key contributions of this research include:

e Comprehensive evaluation of different CNN architectures for TB detection

e Achievement of 98% accuracy with DenseNet121 architecture

e (lass imbalance in medical image datasets handled with structured techniques
e Establishment of new performance criteria for TB detection

e Evidence of practical usability under resource-poor settings

Moving forward, several areas need further investigation:

The testing of these models in real-life clinical settings represents a range of patient populations.
The combination of continuous care processes and electronic health records systems.
Development of explainable Al iterations to spearhead clinician trust and adoption

Extension of multi-class classification to different stages of TB development

Federated learning techniques application for collaborative model improvement

The potential of these technologies to transform the diagnosis of TB and enhance global health is huge, demanding
ongoing research, development, and interaction between medical doctors and artificial intelligence researchers. The
real-world performance of these models has the potential to substantially influence TB control globally, especially in
the country most affected by this fatal disease.
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