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Abstract - Malware represents the most critical threat in cybersecurity, meant to compromise the security for any individual or 

any organization. These are covert software, designed to perform malicious act like data theft, data alteration, and to interrupt a 

normal operation of the services. The persistent evolution of malware has called for more sophisticated techniques in its detection 

and prevention, resulted into direct need of Artificial Intelligence in cybersecurity. Artificial intelligence, using machine learning 

techniques and rising concepts like neural networks has greatly improved the traditional static and dynamic ways of detecting 

malware. Advances in AI-driven solutions have made them much more capable than their predecessors of detecting malware and 

addressing threats in real time. By training machine learning models on vast quantities of data, malicious patterns can easily be 

detected and identify patterns. With these emerging challenges, AI powers automated real-time analysis and adaptive security 

posture can effectively mitigate the threat. Large Language Models (LLMs) have revolutionized natural language processing and 

are increasingly being deployed across a wide range of applications, including text generation, summarization, translation, and 

detection systems. Recent research related to the methodologies employed in developing detection systems using LLMs, outlines 

the existing limitations and research gaps, and proposes potential areas for future investigation. The use of AI in malware 

analysis faces its own challenges with the potential for adversarial attacks and the scale of AI models that can muddy the waters 

of transparency and trust. Overcoming these challenges will involve the creation of mature, ethical, AI systems and an open 

dialogue between cybersecurity professionals, sustainable AI development and regulatory compliance all working in concert. 
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1. INTRODUCTION  

Malware is one of the most common and devastating threats in the cybersecurity universe. It stands as one of the 

largest problems at the individual, and corporate levels across worldwide. Malware, in short for malicious software, 

encompasses a multitude of software archetypes designed to perform unauthorized actions on the infected system [1]. 

Illustrations of these actions include the theft of information, data corruption, and interfering with service 
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availability even up to consuming the resources of the system. Malware has made huge Impact on cybersecurity in 

the form of direct cost - based on the stolen goods, or a ransom. In practice, it can disable essential services, halt 

business operations, or even subvert data integrity. In terms of a social consequence, the leaked personal information 

removes trust from the society on digital services [2]. 

It is imperative to analyze and mitigate the malware that enables best practices and measures to preserve online 

security thereby maintaining system health. Successful malware management goes beyond just detecting and 

removing acting malicious software, it also heavily involves taking preventative measures to protect future attacks. 

Common malware analysis techniques involve static analysis where malware is examined without executing the 

code and dynamic analysis where malware is executed in a virtual environment and behavior is observed. However, 

those ways have difficulty matching the pace at which malware techniques are evolving to become more 

sophisticated like polymorphic malware, that changes its appearance with every new attack, and metamorphic 

malware, that actually modify its code to continue evading detection [3]. 

The present study is a comprehensive survey of malware analysis and detection using Artificial Intelligence (AI), 

especially focusing on Machine Learning (ML) and LLMs. It reviews static and dynamic malware analysis 

techniques enhanced by AI, explores emerging trends like federated learning, and discusses challenges such as 

adversarial attacks, model transparency, and resource constraints. The paper highlights AI’s transformative potential 

in cybersecurity while stressing the need for ethical, robust, and interpretable solutions. The literature search for this 

survey was conducted using various reputable sources and search engines, as summarized in Table 1. 

Table 1. Overview of Literature Sources and Publication Counts 

Ser Search Engines/ Sources Count/ Paper included 

1 IEEE 24 

2 Springer 10 

3 Elsevier 3 

 4 Cybersecurity 2 

5 ACM 4 

6 arXiy/ World Scientific/ Appl.Sci 6 

7 PLoS ONE/ ICT Express/ World scientific 3 

8 Ubiquity/ Symmetry/ Front.Eng.Manag 3 

9 Miscellaneous International Journals 17 

10 Future Gener. Comp Sys 3 

11 Miscellaneous Online Sources 14 

 

In these struggles, a battle has emerged to boost malware analysis and mitigation with the utility of AI. AI is playing 

an even greater role in the dynamics of malware. It has the capacity to learn from massive sets of data and looking 

for patterns that can be missed by human analysts. AI in the form of ML models can be trained to detect malicious 

behaviours and benign behaviours of malware and normal programs respectively. With this training, a myriad of 

features derived from the software have been taken such as opcode sequences, API calls, and network traffic 

patterns [4], [5]. 

Additionally, AI approaches can automate real-time analysis of malware, providing ongoing cybersecurity coverage 

and rapid adaption to changing malware tactics, without the need for constant manual update of malware statement. 

This is more important than ever as malware attacks can multiply and evolve faster than ever. AI-driven tools help 

cybersecurity systems to respond quickly and also proactively identify potential vulnerabilities, making 

cybersecurity defense to be proactive rather than reactive [6]. 

Among the various approaches discussed in this study, Figure 1 provides a visual representation of the most 

common malware analysis techniques, highlighting the methodological frameworks that underpin both static and 

dynamic examination of malicious software. Figure 1 is a mind map illustrating different types of malwares, 

including Spyware, Ransomware, Trojans, Bots, and Mobile Malware. Each category branches into specific 

subtypes or examples, such as Key logger under Spyware and WannaCry under Ransomware. It visually organizes 

malware classifications and notable variants to show their relationships and effects. 
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Figure 1. Common Malware Analysis Techniques 

The use of AI in malware analysis and mitigation is a significant step forward in the field of cybersecurity 

integration. AI further helps by improving the fidelity, agility, and predictive capabilities of malware detection 

systems, arming cybersecurity professionals to get one step ahead of rapidly changing threats in the digital world. 

The constant advancements in AI are expected not only neutralizing the existing vulnerabilities but also usher in a 

whole new era of cybersecurity methodologies to come. It is crucial that these AI systems are designed with 

robustness and ethical considerations in mind as we can only move forward from here and we must make the most 

out of the efficacy of these AI and ensure they do not lead to new vulnerabilities inadvertently [7]. 

These advanced protection systems are a beacon of light in the quiet battle against the growing evolution of cyber 

threats while the technologies of AI itself mature further and further to advance in this fight hackers. AI can process 

large data sets faster than any human can and can detect problems and anything out of the norm on a scale and speed 

that otherwise would be impossible with only human analysts. The support for different file types and formats is 

very important to combat new malware around in the wild that changes and even evolves to get past traditional 

means of detection. Since they are powered by ML and neural networks, advanced AI systems are able to learn from 

every interaction adding information about new threats to the knowledge base. This involves more than just 

identifying the malware in patterns but with a memory of the distinction between false positives and real threats, 

which increases the accuracy of the cybersecurity. 

In addition, the role of AI is not only to detect but also to predict security. Advanced types of predictive analytics 

with an assist from AI technology can use long-term trends and patterns to project possible security breaches 

happening in the near future. By preparing defences in advance, rather than reacting to an attack as it occurs, 

businesses can take a proactive stance to cybersecurity. In one example, if an AI system notices a pattern of break-in 

attempts on a network of some form, it can launch automated security measures to block similar threats before they 

are ever even executed, preventing potential attacks from occurring [8]. 

Furthermore, integration of AI technologies in cybersecurity facilitates the emergence of adaptive security 

architectures. These systems are designed to be adaptive, learning and more importantly changing with their 
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environment. In a scalable, AI-driven framework, we can also safely let the algorithms learn and evolve as they 

grow in a way very similar to how humans develop an immune system that learns from exposure to threats. The 

capability to dynamically both changes the code and its behavior is especially useful in the context of polymorphic 

and metamorphic malware, which can morph over sufficiently narrow time window and tailor its appearance and 

behavior to outrun static security solutions [9]. However, this dependence on AI to fight malware also brings with it 

several issues that need to be tackled.  

The complexity of AI systems also renders them vulnerable to adversaries, who in the worst case can influence the 

learning process inflows using methods such as poisoning attacks (inserting false data into the system) which 

distorted the learning and decision process. Furthermore, complexity of AI models may increase its non-transparent 

and non-interpretable characteristics among decision-making processes that can endanger debugging and trust in AI 

embedded systems [10]. 

We need to address them, and that requires the development of "responsible," secure, transparent, and ethical AI 

systems. This includes verifying the source of data used to train AI models; creating simulated, adversarial 

environments for vigorous testing of AI that let organizations attack or assess how well an AI will perform; and 

increasing how much the developers of enthusiastic cybersecurity staff understand behavioural analysis and 

statistical logic in AI programs. With advancements in these technologies, collaboration between the AI researchers, 

security experts, and regulatory bodies become mandatory for setting good practices and standards to use AI safely 

and effectively to curb the malware [11]. 

In the battle against malware and for better detection, predictive insights, and adaptive security, AI is proving to be 

an exciting frontier. As the journey of SOAR continues to play out, its continued integration into the cybersecurity 

strategy will likely upend the way defences are built and operated, providing a new and adaptive answer to the 

rapidly advancing threat landscape. Consequently, the future of malware defense depends not solely on creating 

novel AI solutions but on devising a systematic method of improving effective and fair AI technologies. 

With the growing sophistication of cyber threats, particularly polymorphic and metamorphic malware, traditional 

and even early AI-based detection techniques often fall short. To address this, recent research has turned to the use 

of LLMs—deep learning architectures pre-trained on massive corpora of textual data—to augment malware 

detection systems. LLMs, such as GPT or BERT-style transformers, are proving valuable in domains beyond natural 

language processing, especially in understanding complex sequences and contextual patterns found in network and 

binary data. 

LLMs can parse and interpret protocol logs, packet-level sequences, and even obfuscated code, enabling them to 

function effectively in real-time network monitoring systems. They are particularly well-suited for detecting 

contextual anomalies—a key weakness in rule-based and signature-based systems. By learning normal traffic 

behavior patterns and linguistic-like structures in logs and telemetry, LLMs can flag subtle deviations that may 

signal command-and-control (C2) communications, lateral movement, or exfiltration attempts.  

For instance, researchers have shown that transformer-based models trained on packet payloads and flow metadata 

can identify malware-generated traffic, even when obfuscated using encryption or tunnelling protocols (e.g., DNS 

tunnelling) [12]. 

 

2. MALWARE DETECTION AND ANALYSIS 

2.1 Static Malware Analysis Using AI 

Static analysis involves examining the malware without executing it. Breaking down the code to recognize patterns 

and signatures that may be malicious this traditionally involved malware detection based on signatures, i.e., 

matching the code against a database of specific malware signatures. Unfortunately, modern malware is little bit 

more sophisticated in their obfuscation techniques to evade detection [13]. 

A comparative overview of how AI technologies are applied in malware detection, highlighting the distinctive 

features, methodologies, and outcomes of static and dynamic analysis. Table 2 provides a comparative summary of 

the application of AI technologies in malware detection, contrasting static and dynamic analysis approaches. 
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Table 2. Malware Detection through AI: Static and Dynamic Analysis 

 

By using AI on top of static analysis, one can apply machine-learning algorithms for analysing the binary code and 

identifying malicious patterns unknown in the signature bases. For instance, patterns of phishing recorded across 

similar executables may be observed by CNNs in code embedding from static information from the machine's 

binaries, such as the byte level, which may be valuable in identifying features of malware [14].  

A study by Raff et al. that has been trained using raw byte sequences of executable files; it showed a much greater 

detection rate than traditional methods! The intelligence-based detection is very successful at tracking zero-day 

threats and polymorphic malware, which change their signatures with each usage [15]. 

Static analysis involves the careful examination of an executable’s signature without the need to execute the code, 

aiming to classify the file as malware if the signature appears malicious or as benign if otherwise. This method has 

the reverse engineering of malware code and involves the detailed processing of extracted features to discern and 

interpret any malicious activities through a signature-based approach. In this context, a signature refers to a unique 

identifier4 for a binary file, determined by calculating its cryptographic hash [16]. 

 

2.2 AI for Dynamic Malware Analysis 

Dynamic Analysis is the process of running the malware in a controlled environment, to see what the malware does. 

It is highly successful for discovering the true nature of some malware since few malicious behaviours are 

performed during its runtime. Behavioural analysis uses specialized AI to perform dynamic analysis, and uses fully 

automated AI features. Models like RNNs learn how the code runs at runtime (how it acts over time) which then 

helps in the identification of malicious patterns in the code [17]. 

Dynamic analysis benefits from LLMs' ability to model behavioural logs generated during sandbox executions. 

Sequences of API calls, file system interactions, or network events are semantically rich and context-sensitive. 

LLMs help in distinguishing benign from malicious actions not just based on frequency but based on contextual 

dependencies, much like how word meaning in a sentence depends on its surrounding tokens. Figure 2 describe the 

Analysis 

Type 
 

Description AI Technologies 

Used 

Key Studies/Findings Effectiveness/ 

Outcomes 

Static 

Analysis 

Analyses malware without 

execution by examining 

the code to detect 

suspicious patterns and 

signatures. Traditionally 

relies on signature-based 

detection, which struggles 

against obfuscation 

techniques used by 

modern malware. 
 

ML algorithms, 

particularly 

Convolutional Neural 

Networks (CNNs), 

which analyze binary 

code and static 

features such as byte-

level representations. 

Used a CNN model 

trained on raw byte 

sequences of 

executable files [13]. 

Achieved significantly 

higher detection rates 

compared to 

traditional methods. 

Especially effective in 

identifying zero-day 

threats and 

polymorphic malware, 

which constantly 

change their 

signatures. 

Dynamic 

Analysis 

Involves executing 

malware in a controlled 

environment to observe its 

behavior, capturing the 

actions performed by the 

malware during runtime. 

More effective at 

uncovering the true nature 

and intent of the malware. 
 

ML models like 

Recurrent Neural 

Networks (RNNs) 

and behavior analysis 

algorithms that 

monitor and learn 

from the operation of 

the code over time. 

Example study not 

specified in the 

original text but 

generally involves 

using AI to identify 

deviations in normal 

operational patterns, 

indicating potential 

threats. 

Enables real-time 

detection and 

mitigation of threats 

by analysing 

behavioural patterns, 

effective against 

complex and 

sophisticated malware. 
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monitoring the execution process, along with data flow dependency which implement ML algorithm for training and 

testing. So that malware detection has been identified. 

 

Figure 2. Dynamic Analysis and ML 

One of the most significant uses of AI in the field of dynamic analysis is the application of powerful anomaly 

detection techniques. One common approach is training these systems on a dataset of what typical behavior (User, 

Process, and System using this same tool (YETI)). The model can then be used to detect deviations as potential 

malware activity. An interesting story here involves a large cybersecurity company deploying AI powered 

behavioural-based monitoring to dynamically analyze the network-behavior of installed applications and identify the 

behavior as coming from an advanced ransomware attack, thereby neutralizing it before large scale damage could 

ensue [18]. 

In static analysis, LLMs can be trained on assembly code, bytecode, or PE file strings. When formatted as sequences 

of tokens, code can be treated like a natural language. Studies have shown that sequence-based models like 

transformers outperform CNNs and RNNs in learning relationships across large opcode sequences, helping to 

identify subtle malware signatures [19]. 

Dynamic analysis benefits from LLMs' ability to model behavioural logs generated during sandbox executions. 

Sequences of API calls, file system interactions, or network events are semantically rich and context-sensitive. 

LLMs help in distinguishing benign from malicious actions not just based on frequency but based on contextual 

dependencies, much like how word meaning in a sentence depends on its surrounding tokens [20]. 

 

2.3. AI Methodologies in a Comparative Study in Malware Detection 

Such distinct trade-offs draw attention to advantages and disadvantages of different AI approaches to malware 

detection. For instance, decision tree algorithms offer easily interpretable answers for malware detection, however 

their simple decision boundaries are no match for the more advanced malware surreptitiously hiding in the 

background. Others are deep learning techniques like deep neural networks (DNNs), which have better detection 

performance for stealth or new malware species. But they are computationally expensive, train on huge datasets, and 

are hard to interpret as they are "black-box" methods [21]. 

ML methods, such as support vector machines (SVM) and random forests, have been widely adopted in static and 

dynamic malware analysis. This is particularly useful in malware analysis where SVMs perform well in high-

dimensional spaces - where we have a few hundreds or thousands of features extracted from a single piece of 

malware. The assignment of random forests to a given class of methods also allows for their usefulness in overfitting 
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and noisy data, as the perform noticeably better than other methods and classifier under highly non-linear and 

unbalanced data conditions [22]. 

These methods were analysed comparison-wise in 2019 for different datasets, including the Microsoft Malware 

Classification Challenge (BIG 2015). Our study showed that the DNN which most of the time were in obviously 

showing better performance regarding detection accuracy, however, the ensemble methods which are very rare in 

the top position most of the time the random forests made a good trade-off among high detection accuracy, low 

computational expense, and direct application [23]. 

 

2.4. Emerging Trends in Cybersecurity: From Malware Detection to Federated Learning Applications 

This section explores recent advancements in malware detection, federated learning applications, and cybersecurity 

methodologies across various domains. Static malware analysis using ML on dataset, utilizing string and PE header 

features can effectively classify malicious detection [24]. Combination of both static and dynamic analysis in the 

OPEM framework (open-source tool kit for coding) create a machine-learning-based malware detection and neural 

network model showing improved flexibility and accuracy in identifying threats [25]. Several studies explored 

federated learning and optimization in energy systems focused on trusted decentralized federated learning, 

emphasizing privacy and security in distributed environments [26],[27].  

Several studies investigated federated learning in the context of power systems. Abnormal power consumption 

detection system utilizing federated learning, demonstrated improvements in detection efficiency while preserving 

data privacy through proposed object detection model [28],[29]. Power forecasting spatiotemporal data using 

federated learning in smart grids, aiming to detect false data injection attacks while ensuring data privacy across 

different silos [30],[31]. Use of block chain technology in the construction supply chain demonstrates its 

effectiveness through a case study and threat model [32]. Federated Learning in Network and Security Applications 

demonstrate various methods for cloud-edge network communications, optimizing latency along with block chain-

based decentralized federated learning model, enhancing security and transparency [33], [34]. Poisoning attacks in 

federated learning, employing normalizing flows mitigate the impact of adversarial inputs [35],[36]. Distributed 

Control and Cybersecurity Measures tackled the DNS cache poisoning attack, proposing an adaptive caching 

approach to enhance security in network infrastructure [37]. 

Cyber Security Breaches Survey 2020, which highlights common threats and the state of cybersecurity in 

organizations across the UK [38]. Specific case studies and reports discuss incidents like phishing attacks in the 

construction industry [39], the data breach incident involving Jewson [40], and ransomware attacks targeting Bird 

Construction [41] as well as Hoffman Construction’s health plan data hack [42]. These reports demonstrated the 

prevalence and impact of cybersecurity threats in critical sectors. 

Cyber risk management, focusing on prioritizing threats, identifying vulnerabilities, and applying controls for 

optimal security posture [43]. Evaluation of ML applications in cyber risk analysis within the construction industry, 

presented a SWOT (Strength, weakness, opportunities and threats) analysis that highlights the strengths and 

challenges associated with implementing ML in this domain [44]. NIST released a framework for improving critical 

infrastructure cybersecurity, offering guidelines for enhancing resilience and preparedness against cyber threats [45]. 

 

2.5. AI in Real-Time Malware Mitigation and Response 

Another provision of real-time malware mitigation is for the ability to make out the threats promptly when they 

happen and to neutralize them to limit their resulting damage and slow down their development. AI can work with 

such large & fast datasets in a way that is unbeatable by humans. ML can detect anomalies that the AI can use to 

help real-time mitigation. 

AI systems, for example, can watch for network traffic patterns and contrast them with its body of historical 

experiences. Any anomalies, like abnormal outbound traffic or increases in data access, can be immediately 

highlighted for review. In reality, deep learning models, especially those that use neural networks, are excellent at 

detecting patterns related to advanced cyber threats such as zero-day exploits when the model has not seen any of 

the current malware signatures. This was confirmed by a 2020 study by Cisco showing that the models, when 

implemented in their intrusion prevention systems (IPS), were able to detect and subsequently prevent over 99.8% 
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of malware encounters from real-time traffic patterns analysis. ML is widely used for general anomaly detection, 

while deep learning can handle more complex threats with a proven record of high effectiveness in specific cases 

like Cisco's system. 

One of the most impactful uses of LLMs is in stream-based threat detection. Instead of waiting for complete log files, 

LLMs can process real-time input (such as syslog, Net Flow, or endpoint telemetry) token-by-token. This capability 

has been explored in real-world implementations such as Cisco's AI-enhanced intrusion prevention system, which 

used transformer-based models to block over 99.8% of unknown malware by analysing traffic flows in real time. 

Coupled with SOAR platforms, LLMs can also suggest remediation steps or even generate incident response plans 

based on learned correlations from historical incidents, improving automated response capabilities. 

Unlike conventional ML models (e.g., SVM, Random Forests), LLMs require minimal manual feature engineering. 

They learn hierarchical representations from raw input, making them ideal for domains where feature crafting is 

infeasible or limited by expert knowledge.  

Moreover, pertaining LLMs on multi-domain datasets (e.g., malware code, cybersecurity forums, phishing emails) 

enables them to generalize better and detect new attack vectors—such as zero-day exploits or blended threats—that 

evolve faster than labelled datasets can accommodate. Overview of AI models applied in cybersecurity, outlining 

their specific implementations and measurable effectiveness, with a focus on how ML and deep learning techniques 

contribute to anomaly detection and real-time threat mitigation presented in Table 3. 

Table 3. AI Models in Cybersecurity: Implementations and Effectiveness 

AI Technique Application in Cybersecurity Key Implementations Effectiveness/Results 

ML Algorithms Used for detecting anomalies 

in real-time, which indicate 

potential malware activities. 

Monitoring network traffic 

patterns to identify unusual 

activities like outbound 

traffic spikes or 

unauthorized data access. 

General application across 

various systems, no 

specific study mentioned 

but widely regarded as 

effective in anomaly 

detection. 

Deep Learning 

Models (Neural 

Networks) 

Employed to discern complex 

patterns in data that are 

indicative of sophisticated 

cyber threats, including zero-

day exploits. 

Cisco's implementation 

within their IPS in 2020. 

Successfully blocked 

99.8% of malware 

encounters by analysing 

network traffic patterns in 

real time. 

 

2.6. Automated Systems for Threat Detection and Response Driven by AI 

Using AI for security on automated threat detection and response is a revolution in the cybersecurity industry. Using 

AI technology in these systems helps in a double fold- ability to identify threats more accurately and mobile 

responding to identified threats automatically. For instance, an AI system, noticing a ransomware attack progress, 

can also activate some routines to isolate the contaminated network segment and thus stop the malware from 

reaching the important data centres. 

For example, in practice wherever AI-driven automation such as Security Orchestration, Automation, and Response 

(SOAR) solutions are used. These platforms leverage AI to manage a spectrum of security operations, from the most 

basic signature updates to the most advanced threat hunting and eradication processes. Now by bringing AI into the 

equation, SOAR platforms take SIEM capabilities (collect, analyze, and correlate security event data) and response 

strategies to a whole new playing field, cutting detection to containment time in half, milliseconds in some cases.   

For example, a major financial services company used an AI-powered SOAR platform in a live situation, the 

response time with email-based Phishing Attacks was reduced from several hours to a few minutes, significantly 

reducing their exposure and potential data loss. 

 

3. EXAMPLES OF AI INTEGRATION INTO CYBERSECURITY DEFENSE MECHANISMS  
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The impact of AI in cybersecurity is not just restricted to detection and response but also provides a wide repertoire 

of defense measures that can ensure a stronger defense. AI is key to the development of adaptive security 

architectures that change based on constant learning of the threat environment. Systems can dynamically change 

security measures and adapt defences. 

AI tracks user behavior, such as keystroke dynamics, mouse movements, and navigation patterns. Even before any 

malicious activity occurs, these systems are able to identify and detect of departure from the norm, which could 

mean a compromised account. AI is even being utilized in banking to make better use of behavioural biometrics, 

which enhance fraud detection at major banks and financial institutions, leading to radical reduction in false 

positives and an overall improved customer experience. 

ML models also used in predictive security, which will predict the future threat scenarios according to the trends and 

historical data available. This helps to alert the organizations to being proactive in modifying security measures and 

strategies to resolve the vulnerabilities ahead of time. An international company used AI to anticipate possible attack 

vectors and then automatically secured certain nodes from which the company receives hacking attempt multiple 

times. 

The integration of AI and ML is poised to transform the SOC by enhancing threat detection capabilities and 

enabling more effective responses to cyber threats. These advanced technologies fundamentally shift the operational 

landscape of SOCs, allowing for the faster and more accurate identification of potential security incidents [46]. 

 

3.1. Adaptive Security Architectures 

A primary driver for the rise in cybersecurity is the integration of AI as a component within Adaptive security 

architectures. The architecture itself should evolve continually to adapt to ever-changing threats, thus solidifying the 

resilience and strength of security parameters. Instead of conventional security systems that protect only against 

static threats, adaptive security architectures take advantage of the learning capabilities of AI to continuously adapt 

and enhance security in response to ever-changing threats learnt from large datasets. This continuous learning 

includes studying patterns and behaviours of both normal and malicious activities so new or previously unseen 

threats can be recognized, and response strategies can be adjusted. 

Adaptive security architectures have a significant positive turn out having proactive emphasis. Most of the 

traditional security systems are based on specific predefined set of rules and signatures that helps in identifying and 

preventing threats. This is not sufficient against a unique complex malware which can evade these static defences 

easily. In contrast, when detecting security breaches, highly sophisticated AI-powered adaptive systems can identify 

minor anomalies and deviations from established norms.  

For example, if a network typically exhibits a pattern of data traffic, then any significant deviation from this pattern 

can be detected and investigated in real-time, even to the point of revealing stealthy attacks before they can become 

a major threat. 

The ability of adaptive security architectures to dynamically security architectures adjustment is really important in 

the fight against polymorphic and metamorphic malware that change their code to go undetected. Through 

constantly learning and updating their intelligence-gathering capabilities, adaptive security systems remain vigilant 

in detection systems to stay on top of these changing threats. This agility turns security from a primarily reactionary 

tactic into a proactive approach, which creates a smaller window of vulnerability and results in better overall 

security posture. 

One other critical aspect of adaptive security architectures is that they can integrate with many different cyber-

security tools and technologies. AI can collect information from various sources, namely network traffic, endpoint 

events, and even user behavior analytics to craft a more complete threat intelligence framework. This means that in 

addition to making threat detection more precise and quicker, integration facilitates the process of responding to 

incidents that are already underway. In the case of an anomaly being detected, system can be programmed to 

perform predefined actions such as isolation of infected network segments or notifying security team about ongoing 

attack and ultimately to reduce the impact of an attack. 

Adaptive security architecture from application of AI, if designed and programmed properly is truly disruptive. 

Using continuous learning and the ability to adjust automatically and in real time, these systems represent a very 
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strong defense against the current evolving threats. They turn you from reactive to proactive security allowing to 

move quickly and at the same time to be equipped with the intelligence to protect against even the most 

sophisticated cyber threat. But as AI technology grows even more sophisticated, adaptive security architectures are 

going to be huge for the future of cybersecurity by making defences more elastic and adaptive against the wide array 

of threats that continue to plague the overall cybersecurity landscape. 

 

3.2. Behavioural Biometrics 

Behavioural biometrics is the AI technology used to analyze and detect behavior patterns that can be used to 

enhance the security of systems. The approach is to watch and learn these special features of each human interacting 

with computer systems. These behaviours can range from keystrokes dynamics, mouse movements, touchscreen 

gestures, typing speed, and even the rhythm of key presses. Through creating a holistic pattern of a typical behavior 

of a user, which consists of most known interaction fingerprints, the systems can be used to verify authenticator and 

detect fraud or account takeover. 

Behavioural biometrics derive their power from being always-on passive authentication. Behavioural biometrics 

verifies the identity of the user on a constant basis while the user interacts with the system - vastly different from 

traditional authentication mechanisms like passwords, or even biometric scans, which occur at isolated points in 

time [47]. This constant monitoring guarantees that if some unwanted element manages to bypass the initial entry, 

any behavior that strays from the prospective norm will set off an alarm that will, at the very least, lock down the 

system if the trespasser continues to exploit the vulnerabilities of the system. 

AI algorithms are responsible for the analysis of the extreme amount of data created over user interactions. With the 

help of ML models over massive datasets help recognize the unique identifies associated with legitimate users. 

These models can detect nuanced changes and even gracefully roll with the flow, by taking into account small shifts 

in user behavior over time, thereby improving the discrimination of the system [48]. 

What makes behavioural biometrics so valuable is that it can identify potential fraud and security breaches before 

any malicious intent is shown. For example, if an attacker hacks into an account to interact with the system its' 

behavior compared to the legitimate user behavior is generally different. The AI system has a fast eye on finding 

these patterns and can take action like locking the account, alerting the real user, notifying security action teams. By 

adopting this pro-active approach, the window any attacker gets to do nefarious deeds is greatly reduced [49]. 

In addition to that, because the profile is consistent, behavioural biometrics is very difficult to spoof. While 

traditional biometrics, such as fingerprints or facial recognition, may be tricked by high-quality replicas or images. 

By comparison, trying to replicate someone's special behaviours is a whole lot harder. With the episodic nature of 

the behavioural data, it is possibly even more secure, as frequent and significant resets in the behavioural profile 

makes it extremely hard for the attackers to imitate the exact same behavior as the legitimate user [50]. 

Behavioural biometrics is something that makes the life of the user easier by avoiding the need for additional secure 

measure that are just added on top [51]. Operating systems are able to interact with users in a seamless manner that 

does not keep prompting the user to authenticate themselves, because the operating system is always checking in the 

background. This balance between security and usability is especially useful in consumer applications, online 

banking or corporate networks where the reduction of user friction is critical [52]. 

To sum up, the behavioural biometrics obviously emerge as something new and innovative for cyber security which 

in the end also sounds easy to use and to set identity with. These systems use AI to perform pattern analysis and 

learn from user behavior and as a result, provide a continuous enterprise-wide passive authentication that can 

determine if there are any anomalies and in real time allow you to take immediate actions in case of a potential 

breach. With cyber threats getting more and more sophisticated, behavioural biometrics will prove important 

moving forward in the protection of digital identities, ultimately meaning improved security posture across the 

ecosystem.  

Table 4 summarizes the types, techniques, data sets used, methodology and accuracy utilized in the reviewed articles 

in the present study. 

Table 4. Malware Trends and AI Techniques Review 



Journal of Informatics and Web Engineering                 Vol. 5 No. 1 (February 2026) 

116 
 

Ref., 

Year, 

Citation 

Paper 

Type 
Focus Technique Feature Dataset Algorithm/ Methodology 

Accuracy & 

Precision (%) 

[1], 

2021, 

35 
  

Review Evolutionary 

study of  
Internet of 
Things (IoT) 

malware 

ML models Malware 

characteristics & 

behaviours 

38,963 IoT 

malware samples 

from 36 families, 
including 

honeypot-collected 

samples and 
commercial 

interchange 

samples 

An ensemble model for 

malware classification and 

lineage analysis 

NA 

[2], 

2015, 

162  

Review Network 

processing in 

IoT evolution 

ML, SDN, 

NFV 

Network 

processing 

challenges 
  

 

 

 
NA 

Disruptive potential of three 

aspects of the IoT with 

respect to network protocols 
and their processing: the 

reversal of the client/server 

architecture, the scavenging 
of spectral bands, and the 

federation of Internet 

gateways 

NA 

[3], 
2019, 

120 

Analysis Static analysis 
of 

ransomware 

Static 
analysis 

Ransomware 
properties 

 
NA 

- NA 

[4], 
2018, 

229 

Review Overview of 
malware 

analysis 

techniques 

Survey/ 
Review 

Various analysis 
techniques 

 
 

NA 

Survey for malware 
detection methods like 

signature-based and 

heuristic-based 

 
 

NA 

[5], 
2020, 

174 

Analysis Static 
malware 

detection in 

Android byte-
code 

Deep 
learning 

Byte-code 
features 

Android byte-code propose an anti-malware 
system that uses customized 

learning models, which are 

sufficiently deep, and are 
’End to End deep learning 

architectures which detect 

and attribute the Android 
malware via opcodes 

extracted from application 

bytecode’ (Bidirectional 
long short-term memory 

(BiLSTMs) neural 
networks) 

 
 

NA 

[6], 

2019, 

88 

Analysis Static 

malware 

analysis using 
ML 

ML 

algorithms 

String and PE 

header features 

APT1 dataset Presented implementation 

of two categories of 

malware detectors using (a) 
strings and (b) selected PE 

header features, 

respectively. For each 
category, Author 

implemented six different 

ML based classifiers 

 

 

NA 

[7], 

2015, 

51,253  

Review Deep learning 

overview 

Review of 

deep 

learning 
techniques 

and 

applications 

Representation 

learning, 

supervised 
learning, 

convolutional 

networks, 
recurrent 

networks 

Various benchmark 

datasets for image 

recognition, speech 
recognition, NLP 

tasks 

Various, including CNN, 

RNN, Long Short-Term 

Memory (LSTM) 

 

 

 
NA 

[8], 

2019, 
98 

Analysis Static and 

dynamic 
malware 

analysis 

ML Static and 

dynamic features 

39,000 malicious 

binaries, 10,000 
benign files (static); 

2,200 malware, 800 

benign (dynamic) 

The combinations of 

different features are used 
for dynamic malware 

analysis. The different 

combinations are generated 
from APIs, Summary 

Information, DLLs and 
Registry Keys Changed. 

Algo Used: Logistic 

Regression, Decision Tree, 
Random Forest, Bagging 

Accuracy: 

99.36 (static), 
94.64 

(dynamic) 
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Classifier, AdaBoost 

Classifier, Gradient 

Boosting Classifier 

[9], 

2023, 
677 

Review Adaptive AI 

framework 
for detecting 

polymorphic 

and 
metamorphic 

malware 

Hybrid of 

dynamic 
deep 

learning and 

heuristic-
based 

analysis 

Behavioural 

pattern 
extraction, real-

time data 

adaptation 

Custom dataset 

with recent 
malware samples 

Deep learning model 

combined with heuristics 
for pattern analysis 

 

NA 

[11], 
2015, 

35 

Analysis Intelligent 
approaches 

for static 

malware 
analysis 

Various 
(e.g., ML 

methods) 

Intelligent 
analysis 

techniques : 

Mnemonic n-
grams, PE header 

features, API 

calls, function 
lengths, strings 

992 malicious 
samples from VX 

Heaven, 854 benign 

samples from the 
System32 folder 

(Windows7) 

paper details some 
intelligent techniques for 

malware analysis with all 

preprocessing steps required 
to analyze any PE sample 

like malware classification 

using mnemonic bi-grams 
as features Algo Used: 

Naïve Bayes, IBk, SMO, 

J48, Random Forest, 

AdaBoostM1 

Accuracy: 
96.10 (IBk), 

95.78 (SMO)  

[12], 

2020, 

84 

Analysis Android 

malware 

detection 
using network 

traffic 

Two-layer 

deep 

learning 
model with 

static and 
network 

traffic 

analysis  

Network traffic 

features: 

Permissions, 
intents, 

components, 
network traffic 

data  

CICAndMal2017: 

5,065 benign apps, 

429 malware 
network traffic 

samples 

1) Fully connected neural 

network for static malware 

detection 2) Convolutional 
Auto-Encoder (CAE) for 

unsupervised feature 
extraction from network 

traffic 3) Cascading 

Convolutional Auto-
Encoder and Convolutional 

Neural Network (CACNN) 

for supervised malware 
detection 

Accuracy: 

99.3 (binary 

classification), 
98.22 (category 

classification), 
71.48 (family 

classification)  

[13], 

2018, 

117 

Analysis Malware 

Detection 

Using ML 
and Deep 

Learning 

ML & deep 

learning 

Various malware 

features : Opcode 

frequency, 
Windows API 

calls, system 

calls 

Malicia Project: 

11,688 malware 

samples, 2,819 
benign executables  

Random Forest, DNNs 

(DNN-2L, DNN-4L, DNN-

7L) 

Accuracy: 

99.78 

Precision:100 
Random Forest 

with Variance 

Threshold) 

[14], 

2017, 

152 

Analysis Android 

malware 

classification 
using ML 

Static 

analysis and 

source code 
analysis 

using ML 

Android features 

: Permissions, 

source code (bag-
of-words) 

M0Droid dataset 

(200 malicious, 200 

benign apps)  

SVM with Sequential 

Minimal Optimization 

(SMO) - Naive Bayes - 
C4.5 Decision Trees (J48) - 

JRIP - AdaBoost - Farthest 

First clustering - K-means 
clustering - Expectation 

Maximization (EM) 

clustering - Ensemble 
learning with majority 

voting using combinations 

of 3 and 5 algorithms 
(including SVM, C4.5, 

Random Forest, JRIP, 

Logistic Regression) 

Accuracy: 95.1 

Precision:89 

[15], 

2022, 

68 

Analysis Static 

malware 

detection 
using ML 

methods 

ML Malware 

detection 

features: PE file 
format features 

(Subsystem, Size 

of Optional 
Header, ID, 

Sections Min 

Entropy, etc.) 

Ember dataset 

(1.1M files), 

unprocessed data 
from malware 

security partner of 

Meraz’18 
(malicious and 

legitimate files) 

use of PE file format along 

with ML statistics to 

determine whether a 
particular program is 

malicious or not. Algo 

Used: Decision Trees, 
Random Forest, Gaussian 

Naïve Bayes, AdaBoost, 

Gradient Boosting 

Accuracy: 

99.97 (Random 

Forest) 

[17], 
2021, 

222 

Analysis Android 
malware 

detection with 

ML classifiers 

ML 
classifiers 

Android features NA  NA 

[18], 

2018, 

Analysis Quantifying 

the 

Static and 

dynamic 

Known benign 

and malicious 

Dataset from 

industry: 2 million 

Author proposed n-gram 

and MalConv models are 

Accuracy:95.5 

(n-gram), 94.1 
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98 Robustness of 

ML and 

Current Anti-

Virus 

analysis with 

adversarial 

modification

s  

files, adversarial 

modifications  

samples (malicious 

and benign) 

trained on the same corpus. 

Compare two ML 

classifiers and four 

commercial anti-virus 
products: AV1, AV2, AV3, 

and AV4 

(MalConv), 

97.0 (AV1), 

81.6 (AV2), 

89.2 (AV3), 
92.6 (AV4) 

[21], 

2018, 
110 

Analysis Evaluating 

shallow and 
deep 

networks for 

static PE 
malware 

detection 

DNNs PE file features 

(size, entropy, 
etc.) 

Ember dataset: 

1.1M binary files 
(300K malicious, 

300K benign, 300K 

unlabelled for 
training, 100K 

malicious, 100K 

benign for testing) 

Algo used: DNNs, Logistic 

Regression (LR), Naive 
Bayes (NB), k-Nearest 

Neighbour (KNN), 

Decision Tree (DT), 
Random Forest (RF), SVM 

(linear and rbf kernels) 

Accuracy,98.9 

(DNN) 
Precision 

99.7(DNN)  

[22], 

2019, 

140 

Analysis Robust 

malware 

detection with 
deep learning 

Static and 

dynamic 

analysis 

Various malware 

features: Opcode 

sequences, 
system calls, 

image processing 

Public and private 

datasets: Ember 

dataset (PE files), 
Malimg dataset 

(images) 

a scalable deep learning 

network architecture for 

malware detection called 
ScaleMalNet is proposed 

with the capability to 

leverage the application of 

Big Data techniques to 

handle vary large number of 

malware samples 

Accuracy: 

99.9 (DNN), 

97.8 
(SVM+LSTM) 

[23], 
2020, 

132 

Review Systematic 
review of 

Android 
malware 

detection 

using static 
analysis 

Systematic 
literature 

review  

Permissions, API 
calls, intents, 

hardware 
components, 

opcode 

sequences, 
program graphs, 

symbolic 

execution 

98 studies from 
January 2014 to 

March 2020  

Various static analysis 
techniques, neural network 

models, non-neural network 
models:- Android 

characteristic-based method 

- Opcode-based method - 
Program graph-based 

method - Symbolic 

execution-based method 

NA 

[24], 
2013, 

100 

Analysis Static 
malware 

detection 

using data 
mining 

Data mining 
method 

Malware features NA  NA 

[25], 

2013, 

44 

Analysis A Static-

Dynamic 

Approach for 

Machine-

Learning-
Based 

Malware 

Detection 

Hybrid 

approach 

combining 

static and 

dynamic 
analysis  

Various malware 

features: Opcode 

sequences, 

system calls, 

operations, raised 
exceptions 

1,000 malware 

samples 

(VxHeavens), 

1,000 benign 

samples (collected 
from computers) 

OPEM, an hybrid unknown 

malware detector which 

combines the frequency of 

occurrence of operational 

codes (statically obtained) 
with the information of the 

execution trace of an 

executable (dynamically 
obtained). Algorithm Used: 

KNN, Decision Trees 

(Random Forest, J48), SVM 
(RBF Kernel, Polynomial 

Kernel, Normalized 

Polynomial Kernel, Pearson 
VII Kernel), Naive Bayes, 

Bayesian Networks 

Accuracy: 

96.60 (SVM 

with 

Normalized 

Polynomial 
Kernel)  

[26], 
2022, 

15 

Specific 
Techniq

ue 

Federated 
Learning 

Decentralize
d Federated 

Learning 

Trust and 
Security Features 

Custom   
NA 

[27], 

2022, 

53 

Specific 

Techniq

ue 

Federated 

Learning for 

Recommenda

tions 

Trust-Based 

Federated 

Learning 

Recommendation 

Features 

Custom   

NA 

[28], 
2023, 

12 

Specific 
Techniq

ue 

Abnormal 
Power 

Consumption 

Detection 

Improved 
Federated 

Learning 

Power 
Consumption 

Features 

Custom   
NA 

[29], 
2023, 

7 

Specific 
Techniq

ue 

Object 
Detection in 

Power 

Operation 
Sites 

Federated 
Self-

Supervised 

Learning 

Object Detection 
Features 

Custom   
NA 
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[30], 

2023, 

8 

Specific 

Techniq

ue 

Ultra-Short-

Term Power 

Forecasting 

Spatiotempo

ral Federated 

Learning 

Photovoltaic 

Forecasting 

Features 

Custom   

NA 

[31], 

2023, 
23 

Specific 

Techniq
ue 

Privacy-

Enhancing 
Cross-Silo 

Federated 

Learning for 
FDIA 

Detection in 

Smart Grids 

Double-

layer 
encryption 

scheme, 

Shamir 
secret 

sharing, 

parallel 
computing 

Smart Grid 

Features : Local 
model 

parameters, 

training data 
privacy, FDIA 

detection in 

smart grids 

Simulation data 

from a multi-area 
grid with 64 buses, 

58 loads, and 355 

measurements 

Federated Learning, 

Double-layer encryption 
scheme, Shamir secret 

sharing 

 

Accuracy: 

97.5 
Precision:97.8 

[32], 

2020, 
19 

Research 

Analysis 

Blockchain 

applied to the 
construction 

supply chain: 

A case study 
with threat 

model 

Case study 

analysis 

Collaborative 

systems, 
information 

processing, 

payment 
actualizations, 

resource 

utilization 

 

 
NA 

 

 
Blockchain technology 

 

 
NA 

[33], 
2023, 

10 

Specific 
Techniq

ue 

Federated 
Learning in 

Cloud-Edge 

Networks 

Efficient 
Federated 

Learning 

Cloud-Edge 
Communication 

Features 

Custom   
NA 

[34], 

2023, 

6 

Specific 

Techniq

ue 

Blockchain-

Based 

Federated 
Learning 

Blockchain 

Federated 

Learning 

Blockchain 

Features 

Custom   

NA 

[35], 

2023, 
11 

Specific 

Techniq
ue 

Poisoning 

Attack 
Detection 

Normalizing 

Flows 

Federated 

Learning 
Features 

Custom   

NA 

[36], 

2022, 

16 

Specific 

Techniq

ue 

Dual-filtering 

(DF) schemes 

for learning 
systems to 

prevent 

adversarial 
attacks 

Dual-

Filtering 

Schemes 

Learning System 

Features: : Input 

filtering, output 
filtering, 

anomaly 

detection, outlier 
detection 

MNIST, CIFAR-

10, ImageNet 

Multi-objective Genetic 

Algorithm (MOGA), 

Negative Selection 
Algorithm (NSA), Outlier 

Detection Methods 

(OCSVM, IF, VAE) 

 

NA 

[37], 

2015, 
60 

Specific 

Techniq
ue 

DNS Cache 

Poisoning 
Prevention 

Adaptive 

Caching 
Approach 

DNS Security 

Features 

Custom  NA 

[38], 

2020, 

N/A 

Survey 

Report 

Cybersecurity 

Breaches 

Survey 

Analysis : 

Quantitative 
and 

qualitative 

study 

Digital footprint, 

cyber risks, 

management 
involvement 

Survey data from 

UK businesses, 

charities, and 
educational 

institutions 

Not applicable  

 

NA 

[39], 

2021, 

N/A 

Article Phishing 

Attacks 

Case Studies Construction 

Industry 

 

NA 

  

NA 

[40], 
2017, 

N/A 

News 
Article 

Data Breach Incident 
Report 

Jewson Data 
Breach 

NA  NA 

[41], 
2021, 

N/A 

News 
Article 

Ransomware 
Attack 

Incident 
Report 

Bird 
Construction 

 
NA 

  
NA 

[42], 
2021, 

N/A 

News 
Article 

Data Breach Incident 
Report 

Hoffman 
Construction 

 
NA 

  
NA 

[43], 

2019, 
N/A 

Book Cyber Risk 

Management 

Risk 

Management 
Framework 

Various 

industries 

 

NA 

  

NA 

[44], 

2022, 
18 

Review A Preliminary 

SWOT 
Evaluation for 

the 

Applications 
of ML to 

Cyber Risk 

SWOT 

Evaluation 

Strengths, 

weaknesses, 
opportunities, 

threats of ML 

applications 

Review of various 

sources and 
previous studies 

SWOT analysis framework, 

various ML techniques for 
cyber risk analysis 

 

 
 

NA 
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Analysis in 

the 

Construction 

Industry 

[45], 
2018, 

N/A 

Framew
ork 

Cybersecurity 
Framework 

Best 
Practices 

Critical 
Infrastructure 

NA  NA 

[47], 
2019, 

23 

Analysis Cybersecurity 
Threats in 

Cloud 

Applications 

Deep 
Learning 

Cloud Security 
Features, 

Classify Intrusion 

Attacks in 
Network 

Communications 

KDD '99, UNSW-
NB15, CIC-

IDS2017 

 
 

SABADT (Signature- and 

Anomaly-Based Attack 
Detection Technique) 

Accuracy: 
99.91 (CIC-

IDS2017), 

98.84 (UNSW-
NB15), 99.89 

(KDD '99) 

Precision: 99.89 
Highest with 

KDD 

[48], 

2023, 
19 

Review 6G 

Communicati
ons 

Index 

Modulation 

6G 

Communication 
Features 

 

NA 

  

NA 

[49], 

2023, 
72 

Specific 

Techniq
ue 

Anomaly 

Mitigation in 
Cyber-

Physical 

Systems 

Explainable 

AI (XAI) 
Framework 

Inverter-Based 

Features 

Custom   

NA 

[50], 
2017, 

169 

Specific 
Techniq

ue 

Renewable 
Energy 

Management 

Virtual 
Power Plant 

Management
, Imperialist 

Competitive 

Algorithm 
(ICA) 

Renewable 
Energy Features: 

Thermal load, 
electricity prices, 

storage states 

Thermal load data 
from 2004, EEX 

spot market prices 

ICA  
 

NA 

[51], 

2022, 

29 

Specific 

Techniq

ue 

Frequency 

Regulation in 

Power Plants 

Grasshopper 

Optimizatio

n Algorithm 
(GOA) 

optimized 

two-stage 
controller 

for 

frequency 
regulation of 

grid 

integrated 
VPP 

Power 

Regulation 

Features: 
Thermal load, 

electricity prices, 

storage states 

Simulation data 

from MATLAB 

GOA, Firefly Algorithm 

(FA), Butterfly 

Optimization Algorithm 
(BOA), Particle Swarm 

Optimization (PSO) 

 

NA 

[52], 

2022, 
39 

Specific 

Techniq
ue 

Edge-Based 

Byzantine-
Robust 

Federated 

Learning 

Edge-Based 

Federated 
Learning 

Heterogeneous 

Data Features 

Custom   

NA 

[53], 
2021, 

N/A 

Article Cybercrime Industry 
Analysis 

Construction 
Industry 

 
NA 

  
NA 

[54], 
2021, 

21 

Research 
Analysis 

Cybersecurity 
Risk 

Assessment in 

Smart City 
Infrastructure

s 

Artificial 
Neural 

Networks 

(ANN) for 
risk 

assessment 

Dynamic 
network analysis, 

real-time 

monitoring, risk 
classification 

Synthetic datasets 
generated using 

NS-3 network 

simulator 

Multilayer Perceptron, 
Backpropagation Algorithm 

Accuracy: 
97% (ANN 

classification 

accuracy) 

[55], 
2019, 

N/A 

Framew
ork 

Information 
Security 

Controls 

Best 
Practices 

Various 
industries 

NA  NA 

[56], 

2017, 
N/A 

Regulati

on 

Cybersecurity 

Requirements 

Compliance Financial 

Services 

NA  NA 

[57], 

2021, 
25 

Research 

Analysis 

Cybersecurity 

in 
Construction 

Text mining, 

VOSviewer 
analysis 

Cybersecurity 

risks, digital 
tools, 

construction 

industry 

Web of Science 

(WOS) database 

NA  

NA 
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4. CURRENT GAPS AND FUTURE DIRECTIONS - RESEARCH PRIORITIES 

AI has certainly brought significant benefit to the race of stay-ahead to mitigate against the threats posed by 

malware, but it has also introduced new vectors of attack for attacker to exploit the weaknesses in the AI systems to 

turn the tables around [53]. A major challenge is that the learning processes of AI could be compromised by 

adversaries using poisoning attacks at training time. Poisoning attacks occur when malicious actors insert incorrect 

pieces of data into the training datasets that will be used to build a ML model. However, if the data is corrupt then it 

will corrupt the model which impairs the learning process of the model and thus the model can learn incorrectly 

about classes, and this is bad and this may allow some malware to evade to be detected otherwise. For instance, if an 

attacker is able to poison the training data which involves benign files and is able to make them look malicious, the 

AI system might begin tagging correct software as threats, leading you to more false positives and eventually more 

trust issues in your system [54]. 

 

4.1. Transparency and Interpretability 

A further major obstacle is the high level of sophistication and non-transparency of AI models, particularly deep 

learning models. These models are frequently made to be "black box" - they do not reveal how they reached 

particular decisions or classifications. However, this lack of transparency can make troubleshooting extremely 

challenging when the system missteps or fails to catch more advanced malware. This is a similar type of roadblock 

for organizations when it comes to regulatory compliance and auditing - how do you demonstrate that your AI-

driven security measures satisfy the standards and protocols that you are bound by making sure that AI models are 

interpretable and that they can be understood buy human analysts is key for trust and negligence [55]. 

In addition, deploying AI on malware mitigation necessitates stable and secure infrastructures. As AI system need 

huge computing power to process and storage heavy amount of data at the moment. The high-performance 

computing resources are required very much, that is the hindrance for smaller organizations, and with no budget 

these are too expensive. However, to maintain this ever-evolving security guard, AI models need to be refreshed 

with new data. And with continued need to train on current data, these models are a serious cost to model 

maintenance, especially in environments that always have a fast-evolving threat landscape [56]. 

 

4.2. Improve Detection Efficiency 

A valuable future direction in explainable malware detection is to enhance the design methodologies of malware 

detectors so that the explanations they generate can assist professionals in more accurately characterizing malware 

attacks. For example, involve extracting features and employing a decision tree to develop a model capable of 

determining the maliciousness of applications. In addition, ethical considerations are a key factor in the future 

[58], 

2023, 

17 

Journal 

Article 

Cybersecurity 

Review 

Scoping 

Review 

Construction 

Industry 

NA  NA 

[59], 

2020, 
11 

Book 

Chapter 

Ransomware 

Mitigation 

Training and 

Awareness 

Various 

industries 

NA  NA 

[60], 

2021, 
34 

Review 

Paper 

ML in 3D 

Printing : ML 
in 3D 

Printing: 

Applications, 
Potential, and 

Challenges 

Review of 

various ML 
techniques 

in 3D 

printing 

Design for 3D 

printing, material 
tuning, process 

optimization, in-

situ monitoring, 
cloud service, 

cybersecurity 

NA Various ML techniques 

including CNN, ANN, 
SVM, etc. 

NA 

[66], 

2019, 
54 

Research 

Analysis 

Context 

Aware 
Intrusion 

Detection for 

Building 
Automation 

Systems 

Context-

aware data 
structure, 

anomaly-

based 
behavior 

analysis 

Building 

Automation 
Systems: 

Runtime models, 

service 
interactions, 

functionality 

patterns 

Simulation data 

from the Smart 
Building testbed at 

the University of 

Arizona 

Bayesian Network, 

RIPPER, Decision Table 

 

 
NA 
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development of AI in cybersecurity. It allows you to identify biases in training data that can result in unfair or even 

discriminatory outputs, which is important for any organizational that wants to ensure the responsible use of AI. An 

AI model that learns from biased data that over represent certain kinds of threats or regions may fail to detect or 

classifies threats from underrepresented areas. Diverse and expansive datasets including a range of use cases and 

threat types are needed for developing AI systems that are fair & unbiased [57]. 

A number of future directions have been proposed to overcome these challenges and in order to advance the field. 

One potential method is the technique known as adversarial training, which involves training a ML model on normal 

datasets, as well as adversarial examples, which are used to evaluate the model’s capability to resist being tampered 

with and the ability to be improved by hostile examples [58]. Concurrent to this background, XAI, being a nascent 

field, is finding novel ways to make AI entities more transparent and interpretable [59]. 

 

4.3. Mitigate Attacks 

In recent research, the primary focus has been on ML attacks, gradient-based attacks, evasion attacks, and poisoning 

attacks. Evasion attacks involve manipulating malicious input samples during the training phase to circumvent 

detection by a trained system, and it requires access to the model. Poisoning attacks compromise the integrity of 

training data by introducing incorrect data since it can mislead the learning process of ML models. This corruption 

of training data severely undermines the entire training process. AI researchers, cybersecurity experts and regulatory 

bodies must collaborate to set the standards, and best practices for the use of AI to ensure a secure and ethical 

manner of AI in the area of malware mitigation. This involves creating data integrity, model transparency, and 

ethical frameworks to make sure AIs operate not only efficiently but also in a reliable and unbiased way as possible 

[60]. 

 

4.4. Simulating attacks for real-world scenarios 

Organizations can use AI to develop attack simulations of adversarial attacks and phishing attempts to prepare 

against real-world threats in their environment. Organizations can teach cybersecurity personnel to handle real-time 

attacks properly by running training simulations that minimize downtime and reduce damage [61]. 

 

4.5. Challenges and Mitigation Strategies for implementation of LLMs 

Despite their transformative potential, LLMs present several significant challenges in cybersecurity applications. 

First, LLMs are highly data-dependent, requiring extensive, diverse, and high-quality datasets for effective training. 

In the absence of such datasets, they are prone to inheriting biases and may struggle with generalization. LLMs are 

susceptible to adversarial attacks; carefully crafted malicious inputs or poisoned training data can lead to 

misclassification or undesirable behavior, posing security risks. Hence Creation of standardized benchmarks across 

various detection tasks (e.g., fraud, spam, hate speech) require fair and comprehensive model evaluation [62]. 

The interpretability of LLMs remains a major concern. Their "black box" nature makes it difficult to understand 

decision-making processes—an issue that is particularly problematic in cybersecurity, where transparency and 

explain ability are essential for compliance and the trust of human analysts. Lastly, LLMs are resource-intensive, 

both in terms of training and inference. This computational burden presents obstacles for deployment in edge 

computing scenarios, such as IoT devices or real-time threat detection systems.[63-65]. 

To address these challenges, several mitigation strategies are being explored. One approach is fine-tuning 

lightweight transformer variants, such as Distil BERT or TinyGPT, which are better suited for resource-constrained 

environments. Another strategy involves the use of XAI techniques, which help visualize model behavior through 

attention maps and activation layers, thereby enhancing interpretability. Additionally, federated learning offers a 

promising solution for training LLMs on decentralized data sources, improving both data privacy and system 

scalability without the need for centralized storage. 

To sum up, AI is emergent revolutionary technology in malware defense, but it brings the umbrella of challenges in 

data integrity, model transparency, resource expenditure and ethical matters. Meeting these challenges will demand 
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creative solutions while AI technologies evolve, improving and formalizing standards and practices together. 

Swimming against the stream by confronting these challenges in a direct manner, AI and ML will finally realize 

their full potential in cybersecurity and prove their mettle against a dynamic and dangerous adversary [66].  

With the rapid evolving of malware IoT in the shape of numerous forms is considerably a big challenge for the 

designed detection system. Shortage of diversify data and limited scale of obsolete data hampers accuracy and 

training a model. Survey highlighted the importance of models against sophisticated attacks. Modern malware 

tactics used obfuscation and evasion tactics against static and dynamic models. These models are expected to be 

robustness against such adversaries. 

Deployment of AI based model in sensitive installation where stakeholder can explain and interrupt the results is 

critical in explanation. Privacy preserving as a potential approach in federated learning for distributed IoT network, 

while facilitating a training model. Deep learning methods lead to high accuracy in malware detection but at the cost 

of high computational cost. Hence mostly it is found unsuitable in case of some IoT applications with limited 

resources. 

Formulation of comprehensive models while integrating insights from behavioural which can be accounted for 

social engineering and human factors. Technology of block chain can maintain security, detection of logs and 

temper proof data while maintaining the integrity of malware attributes. Hence ensuring transparency and 

trustworthiness. Analysis of real time data with edge computing to support IoT devices with limited resources. 

Hence can provide more scalable solution in real time data analysis. LLMs are likely to play a central role in unified 

threat management systems, capable of ingesting and reasoning over diverse inputs like email headers, code binaries, 

user behavior logs, and network traces. Combined with federated and continual learning, LLMs may soon evolve 

into self-adaptive cybersecurity agents—learning new threats in real-time, just like immune systems adapt to new 

pathogens [67]. 

 

5. CONCLUSION 

One of the most vital advancements in preserving the near-future threat landscape is the application of AI to 

cybersecurity, particularly to malware examination and prevention. The use of AI and AI-based methods are used to 

support conventional malware analysis for detection purposes such as static and dynamic analysis. AI not only 

detects but also offers most advanced real-time mitigation and response options which can dynamically change 

based on new threats. Moving from a reactive security posture to a proactive model then allows IT organizations to 

anticipate, and proactively contain, potential vulnerabilities, resulting in them shrinking the detection to recovery 

window. 

However, reliance on AI introduces additional risks, like being vulnerable to adversarial manipulation or the 

fragility or opacity of AI models that hide their inner workings and impede trust and accountability. This can only be 

done by developing secure, transparent, and ethical AI systems. Going forward, efforts to normalize data integrity, 

create safe testing environments and increase the general understanding of AI processes by cyber security 

professionals will all be necessary. AI must also be transparent and developed with ethical considerations as the 

foundation of providing and applying equal opportunities, discouraging the development and use of AI based on 

injustice, and ensuring the use of AI is not misused. 

More specifically, behavioural biometrics and predictive security are excellent demonstrations of how AI shifted 

cybersecurity, here allowing for always-on, low friction authentication and even predicting future threats. These 

capabilities demonstrate how AI can streamline processes and enhance user experiences. This means the next wave 

of cybersecurity will be characterized by more mature AI solutions and ecosystem-wide efforts to ensure tools are 

being used ethically and effectively. 

In AI introduces a new game changing play as well as an outside of the box manner on how typical cyber security 

strategies would adapt having a response to threats of scale that is scalable and intelligent. It will be essential for AI 

scientists, cybersecurity practitioners, and regulatory agencies to collaborate to create these standards and best 

practices in order to embrace the advantages of AI or eliminate the risks. In addressing these challenges, and 

harnessing the power of AI, security professionals can better fortify our lines of defense and defend the increasingly 

complex cyber-landscape that surrounds it. 
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