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Abstract - Malware represents the most critical threat in cybersecurity, meant to compromise the security for any individual or
any organization. These are covert software, designed to perform malicious act like data theft, data alteration, and to interrupt a
normal operation of the services. The persistent evolution of malware has called for more sophisticated techniques in its detection
and prevention, resulted into direct need of Artificial Intelligence in cybersecurity. Artificial intelligence, using machine learning
techniques and rising concepts like neural networks has greatly improved the traditional static and dynamic ways of detecting
malware. Advances in Al-driven solutions have made them much more capable than their predecessors of detecting malware and
addressing threats in real time. By training machine learning models on vast quantities of data, malicious patterns can easily be
detected and identify patterns. With these emerging challenges, Al powers automated real-time analysis and adaptive security
posture can effectively mitigate the threat. Large Language Models (LLMs) have revolutionized natural language processing and
are increasingly being deployed across a wide range of applications, including text generation, summarization, translation, and
detection systems. Recent research related to the methodologies employed in developing detection systems using LLMs, outlines
the existing limitations and research gaps, and proposes potential areas for future investigation. The use of Al in malware
analysis faces its own challenges with the potential for adversarial attacks and the scale of Al models that can muddy the waters
of transparency and trust. Overcoming these challenges will involve the creation of mature, ethical, Al systems and an open
dialogue between cybersecurity professionals, sustainable Al development and regulatory compliance all working in concert.
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1. INTRODUCTION

Malware is one of the most common and devastating threats in the cybersecurity universe. It stands as one of the
largest problems at the individual, and corporate levels across worldwide. Malware, in short for malicious software,
encompasses a multitude of software archetypes designed to perform unauthorized actions on the infected system [1].
[llustrations of these actions include the theft of information, data corruption, and interfering with service
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availability even up to consuming the resources of the system. Malware has made huge Impact on cybersecurity in
the form of direct cost - based on the stolen goods, or a ransom. In practice, it can disable essential services, halt
business operations, or even subvert data integrity. In terms of a social consequence, the leaked personal information
removes trust from the society on digital services [2].

It is imperative to analyze and mitigate the malware that enables best practices and measures to preserve online
security thereby maintaining system health. Successful malware management goes beyond just detecting and
removing acting malicious software, it also heavily involves taking preventative measures to protect future attacks.
Common malware analysis techniques involve static analysis where malware is examined without executing the
code and dynamic analysis where malware is executed in a virtual environment and behavior is observed. However,
those ways have difficulty matching the pace at which malware techniques are evolving to become more
sophisticated like polymorphic malware, that changes its appearance with every new attack, and metamorphic
malware, that actually modify its code to continue evading detection [3].

The present study is a comprehensive survey of malware analysis and detection using Artificial Intelligence (Al),
especially focusing on Machine Learning (ML) and LLMs. It reviews static and dynamic malware analysis
techniques enhanced by Al, explores emerging trends like federated learning, and discusses challenges such as
adversarial attacks, model transparency, and resource constraints. The paper highlights AI’s transformative potential
in cybersecurity while stressing the need for ethical, robust, and interpretable solutions. The literature search for this
survey was conducted using various reputable sources and search engines, as summarized in Table 1.

Table 1. Overview of Literature Sources and Publication Counts

Ser Search Engines/ Sources Count/ Paper included
1 IEEE 24
2 Springer 10
3 Elsevier 3
4 Cybersecurity 2
5 ACM 4
6 arXiy/ World Scientific/ Appl.Sci 6
7 PLoS ONE/ ICT Express/ World scientific 3
8 Ubiquity/ Symmetry/ Front.Eng.Manag 3
9 Miscellaneous International Journals 17
10 Future Gener. Comp Sys 3
11 Miscellaneous Online Sources 14

In these struggles, a battle has emerged to boost malware analysis and mitigation with the utility of Al. Al is playing
an even greater role in the dynamics of malware. It has the capacity to learn from massive sets of data and looking
for patterns that can be missed by human analysts. Al in the form of ML models can be trained to detect malicious
behaviours and benign behaviours of malware and normal programs respectively. With this training, a myriad of
features derived from the software have been taken such as opcode sequences, API calls, and network traffic
patterns [4], [5].

Additionally, Al approaches can automate real-time analysis of malware, providing ongoing cybersecurity coverage
and rapid adaption to changing malware tactics, without the need for constant manual update of malware statement.
This is more important than ever as malware attacks can multiply and evolve faster than ever. Al-driven tools help
cybersecurity systems to respond quickly and also proactively identify potential vulnerabilities, making
cybersecurity defense to be proactive rather than reactive [6].

Among the various approaches discussed in this study, Figure 1 provides a visual representation of the most
common malware analysis techniques, highlighting the methodological frameworks that underpin both static and
dynamic examination of malicious software. Figure 1 is a mind map illustrating different types of malwares,
including Spyware, Ransomware, Trojans, Bots, and Mobile Malware. Each category branches into specific
subtypes or examples, such as Key logger under Spyware and WannaCry under Ransomware. It visually organizes
malware classifications and notable variants to show their relationships and effects.
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Figure 1. Common Malware Analysis Techniques

The use of Al in malware analysis and mitigation is a significant step forward in the field of cybersecurity
integration. Al further helps by improving the fidelity, agility, and predictive capabilities of malware detection
systems, arming cybersecurity professionals to get one step ahead of rapidly changing threats in the digital world.
The constant advancements in Al are expected not only neutralizing the existing vulnerabilities but also usher in a
whole new era of cybersecurity methodologies to come. It is crucial that these Al systems are designed with
robustness and ethical considerations in mind as we can only move forward from here and we must make the most
out of the efficacy of these Al and ensure they do not lead to new vulnerabilities inadvertently [7].

These advanced protection systems are a beacon of light in the quiet battle against the growing evolution of cyber
threats while the technologies of Al itself mature further and further to advance in this fight hackers. Al can process
large data sets faster than any human can and can detect problems and anything out of the norm on a scale and speed
that otherwise would be impossible with only human analysts. The support for different file types and formats is
very important to combat new malware around in the wild that changes and even evolves to get past traditional
means of detection. Since they are powered by ML and neural networks, advanced Al systems are able to learn from
every interaction adding information about new threats to the knowledge base. This involves more than just
identifying the malware in patterns but with a memory of the distinction between false positives and real threats,
which increases the accuracy of the cybersecurity.

In addition, the role of Al is not only to detect but also to predict security. Advanced types of predictive analytics
with an assist from Al technology can use long-term trends and patterns to project possible security breaches
happening in the near future. By preparing defences in advance, rather than reacting to an attack as it occurs,
businesses can take a proactive stance to cybersecurity. In one example, if an Al system notices a pattern of break-in
attempts on a network of some form, it can launch automated security measures to block similar threats before they
are ever even executed, preventing potential attacks from occurring [8].

Furthermore, integration of Al technologies in cybersecurity facilitates the emergence of adaptive security
architectures. These systems are designed to be adaptive, learning and more importantly changing with their
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environment. In a scalable, Al-driven framework, we can also safely let the algorithms learn and evolve as they
grow in a way very similar to how humans develop an immune system that learns from exposure to threats. The
capability to dynamically both changes the code and its behavior is especially useful in the context of polymorphic
and metamorphic malware, which can morph over sufficiently narrow time window and tailor its appearance and
behavior to outrun static security solutions [9]. However, this dependence on Al to fight malware also brings with it
several issues that need to be tackled.

The complexity of Al systems also renders them vulnerable to adversaries, who in the worst case can influence the
learning process inflows using methods such as poisoning attacks (inserting false data into the system) which
distorted the learning and decision process. Furthermore, complexity of AI models may increase its non-transparent
and non-interpretable characteristics among decision-making processes that can endanger debugging and trust in Al
embedded systems [10].

We need to address them, and that requires the development of "responsible," secure, transparent, and ethical Al
systems. This includes verifying the source of data used to train Al models; creating simulated, adversarial
environments for vigorous testing of Al that let organizations attack or assess how well an Al will perform; and
increasing how much the developers of enthusiastic cybersecurity staff understand behavioural analysis and
statistical logic in Al programs. With advancements in these technologies, collaboration between the Al researchers,
security experts, and regulatory bodies become mandatory for setting good practices and standards to use Al safely
and effectively to curb the malware [11].

In the battle against malware and for better detection, predictive insights, and adaptive security, Al is proving to be
an exciting frontier. As the journey of SOAR continues to play out, its continued integration into the cybersecurity
strategy will likely upend the way defences are built and operated, providing a new and adaptive answer to the
rapidly advancing threat landscape. Consequently, the future of malware defense depends not solely on creating
novel Al solutions but on devising a systematic method of improving effective and fair Al technologies.

With the growing sophistication of cyber threats, particularly polymorphic and metamorphic malware, traditional
and even early Al-based detection techniques often fall short. To address this, recent research has turned to the use
of LLMs—deep learning architectures pre-trained on massive corpora of textual data—to augment malware
detection systems. LLMs, such as GPT or BERT-style transformers, are proving valuable in domains beyond natural
language processing, especially in understanding complex sequences and contextual patterns found in network and
binary data.

LLMs can parse and interpret protocol logs, packet-level sequences, and even obfuscated code, enabling them to
function effectively in real-time network monitoring systems. They are particularly well-suited for detecting
contextual anomalies—a key weakness in rule-based and signature-based systems. By learning normal traffic
behavior patterns and linguistic-like structures in logs and telemetry, LLMs can flag subtle deviations that may
signal command-and-control (C2) communications, lateral movement, or exfiltration attempts.

For instance, researchers have shown that transformer-based models trained on packet payloads and flow metadata
can identify malware-generated traffic, even when obfuscated using encryption or tunnelling protocols (e.g., DNS
tunnelling) [12].

2. MALWARE DETECTION AND ANALYSIS
2.1 Static Malware Analysis Using Al

Static analysis involves examining the malware without executing it. Breaking down the code to recognize patterns
and signatures that may be malicious this traditionally involved malware detection based on signatures, i.e.,
matching the code against a database of specific malware signatures. Unfortunately, modern malware is little bit
more sophisticated in their obfuscation techniques to evade detection [13].

A comparative overview of how Al technologies are applied in malware detection, highlighting the distinctive
features, methodologies, and outcomes of static and dynamic analysis. Table 2 provides a comparative summary of
the application of Al technologies in malware detection, contrasting static and dynamic analysis approaches.
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Table 2. Malware Detection through Al: Static and Dynamic Analysis

Analysis Description Al Technologies Key Studies/Findings Effectiveness/
Type Used Outcomes
Static Analyses malware without | ML algorithms, Used a CNN model Achieved significantly
Analysis | execution by examining particularly trained on raw byte higher detection rates
the code to detect Convolutional Neural | sequences of compared to
suspicious patterns and Networks (CNNs), executable files [13]. | traditional methods.
signatures. Traditionally which analyze binary Especially effective in
relies on signature-based code and static identifying zero-day
detection, which struggles | features such as byte- threats and
against obfuscation level representations. polymorphic malware,
techniques used by which constantly
modern malware. change their
signatures.
Dynamic | Involves executing ML models like Example study not Enables real-time
Analysis | malware in a controlled Recurrent Neural specified in the detection and
environment to observe its | Networks (RNNs) original text but mitigation of threats
behavior, capturing the and behavior analysis | generally involves by analysing
actions performed by the algorithms that using Al to identify behavioural patterns,
malware during runtime. monitor and learn deviations in normal | effective against
More effective at from the operation of | operational patterns, | complex and
uncovering the true nature | the code over time. indicating potential sophisticated malware.
and intent of the malware. threats.

By using Al on top of static analysis, one can apply machine-learning algorithms for analysing the binary code and
identifying malicious patterns unknown in the signature bases. For instance, patterns of phishing recorded across
similar executables may be observed by CNNs in code embedding from static information from the machine's
binaries, such as the byte level, which may be valuable in identifying features of malware [14].

A study by Raff et al. that has been trained using raw byte sequences of executable files; it showed a much greater
detection rate than traditional methods! The intelligence-based detection is very successful at tracking zero-day
threats and polymorphic malware, which change their signatures with each usage [15].

Static analysis involves the careful examination of an executable’s signature without the need to execute the code,
aiming to classify the file as malware if the signature appears malicious or as benign if otherwise. This method has
the reverse engineering of malware code and involves the detailed processing of extracted features to discern and
interpret any malicious activities through a signature-based approach. In this context, a signature refers to a unique
identifier4 for a binary file, determined by calculating its cryptographic hash [16].

2.2 Al for Dynamic Malware Analysis

Dynamic Analysis is the process of running the malware in a controlled environment, to see what the malware does.
It is highly successful for discovering the true nature of some malware since few malicious behaviours are
performed during its runtime. Behavioural analysis uses specialized Al to perform dynamic analysis, and uses fully
automated Al features. Models like RNNs learn how the code runs at runtime (how it acts over time) which then
helps in the identification of malicious patterns in the code [17].

Dynamic analysis benefits from LLMs' ability to model behavioural logs generated during sandbox executions.
Sequences of API calls, file system interactions, or network events are semantically rich and context-sensitive.
LLMs help in distinguishing benign from malicious actions not just based on frequency but based on contextual
dependencies, much like how word meaning in a sentence depends on its surrounding tokens. Figure 2 describe the
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monitoring the execution process, along with data flow dependency which implement ML algorithm for training and
testing. So that malware detection has been identified.
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Figure 2. Dynamic Analysis and ML

One of the most significant uses of Al in the field of dynamic analysis is the application of powerful anomaly
detection techniques. One common approach is training these systems on a dataset of what typical behavior (User,
Process, and System using this same tool (YETI)). The model can then be used to detect deviations as potential
malware activity. An interesting story here involves a large cybersecurity company deploying Al powered
behavioural-based monitoring to dynamically analyze the network-behavior of installed applications and identify the
behavior as coming from an advanced ransomware attack, thereby neutralizing it before large scale damage could
ensue [18].

In static analysis, LLMs can be trained on assembly code, bytecode, or PE file strings. When formatted as sequences
of tokens, code can be treated like a natural language. Studies have shown that sequence-based models like
transformers outperform CNNs and RNNs in learning relationships across large opcode sequences, helping to
identify subtle malware signatures [19].

Dynamic analysis benefits from LLMs' ability to model behavioural logs generated during sandbox executions.
Sequences of API calls, file system interactions, or network events are semantically rich and context-sensitive.
LLMs help in distinguishing benign from malicious actions not just based on frequency but based on contextual
dependencies, much like how word meaning in a sentence depends on its surrounding tokens [20].

2.3. AI Methodologies in a Comparative Study in Malware Detection

Such distinct trade-offs draw attention to advantages and disadvantages of different Al approaches to malware
detection. For instance, decision tree algorithms offer easily interpretable answers for malware detection, however
their simple decision boundaries are no match for the more advanced malware surreptitiously hiding in the
background. Others are deep learning techniques like deep neural networks (DNNs), which have better detection
performance for stealth or new malware species. But they are computationally expensive, train on huge datasets, and
are hard to interpret as they are "black-box" methods [21].

ML methods, such as support vector machines (SVM) and random forests, have been widely adopted in static and
dynamic malware analysis. This is particularly useful in malware analysis where SVMs perform well in high-
dimensional spaces - where we have a few hundreds or thousands of features extracted from a single piece of
malware. The assignment of random forests to a given class of methods also allows for their usefulness in overfitting
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and noisy data, as the perform noticeably better than other methods and classifier under highly non-linear and
unbalanced data conditions [22].

These methods were analysed comparison-wise in 2019 for different datasets, including the Microsoft Malware
Classification Challenge (BIG 2015). Our study showed that the DNN which most of the time were in obviously
showing better performance regarding detection accuracy, however, the ensemble methods which are very rare in
the top position most of the time the random forests made a good trade-off among high detection accuracy, low
computational expense, and direct application [23].

2.4. Emerging Trends in Cybersecurity: From Malware Detection to Federated Learning Applications

This section explores recent advancements in malware detection, federated learning applications, and cybersecurity
methodologies across various domains. Static malware analysis using ML on dataset, utilizing string and PE header
features can effectively classify malicious detection [24]. Combination of both static and dynamic analysis in the
OPEM framework (open-source tool kit for coding) create a machine-learning-based malware detection and neural
network model showing improved flexibility and accuracy in identifying threats [25]. Several studies explored
federated learning and optimization in energy systems focused on trusted decentralized federated learning,
emphasizing privacy and security in distributed environments [26],[27].

Several studies investigated federated learning in the context of power systems. Abnormal power consumption
detection system utilizing federated learning, demonstrated improvements in detection efficiency while preserving
data privacy through proposed object detection model [28],[29]. Power forecasting spatiotemporal data using
federated learning in smart grids, aiming to detect false data injection attacks while ensuring data privacy across
different silos [30],[31]. Use of block chain technology in the construction supply chain demonstrates its
effectiveness through a case study and threat model [32]. Federated Learning in Network and Security Applications
demonstrate various methods for cloud-edge network communications, optimizing latency along with block chain-
based decentralized federated learning model, enhancing security and transparency [33], [34]. Poisoning attacks in
federated learning, employing normalizing flows mitigate the impact of adversarial inputs [35],[36]. Distributed
Control and Cybersecurity Measures tackled the DNS cache poisoning attack, proposing an adaptive caching
approach to enhance security in network infrastructure [37].

Cyber Security Breaches Survey 2020, which highlights common threats and the state of cybersecurity in
organizations across the UK [38]. Specific case studies and reports discuss incidents like phishing attacks in the
construction industry [39], the data breach incident involving Jewson [40], and ransomware attacks targeting Bird
Construction [41] as well as Hoffman Construction’s health plan data hack [42]. These reports demonstrated the
prevalence and impact of cybersecurity threats in critical sectors.

Cyber risk management, focusing on prioritizing threats, identifying vulnerabilities, and applying controls for
optimal security posture [43]. Evaluation of ML applications in cyber risk analysis within the construction industry,
presented a SWOT (Strength, weakness, opportunities and threats) analysis that highlights the strengths and
challenges associated with implementing ML in this domain [44]. NIST released a framework for improving critical
infrastructure cybersecurity, offering guidelines for enhancing resilience and preparedness against cyber threats [45].

2.5. Al in Real-Time Malware Mitigation and Response

Another provision of real-time malware mitigation is for the ability to make out the threats promptly when they
happen and to neutralize them to limit their resulting damage and slow down their development. Al can work with
such large & fast datasets in a way that is unbeatable by humans. ML can detect anomalies that the Al can use to
help real-time mitigation.

Al systems, for example, can watch for network traffic patterns and contrast them with its body of historical
experiences. Any anomalies, like abnormal outbound traffic or increases in data access, can be immediately
highlighted for review. In reality, deep learning models, especially those that use neural networks, are excellent at
detecting patterns related to advanced cyber threats such as zero-day exploits when the model has not seen any of
the current malware signatures. This was confirmed by a 2020 study by Cisco showing that the models, when
implemented in their intrusion prevention systems (IPS), were able to detect and subsequently prevent over 99.8%
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of malware encounters from real-time traffic patterns analysis. ML is widely used for general anomaly detection,
while deep learning can handle more complex threats with a proven record of high effectiveness in specific cases
like Cisco's system.

One of the most impactful uses of LLMs is in stream-based threat detection. Instead of waiting for complete log files,
LLMs can process real-time input (such as syslog, Net Flow, or endpoint telemetry) token-by-token. This capability
has been explored in real-world implementations such as Cisco's Al-enhanced intrusion prevention system, which
used transformer-based models to block over 99.8% of unknown malware by analysing traffic flows in real time.
Coupled with SOAR platforms, LLMs can also suggest remediation steps or even generate incident response plans
based on learned correlations from historical incidents, improving automated response capabilities.

Unlike conventional ML models (e.g., SVM, Random Forests), LLMs require minimal manual feature engineering.
They learn hierarchical representations from raw input, making them ideal for domains where feature crafting is
infeasible or limited by expert knowledge.

Moreover, pertaining LLMs on multi-domain datasets (e.g., malware code, cybersecurity forums, phishing emails)
enables them to generalize better and detect new attack vectors—such as zero-day exploits or blended threats—that
evolve faster than labelled datasets can accommodate. Overview of Al models applied in cybersecurity, outlining
their specific implementations and measurable effectiveness, with a focus on how ML and deep learning techniques
contribute to anomaly detection and real-time threat mitigation presented in Table 3.

Table 3. AI Models in Cybersecurity: Implementations and Effectiveness

Al Technique Application in Cybersecurity Key Implementations Effectiveness/Results
ML Algorithms Used for detecting anomalies | Monitoring network traffic | General application across
in real-time, which indicate patterns to identify unusual | various systems, no
potential malware activities. | activities like outbound specific study mentioned
traffic spikes or but widely regarded as
unauthorized data access. effective in anomaly
detection.
Deep Learning Employed to discern complex | Cisco's implementation Successfully blocked
Models (Neural patterns in data that are within their IPS in 2020. 99.8% of malware
Networks) indicative of sophisticated encounters by analysing
cyber threats, including zero- network traffic patterns in
day exploits. real time.

2.6. Automated Systems for Threat Detection and Response Driven by Al

Using Al for security on automated threat detection and response is a revolution in the cybersecurity industry. Using
Al technology in these systems helps in a double fold- ability to identify threats more accurately and mobile
responding to identified threats automatically. For instance, an Al system, noticing a ransomware attack progress,
can also activate some routines to isolate the contaminated network segment and thus stop the malware from
reaching the important data centres.

For example, in practice wherever Al-driven automation such as Security Orchestration, Automation, and Response
(SOAR) solutions are used. These platforms leverage Al to manage a spectrum of security operations, from the most
basic signature updates to the most advanced threat hunting and eradication processes. Now by bringing Al into the
equation, SOAR platforms take SIEM capabilities (collect, analyze, and correlate security event data) and response
strategies to a whole new playing field, cutting detection to containment time in half, milliseconds in some cases.

For example, a major financial services company used an Al-powered SOAR platform in a live situation, the
response time with email-based Phishing Attacks was reduced from several hours to a few minutes, significantly
reducing their exposure and potential data loss.

3. EXAMPLES OF AI INTEGRATION INTO CYBERSECURITY DEFENSE MECHANISMS
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The impact of Al in cybersecurity is not just restricted to detection and response but also provides a wide repertoire
of defense measures that can ensure a stronger defense. Al is key to the development of adaptive security
architectures that change based on constant learning of the threat environment. Systems can dynamically change
security measures and adapt defences.

Al tracks user behavior, such as keystroke dynamics, mouse movements, and navigation patterns. Even before any
malicious activity occurs, these systems are able to identify and detect of departure from the norm, which could
mean a compromised account. Al is even being utilized in banking to make better use of behavioural biometrics,
which enhance fraud detection at major banks and financial institutions, leading to radical reduction in false
positives and an overall improved customer experience.

ML models also used in predictive security, which will predict the future threat scenarios according to the trends and
historical data available. This helps to alert the organizations to being proactive in modifying security measures and
strategies to resolve the vulnerabilities ahead of time. An international company used Al to anticipate possible attack
vectors and then automatically secured certain nodes from which the company receives hacking attempt multiple
times.

The integration of Al and ML is poised to transform the SOC by enhancing threat detection capabilities and
enabling more effective responses to cyber threats. These advanced technologies fundamentally shift the operational
landscape of SOCs, allowing for the faster and more accurate identification of potential security incidents [46].

3.1. Adaptive Security Architectures

A primary driver for the rise in cybersecurity is the integration of Al as a component within Adaptive security
architectures. The architecture itself should evolve continually to adapt to ever-changing threats, thus solidifying the
resilience and strength of security parameters. Instead of conventional security systems that protect only against
static threats, adaptive security architectures take advantage of the learning capabilities of Al to continuously adapt
and enhance security in response to ever-changing threats learnt from large datasets. This continuous learning
includes studying patterns and behaviours of both normal and malicious activities so new or previously unseen
threats can be recognized, and response strategies can be adjusted.

Adaptive security architectures have a significant positive turn out having proactive emphasis. Most of the
traditional security systems are based on specific predefined set of rules and signatures that helps in identifying and
preventing threats. This is not sufficient against a unique complex malware which can evade these static defences
easily. In contrast, when detecting security breaches, highly sophisticated Al-powered adaptive systems can identify
minor anomalies and deviations from established norms.

For example, if a network typically exhibits a pattern of data traffic, then any significant deviation from this pattern
can be detected and investigated in real-time, even to the point of revealing stealthy attacks before they can become
a major threat.

The ability of adaptive security architectures to dynamically security architectures adjustment is really important in
the fight against polymorphic and metamorphic malware that change their code to go undetected. Through
constantly learning and updating their intelligence-gathering capabilities, adaptive security systems remain vigilant
in detection systems to stay on top of these changing threats. This agility turns security from a primarily reactionary
tactic into a proactive approach, which creates a smaller window of vulnerability and results in better overall
security posture.

One other critical aspect of adaptive security architectures is that they can integrate with many different cyber-
security tools and technologies. Al can collect information from various sources, namely network traffic, endpoint
events, and even user behavior analytics to craft a more complete threat intelligence framework. This means that in
addition to making threat detection more precise and quicker, integration facilitates the process of responding to
incidents that are already underway. In the case of an anomaly being detected, system can be programmed to
perform predefined actions such as isolation of infected network segments or notifying security team about ongoing
attack and ultimately to reduce the impact of an attack.

Adaptive security architecture from application of Al, if designed and programmed properly is truly disruptive.
Using continuous learning and the ability to adjust automatically and in real time, these systems represent a very
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strong defense against the current evolving threats. They turn you from reactive to proactive security allowing to
move quickly and at the same time to be equipped with the intelligence to protect against even the most
sophisticated cyber threat. But as Al technology grows even more sophisticated, adaptive security architectures are
going to be huge for the future of cybersecurity by making defences more elastic and adaptive against the wide array
of threats that continue to plague the overall cybersecurity landscape.

3.2. Behavioural Biometrics

Behavioural biometrics is the Al technology used to analyze and detect behavior patterns that can be used to
enhance the security of systems. The approach is to watch and learn these special features of each human interacting
with computer systems. These behaviours can range from keystrokes dynamics, mouse movements, touchscreen
gestures, typing speed, and even the rhythm of key presses. Through creating a holistic pattern of a typical behavior
of a user, which consists of most known interaction fingerprints, the systems can be used to verify authenticator and
detect fraud or account takeover.

Behavioural biometrics derive their power from being always-on passive authentication. Behavioural biometrics
verifies the identity of the user on a constant basis while the user interacts with the system - vastly different from
traditional authentication mechanisms like passwords, or even biometric scans, which occur at isolated points in
time [47]. This constant monitoring guarantees that if some unwanted element manages to bypass the initial entry,
any behavior that strays from the prospective norm will set off an alarm that will, at the very least, lock down the
system if the trespasser continues to exploit the vulnerabilities of the system.

Al algorithms are responsible for the analysis of the extreme amount of data created over user interactions. With the
help of ML models over massive datasets help recognize the unique identifies associated with legitimate users.
These models can detect nuanced changes and even gracefully roll with the flow, by taking into account small shifts
in user behavior over time, thereby improving the discrimination of the system [48].

What makes behavioural biometrics so valuable is that it can identify potential fraud and security breaches before
any malicious intent is shown. For example, if an attacker hacks into an account to interact with the system its'
behavior compared to the legitimate user behavior is generally different. The Al system has a fast eye on finding
these patterns and can take action like locking the account, alerting the real user, notifying security action teams. By
adopting this pro-active approach, the window any attacker gets to do nefarious deeds is greatly reduced [49].

In addition to that, because the profile is consistent, behavioural biometrics is very difficult to spoof. While
traditional biometrics, such as fingerprints or facial recognition, may be tricked by high-quality replicas or images.
By comparison, trying to replicate someone's special behaviours is a whole lot harder. With the episodic nature of
the behavioural data, it is possibly even more secure, as frequent and significant resets in the behavioural profile
makes it extremely hard for the attackers to imitate the exact same behavior as the legitimate user [50].

Behavioural biometrics is something that makes the life of the user easier by avoiding the need for additional secure
measure that are just added on top [51]. Operating systems are able to interact with users in a seamless manner that
does not keep prompting the user to authenticate themselves, because the operating system is always checking in the
background. This balance between security and usability is especially useful in consumer applications, online
banking or corporate networks where the reduction of user friction is critical [52].

To sum up, the behavioural biometrics obviously emerge as something new and innovative for cyber security which
in the end also sounds easy to use and to set identity with. These systems use Al to perform pattern analysis and
learn from user behavior and as a result, provide a continuous enterprise-wide passive authentication that can
determine if there are any anomalies and in real time allow you to take immediate actions in case of a potential
breach. With cyber threats getting more and more sophisticated, behavioural biometrics will prove important
moving forward in the protection of digital identities, ultimately meaning improved security posture across the
ecosystem.

Table 4 summarizes the types, techniques, data sets used, methodology and accuracy utilized in the reviewed articles
in the present study.

Table 4. Malware Trends and Al Techniques Review
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Ref.,

Year, Paper Focus Technique Feature Dataset Algorithm/ Methodology Acc.ul.'acy 0&
e Type Precision (%)
Citation
[11, Review |Evolutionary |ML models |Malware 38,963 IoT An ensemble model for NA
2021, study of characteristics & |malware samples malware classification and
35 Internet of behaviours from 36 families, lineage analysis
Things (IoT) including
malware honeypot-collected
samples and
commercial
interchange
samples
[21, Review | Network ML, SDN, Network Disruptive potential of three NA
2015, processing in  |NFV processing aspects of the IoT with
162 IoT evolution challenges respect to network protocols
NA and their processing: the
reversal of the client/server
architecture, the scavenging
of spectral bands, and the
federation of Internet
gateways
[31, Analysis | Static analysis | Static Ransomware - NA
2019, of analysis properties NA
120 ransomware
[4], Review |Overview of | Survey/ Various analysis Survey for malware
2018, malware Review techniques detection methods like
229 analysis NA signature-based and NA
techniques heuristic-based
[5], |Analysis | Static Deep Byte-code Android byte-code | propose an anti-malware
2020, malware learning features system that uses customized
174 detection in learning models, which are NA
Android byte- sufficiently deep, and are
code ’End to End deep learning
architectures which detect
and attribute the Android
malware via opcodes
extracted from application
bytecode’ (Bidirectional
long short-term memory
(BiLSTMs) neural
networks)
[61, Analysis | Static ML String and PE APT]1 dataset Presented implementation
2019, malware algorithms  |header features of two categories of
88 analysis using malware detectors using (a) NA
ML strings and (b) selected PE
header features,
respectively. For each
category, Author
implemented six different
ML based classifiers
[71, Review |Deep learning |Review of Representation Various benchmark | Various, including CNN,
2015, overview deep learning, datasets for image |RNN, Long Short-Term
51,253 learning supervised recognition, speech | Memory (LSTM)
techniques learning, recognition, NLP NA
and convolutional tasks
applications |networks,
recurrent
networks
[81, Analysis | Static and ML Static and 39,000 malicious The combinations of Accuracy:
2019, dynamic dynamic features | binaries, 10,000 different features are used 99.36 (static),
98 malware benign files (static); |for dynamic malware 94.64
analysis 2,200 malware, 800 |analysis. The different (dynamic)

benign (dynamic)

combinations are generated
from APIs, Summary
Information, DLLs and
Registry Keys Changed.
Algo Used: Logistic
Regression, Decision Tree,
Random Forest, Bagging
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Classifier, AdaBoost
Classifier, Gradient
Boosting Classifier

[91, Review | Adaptive Al  |Hybrid of Behavioural Custom dataset Deep learning model
2023, framework dynamic pattern with recent combined with heuristics NA
677 for detecting  |deep extraction, real- [ malware samples for pattern analysis
polymorphic  |learning and |time data
and heuristic- adaptation
metamorphic  |based
malware analysis
[11], [Analysis |Intelligent Various Intelligent 992 malicious paper details some Accuracy:
2015, approaches (e.g., ML analysis samples from VX intelligent techniques for 96.10 (IBk),
35 for static methods) techniques : Heaven, 854 benign | malware analysis with all 95.78 (SMO)
malware Mnemonic n- samples from the preprocessing steps required
analysis grams, PE header |System32 folder to analyze any PE sample
features, API (Windows7) like malware classification
calls, function using mnemonic bi-grams
lengths, strings as features Algo Used:
Naive Bayes, IBk, SMO,
J48, Random Forest,
AdaBoostM1
[12], |Analysis | Android Two-layer Network traffic | CICAndMal2017: 1) Fully connected neural Accuracy:
2020, malware deep features: 5,065 benign apps, |network for static malware 99.3 (binary
84 detection learning Permissions, 429 malware detection 2) Convolutional classification),
using network |model with  |intents, network traffic Auto-Encoder (CAE) for 98.22 (category
traffic static and components, samples unsupervised feature classification),
network network traffic extraction from network 71.48 (family
traffic data traffic 3) Cascading classification)
analysis Convolutional Auto-
Encoder and Convolutional
Neural Network (CACNN)
for supervised malware
detection
[13], |Analysis | Malware ML & deep | Various malware |Malicia Project: Random Forest, DNNs Accuracy:
2018, Detection learning features : Opcode | 11,688 malware (DNN-2L, DNN-4L, DNN- 99.78
117 Using ML frequency, samples, 2,819 7L) Precision:100
and Deep Windows API benign executables Random Forest
Learning calls, system with Variance
calls Threshold)
[14], |Analysis | Android Static Android features | MODroid dataset SVM with Sequential Accuracy: 95.1
2017, malware analysis and |: Permissions, (200 malicious, 200 | Minimal Optimization Precision:89
152 classification |source code [source code (bag- |benign apps) (SMO) - Naive Bayes -
using ML analysis of-words) C4.5 Decision Trees (J48) -
using ML JRIP - AdaBoost - Farthest
First clustering - K-means
clustering - Expectation
Maximization (EM)
clustering - Ensemble
learning with majority
voting using combinations
of 3 and 5 algorithms
(including SVM, C4.5,
Random Forest, JRIP,
Logistic Regression)
[15], |Analysis |Static ML Malware Ember dataset use of PE file format along Accuracy:
2022, malware detection (1.1M files), with ML statistics to 99.97 (Random
68 detection features: PE file |unprocessed data determine whether a Forest)
using ML format features from malware particular program is
methods (Subsystem, Size |security partner of |malicious or not. Algo
of Optional Meraz’18 Used: Decision Trees,
Header, ID, (malicious and Random Forest, Gaussian
Sections Min legitimate files) Naive Bayes, AdaBoost,
Entropy, etc.) Gradient Boosting
[17], |Analysis | Android ML Android features |NA NA
2021, malware classifiers
222 detection with
ML classifiers
[18], |Analysis | Quantifying Static and Known benign Dataset from Author proposed n-gram Accuracy:95.5
2018, the dynamic and malicious industry: 2 million | and MalConv models are (n-gram), 94.1
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98 Robustness of |analysis with |files, adversarial |samples (malicious |trained on the same corpus. (MalConv),
ML and adversarial ~ [modifications and benign) Compare two ML 97.0 (AV1),
Current Anti- |modification classifiers and four 81.6 (AV2),
Virus s commercial anti-virus 89.2 (AV3),
products: AV1, AV2, AV3, 92.6 (AV4)
and AV4
[21], |Analysis | Evaluating DNNs PE file features | Ember dataset: Algo used: DNNS, Logistic Accuracy,98.9
2018, shallow and (size, entropy, 1.1M binary files Regression (LR), Naive (DNN)
110 deep etc.) (300K malicious, Bayes (NB), k-Nearest Precision
networks for 300K benign, 300K |Neighbour (KNN), 99.7(DNN)
static PE unlabelled for Decision Tree (DT),
malware training, 100K Random Forest (RF), SVM
detection malicious, 100K (linear and rbf kernels)
benign for testing)
[22], |Analysis | Robust Static and Various malware |Public and private | a scalable deep learning Accuracy:
2019, malware dynamic features: Opcode | datasets: Ember network architecture for 99.9 (DNN),
140 detection with |analysis sequences, dataset (PE files), malware detection called 97.8
deep learning system calls, Malimg dataset ScaleMalNet is proposed (SVM+LSTM)
image processing | (images) with the capability to
leverage the application of
Big Data techniques to
handle vary large number of
malware samples
[23], |Review |Systematic Systematic  |Permissions, API |98 studies from Various static analysis NA
2020, review of literature calls, intents, January 2014 to techniques, neural network
132 Android review hardware March 2020 models, non-neural network
malware components, models:- Android
detection opcode characteristic-based method
using static sequences, - Opcode-based method -
analysis program graphs, Program graph-based
symbolic method - Symbolic
execution execution-based method
[24], |Analysis |Static Data mining |Malware features |NA NA
2013, malware method
100 detection
using data
mining
[25], |Analysis | A Static- Hybrid Various malware | 1,000 malware OPEM, an hybrid unknown Accuracy:
2013, Dynamic approach features: Opcode |samples malware detector which 96.60 (SVM
44 Approach for |combining sequences, (VxHeavens), combines the frequency of with
Machine- static and system calls, 1,000 benign occurrence of operational Normalized
Learning- dynamic operations, raised |samples (collected |codes (statically obtained) Polynomial
Based analysis exceptions from computers) with the information of the Kernel)
Malware execution trace of an
Detection executable (dynamically
obtained). Algorithm Used:
KNN, Decision Trees
(Random Forest, J48), SVM
(RBF Kernel, Polynomial
Kernel, Normalized
Polynomial Kernel, Pearson
VII Kernel), Naive Bayes,
Bayesian Networks
[26], |Specific |Federated Decentralize |Trust and Custom
2022, |Techniq |Learning d Federated |Security Features NA
15 ue Learning
[27], |Specific |Federated Trust-Based |Recommendation |Custom
2022, |Techniq |Learning for |Federated Features NA
53 ue Recommenda |Learning
tions
[28], |Specific | Abnormal Improved Power Custom
2023, |Techniq | Power Federated Consumption NA
12 ue Consumption |Learning Features
Detection
[29], |[Specific | Object Federated Object Detection | Custom
2023, |Techniq | Detection in Self- Features NA
7 ue Power Supervised
Operation Learning
Sites
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[30], [Specific | Ultra-Short- Spatiotempo | Photovoltaic Custom
2023, |Techniq | Term Power |ral Federated |Forecasting NA
8 ue Forecasting Learning Features
[31], [Specific |Privacy- Double- Smart Grid Simulation data Federated Learning, Accuracy:
2023, |Techniq | Enhancing layer Features : Local |from a multi-area Double-layer encryption 97.5
23 ue Cross-Silo encryption model grid with 64 buses, |scheme, Shamir secret Precision:97.8
Federated scheme, parameters, 58 loads, and 355 sharing
Learning for | Shamir training data measurements
FDIA secret privacy, FDIA
Detection in  |sharing, detection in
Smart Grids parallel smart grids
computing
[32], [Research |Blockchain Case study Collaborative
2020, |Analysis |applied to the |analysis systems,
19 construction information NA Blockchain technology NA
supply chain: processing,
A case study payment
with threat actualizations,
model resource
utilization
[33], |Specific | Federated Efficient Cloud-Edge Custom
2023, |Techniq |Learning in Federated Communication NA
10 ue Cloud-Edge Learning Features
Networks
[34], |[Specific | Blockchain- Blockchain  |Blockchain Custom
2023, |Techniq |Based Federated Features NA
6 ue Federated Learning
Learning
[35], [Specific |Poisoning Normalizing |Federated Custom
2023, |Techniq |Attack Flows Learning NA
11 ue Detection Features
[36], Specific | Dual-filtering |Dual- Learning System | MNIST, CIFAR- Multi-objective Genetic
2022, |Techniq |(DF) schemes |Filtering Features: : Input | 10, ImageNet Algorithm (MOGA), NA
16 ue for learning Schemes filtering, output Negative Selection
systems to filtering, Algorithm (NSA), Outlier
prevent anomaly Detection Methods
adversarial detection, outlier (OCSVM, IF, VAE)
attacks detection
[37], |Specific | DNS Cache Adaptive DNS Security Custom NA
2015, |Techniq |Poisoning Caching Features
60 ue Prevention Approach
[38], Survey |Cybersecurity |Survey Digital footprint, |Survey data from Not applicable
2020, | Report |Breaches Analysis : cyber risks, UK businesses,
N/A Quantitative |management charities, and NA
and involvement educational
qualitative institutions
study
[39], Article |Phishing Case Studies |Construction
2021, Attacks Industry NA NA
N/A
[40], News |Data Breach |Incident Jewson Data NA NA
2017, | Article Report Breach
N/A
[41], News |Ransomware |Incident Bird
2021, | Article |Attack Report Construction NA NA
N/A
[42], News |Data Breach |Incident Hoffman
2021, | Article Report Construction NA NA
N/A
[43], Book | Cyber Risk Risk Various
2019, Management |Management |industries NA NA
N/A Framework
[44], |Review |A Preliminary [SWOT Strengths, Review of various | SWOT analysis framework,
2022, SWOT Evaluation weaknesses, sources and various ML techniques for
18 Evaluation for opportunities, previous studies cyber risk analysis
the threats of ML NA
Applications applications
of ML to
Cyber Risk
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Analysis in
the

Construction
Industry
[45], |Framew |Cybersecurity |Best Critical NA NA
2018, ork Framework Practices Infrastructure
N/A
[47], [Analysis | Cybersecurity |Deep Cloud Security KDD '99, UNSW- Accuracy:
2019, Threats in Learning Features, NB15, CIC- 99.91 (CIC-
23 Cloud Classify Intrusion [IDS2017 SABADT (Signature- and IDS2017),
Applications Attacks in Anomaly-Based Attack 98.84 (UNSW-
Network Detection Technique) NB15), 99.89
Communications (KDD '99)
Precision: 99.89
Highest with
KDD
[48], Review |6G Index 6G
2023, Communicati |Modulation |Communication |NA NA
19 ons Features
[49], Specific | Anomaly Explainable |Inverter-Based Custom
2023, |Techniq |Mitigationin |AI (XAI) Features NA
72 ue Cyber- Framework
Physical
Systems
[50], |[Specific | Renewable Virtual Renewable Thermal load data | ICA
2017, |Techniq |Energy Power Plant |Energy Features: |from 2004, EEX
169 ue Management |Management |Thermal load, spot market prices NA
, Imperialist |electricity prices,
Competitive |storage states
Algorithm
(IcA)
[51], |[Specific |Frequency Grasshopper |Power Simulation data GOA, Firefly Algorithm
2022, |Techniq |Regulationin |Optimizatio |Regulation from MATLAB (FA), Butterfly NA
29 ue Power Plants  |n Algorithm |Features: Optimization Algorithm
(GOA) Thermal load, (BOA), Particle Swarm
optimized electricity prices, Optimization (PSO)
two-stage storage states
controller
for
frequency
regulation of
grid
integrated
VPP
[52], |[Specific | Edge-Based Edge-Based |Heterogeneous Custom
2022, |Techniq | Byzantine- Federated Data Features NA
39 ue Robust Learning
Federated
Learning
[53], Article |Cybercrime Industry Construction
2021, Analysis Industry NA NA
N/A
[54], [Research |Cybersecurity |Artificial Dynamic Synthetic datasets Multilayer Perceptron, Accuracy:
2021, |Analysis |Risk Neural network analysis, |generated using Backpropagation Algorithm 97% (ANN
21 Assessment in | Networks real-time NS-3 network classification
Smart City (ANN) for monitoring, risk | simulator accuracy)
Infrastructure  |risk classification
s assessment
[55], |[Framew |Information Best Various NA NA
2019, ork Security Practices industries
N/A Controls
[56], [Regulati | Cybersecurity |Compliance |Financial NA NA
2017, on Requirements Services
N/A
[57], [Research |Cybersecurity |Text mining, |Cybersecurity Web of Science NA
2021, |Analysis |in VOSviewer |risks, digital (WOS) database NA
25 Construction |analysis tools,
construction
industry
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[58], Journal | Cybersecurity Scoping Construction NA NA
2023, | Article Review Review Industry
17
[59], Book | Ransomware |Training and Various NA NA
2020, |Chapter | Mitigation Awareness industries
11
[60], |[Review | ML in 3D Review of Design for 3D NA Various ML techniques NA
2021, Paper | Printing : ML | various ML | printing, material including CNN, ANN,
34 in 3D techniques tuning, process SVM, etc.
Printing: in 3D optimization, in-
Applications, printing situ monitoring,
Potential, and cloud service,
Challenges cybersecurity
[66], [Research Context Context- Building Simulation data Bayesian Network,
2019, |Analysis Aware aware data Automation from the Smart RIPPER, Decision Table
54 Intrusion structure, Systems: Building testbed at NA
Detection for anomaly- Runtime models, | the University of
Building based service Arizona
Automation behavior interactions,
Systems analysis functionality
patterns

4. CURRENT GAPS AND FUTURE DIRECTIONS - RESEARCH PRIORITIES

Al has certainly brought significant benefit to the race of stay-ahead to mitigate against the threats posed by
malware, but it has also introduced new vectors of attack for attacker to exploit the weaknesses in the Al systems to
turn the tables around [53]. A major challenge is that the learning processes of Al could be compromised by
adversaries using poisoning attacks at training time. Poisoning attacks occur when malicious actors insert incorrect
pieces of data into the training datasets that will be used to build a ML model. However, if the data is corrupt then it
will corrupt the model which impairs the learning process of the model and thus the model can learn incorrectly
about classes, and this is bad and this may allow some malware to evade to be detected otherwise. For instance, if an
attacker is able to poison the training data which involves benign files and is able to make them look malicious, the
Al system might begin tagging correct software as threats, leading you to more false positives and eventually more
trust issues in your system [54].

4.1. Transparency and Interpretability

A further major obstacle is the high level of sophistication and non-transparency of Al models, particularly deep
learning models. These models are frequently made to be "black box" - they do not reveal how they reached
particular decisions or classifications. However, this lack of transparency can make troubleshooting extremely
challenging when the system missteps or fails to catch more advanced malware. This is a similar type of roadblock
for organizations when it comes to regulatory compliance and auditing - how do you demonstrate that your Al-
driven security measures satisfy the standards and protocols that you are bound by making sure that AI models are
interpretable and that they can be understood buy human analysts is key for trust and negligence [55].

In addition, deploying Al on malware mitigation necessitates stable and secure infrastructures. As Al system need
huge computing power to process and storage heavy amount of data at the moment. The high-performance
computing resources are required very much, that is the hindrance for smaller organizations, and with no budget
these are too expensive. However, to maintain this ever-evolving security guard, Al models need to be refreshed
with new data. And with continued need to train on current data, these models are a serious cost to model
maintenance, especially in environments that always have a fast-evolving threat landscape [56].

4.2. Improve Detection Efficiency

A valuable future direction in explainable malware detection is to enhance the design methodologies of malware
detectors so that the explanations they generate can assist professionals in more accurately characterizing malware
attacks. For example, involve extracting features and employing a decision tree to develop a model capable of
determining the maliciousness of applications. In addition, ethical considerations are a key factor in the future
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development of Al in cybersecurity. It allows you to identify biases in training data that can result in unfair or even
discriminatory outputs, which is important for any organizational that wants to ensure the responsible use of Al. An
Al model that learns from biased data that over represent certain kinds of threats or regions may fail to detect or
classifies threats from underrepresented areas. Diverse and expansive datasets including a range of use cases and
threat types are needed for developing Al systems that are fair & unbiased [57].

A number of future directions have been proposed to overcome these challenges and in order to advance the field.
One potential method is the technique known as adversarial training, which involves training a ML model on normal
datasets, as well as adversarial examples, which are used to evaluate the model’s capability to resist being tampered
with and the ability to be improved by hostile examples [58]. Concurrent to this background, XAl, being a nascent
field, is finding novel ways to make Al entities more transparent and interpretable [59].

4.3. Mitigate Attacks

In recent research, the primary focus has been on ML attacks, gradient-based attacks, evasion attacks, and poisoning
attacks. Evasion attacks involve manipulating malicious input samples during the training phase to circumvent
detection by a trained system, and it requires access to the model. Poisoning attacks compromise the integrity of
training data by introducing incorrect data since it can mislead the learning process of ML models. This corruption
of training data severely undermines the entire training process. Al researchers, cybersecurity experts and regulatory
bodies must collaborate to set the standards, and best practices for the use of Al to ensure a secure and ethical
manner of Al in the area of malware mitigation. This involves creating data integrity, model transparency, and
ethical frameworks to make sure Als operate not only efficiently but also in a reliable and unbiased way as possible
[60].

4.4. Simulating attacks for real-world scenarios

Organizations can use Al to develop attack simulations of adversarial attacks and phishing attempts to prepare
against real-world threats in their environment. Organizations can teach cybersecurity personnel to handle real-time
attacks properly by running training simulations that minimize downtime and reduce damage [61].

4.5. Challenges and Mitigation Strategies for implementation of LLMs

Despite their transformative potential, LLMs present several significant challenges in cybersecurity applications.
First, LLMs are highly data-dependent, requiring extensive, diverse, and high-quality datasets for effective training.
In the absence of such datasets, they are prone to inheriting biases and may struggle with generalization. LLMs are
susceptible to adversarial attacks; carefully crafted malicious inputs or poisoned training data can lead to
misclassification or undesirable behavior, posing security risks. Hence Creation of standardized benchmarks across
various detection tasks (e.g., fraud, spam, hate speech) require fair and comprehensive model evaluation [62].

The interpretability of LLMs remains a major concern. Their "black box" nature makes it difficult to understand
decision-making processes—an issue that is particularly problematic in cybersecurity, where transparency and
explain ability are essential for compliance and the trust of human analysts. Lastly, LLMs are resource-intensive,
both in terms of training and inference. This computational burden presents obstacles for deployment in edge
computing scenarios, such as [oT devices or real-time threat detection systems.[63-65].

To address these challenges, several mitigation strategies are being explored. One approach is fine-tuning
lightweight transformer variants, such as Distil BERT or TinyGPT, which are better suited for resource-constrained
environments. Another strategy involves the use of XAl techniques, which help visualize model behavior through
attention maps and activation layers, thereby enhancing interpretability. Additionally, federated learning offers a
promising solution for training LLMs on decentralized data sources, improving both data privacy and system
scalability without the need for centralized storage.

To sum up, Al is emergent revolutionary technology in malware defense, but it brings the umbrella of challenges in
data integrity, model transparency, resource expenditure and ethical matters. Meeting these challenges will demand
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creative solutions while Al technologies evolve, improving and formalizing standards and practices together.
Swimming against the stream by confronting these challenges in a direct manner, Al and ML will finally realize
their full potential in cybersecurity and prove their mettle against a dynamic and dangerous adversary [66].

With the rapid evolving of malware IoT in the shape of numerous forms is considerably a big challenge for the
designed detection system. Shortage of diversify data and limited scale of obsolete data hampers accuracy and
training a model. Survey highlighted the importance of models against sophisticated attacks. Modern malware
tactics used obfuscation and evasion tactics against static and dynamic models. These models are expected to be
robustness against such adversaries.

Deployment of Al based model in sensitive installation where stakeholder can explain and interrupt the results is
critical in explanation. Privacy preserving as a potential approach in federated learning for distributed IoT network,
while facilitating a training model. Deep learning methods lead to high accuracy in malware detection but at the cost
of high computational cost. Hence mostly it is found unsuitable in case of some IoT applications with limited
resources.

Formulation of comprehensive models while integrating insights from behavioural which can be accounted for
social engineering and human factors. Technology of block chain can maintain security, detection of logs and
temper proof data while maintaining the integrity of malware attributes. Hence ensuring transparency and
trustworthiness. Analysis of real time data with edge computing to support IoT devices with limited resources.
Hence can provide more scalable solution in real time data analysis. LLMs are likely to play a central role in unified
threat management systems, capable of ingesting and reasoning over diverse inputs like email headers, code binaries,
user behavior logs, and network traces. Combined with federated and continual learning, LLMs may soon evolve
into self-adaptive cybersecurity agents—Ilearning new threats in real-time, just like immune systems adapt to new
pathogens [67].

5. CONCLUSION

One of the most vital advancements in preserving the near-future threat landscape is the application of Al to
cybersecurity, particularly to malware examination and prevention. The use of Al and Al-based methods are used to
support conventional malware analysis for detection purposes such as static and dynamic analysis. Al not only
detects but also offers most advanced real-time mitigation and response options which can dynamically change
based on new threats. Moving from a reactive security posture to a proactive model then allows IT organizations to
anticipate, and proactively contain, potential vulnerabilities, resulting in them shrinking the detection to recovery
window.

However, reliance on Al introduces additional risks, like being vulnerable to adversarial manipulation or the
fragility or opacity of Al models that hide their inner workings and impede trust and accountability. This can only be
done by developing secure, transparent, and ethical Al systems. Going forward, efforts to normalize data integrity,
create safe testing environments and increase the general understanding of AI processes by cyber security
professionals will all be necessary. Al must also be transparent and developed with ethical considerations as the
foundation of providing and applying equal opportunities, discouraging the development and use of Al based on
injustice, and ensuring the use of Al is not misused.

More specifically, behavioural biometrics and predictive security are excellent demonstrations of how Al shifted
cybersecurity, here allowing for always-on, low friction authentication and even predicting future threats. These
capabilities demonstrate how Al can streamline processes and enhance user experiences. This means the next wave
of cybersecurity will be characterized by more mature Al solutions and ecosystem-wide efforts to ensure tools are
being used ethically and effectively.

In Al introduces a new game changing play as well as an outside of the box manner on how typical cyber security
strategies would adapt having a response to threats of scale that is scalable and intelligent. It will be essential for Al
scientists, cybersecurity practitioners, and regulatory agencies to collaborate to create these standards and best
practices in order to embrace the advantages of Al or eliminate the risks. In addressing these challenges, and
harnessing the power of Al, security professionals can better fortify our lines of defense and defend the increasingly
complex cyber-landscape that surrounds it.
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