

Journal of Informatics and Web Engineering

https://doi.org/10.33093/jiwe.2025.4.3.7

© Universiti Telekom Sdn Bhd.

 Published by MMU Press. URL: https://journals.mmupress.com/jiwe

Journal of Informatics and

Web Engineering

Vol. 3 No. 3 (October 2024) eISSN: 2821-370X

Implementation of Lightweight Machine

Learning Models for Real-time Text

Classification on Resource-Constrained Devices
Marwah Zaid Mohammed Al-Helali1, Naveen Palanichamy2,*, K. Revathi3

1,2 Faculty of Computing & Informatics, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia.
3 Department of Information Technology, SRM Valliammai Engineering College, Tamil Nadu, India.

*corresponding author: (p.naveen@mmu.edu.my; ORCiD: 0000-0003-4601-9770)

Abstract - This paper addresses the growing need for implementing intelligent Natural Language Processing (NLP) systems on

low-power, memory-limited devices such as Raspberry Pi, mobile phones, and IoT edge hardware. As edge computing and smart

devices proliferate, there is an urgent need for more advanced NLP technology that does not require constant cloud access and is

efficient in computing and provides results in real time. While deep learning and cloud-based models typically offer high text-

classification accuracy and have demonstrated exceptional performance across a range of NLP tasks, they are often too resource-

intensive for real-time deployment in constrained environments. To overcome these limitations, we explore a set of lightweight

machine learning (ML) models—Multinomial Naive Bayes, Logistic Regression, and Decision Tree—to perform sentiment

classification on a subset of the Amazon Reviews Polarity dataset. Following thorough data preprocessing and Term Frequency-

Inverse Document Frequency (TF-IDF) vectorization, two optimization techniques are employed: feature selection via Chi-Squared

tests and simulated post-training quantization. Our experimental results show that resource consumption can be substantially

reduced, with minimal accuracy loss, thereby demonstrating feasibility for edge-based text analytics and offline functionality. We

provide a detailed comparative analysis that highlights how classical ML models remain viable in scenarios where modern deep

learning architectures cannot be efficiently deployed.

Keywords—Lightweight, Machine Learning, Text Classification, Resource-Constrained, Sentiment Analysis

Received: 11 February 2025; Accepted: 25 May 2025; Published: 16 October 2025

This is an open access article under the CC BY-NC-ND 4.0 license.

1. INTRODUCTION

Modern computing ecosystems have evolved to rely more on resource-constrained devices, including mobile phones,

low-power microcomputers, and different Internet of Things (IoT) edge nodes [1]. However, stringent constraints on

CPU power, memory, storage, and networking make it difficult to install standard ML models—often created for

https://doi.org/10.33093/jiwe.2025.4.3.7
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe
https://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

127

cloud-scale infrastructure—on such devices [2]. In NLP activities, where models such as transformers require

substantial computational resources that are much above the capabilities of edge devices, these constraints are

particularly important.

Lightweight ML models are crucial in this situation because they can operate locally with less resource usage and still

produce accurate predictions. Applications that demand low latency, offline functionality, energy efficiency, and data

privacy are the ones driving this need. For example, relying on cloud-based computation is impractical or perhaps

impossible in disaster areas, rural locations with poor connectivity, or healthcare monitoring. By avoiding the delays

or data breaches that come with online communication, lightweight models allow real-time inference right on-device.

While large neural architectures generally offer higher accuracy, their deployment on constrained hardware is not

feasible [3]. As a result, the field of on-device text classification has gained momentum, with some researchers using

model pruning, quantization, and knowledge distillation to compress deep neural networks without significantly

sacrificing accuracy [4]. As a result, many applications require immediate feedback and secure processing of textual

data [5]. Others have investigated using classical models with carefully designed features to preserve lightweight

performance, such as SVM and Naive Bayes [6]. Furthermore, hybrid approaches that combine quick classifiers and

rule-based filtering have demonstrated potential in time-sensitive applications [7]. Therefore, as potential substitutes,

this work investigates the application of lightweight classical ML models, including Multinomial Naive Bayes,

Logistic Regression, and Decision Tree. Predictive performance and computational economy are balanced in these

models when they are optimized using methods like feature selection and quantization [8].

The structure of this paper is as follows section 1 provides an introduction and highlights the need for lightweight

models on resource-constrained devices. Section 2 presents a review of related work in the field of text classification

and model optimization. Section 3 details the methodology, including dataset preparation, model selection, and

optimization techniques. Section 4 discusses the experimental results and evaluates the performance of the models.

Finally, Section 5 concludes the paper and outlines potential directions for future research.

2. LITERATURE REVIEW

This section reviews prior research on deploying ML models in resource-limited environments, focusing on the nature

of edge constraints and the strategies researchers have applied to reduce computational overhead. We also delve into

text classification efforts in sentiment analysis, outlining key methods and data sources.

2.1 Resource Constraints in Edge Computing

Edge computing aims to process data as close to the source as possible, which improves latency and reduces bandwidth

usage but also imposes severe restrictions on available hardware resources [6]. Studies underscore that while deep

neural networks can yield excellent results, their memory footprint and compute demands are often incompatible with

edge deployment [7]. Various lightweight techniques such as pruning and quantization have been explored, yet many

revolve around neural architectures rather than classical ML [9]. Researchers have also explored model distillation

[[10], hardware-aware Neural Architecture Search (NAS) [11], and dynamic computation graphs [12] to tailor

networks to specific resource budgets. Additionally, federated learning frameworks have emerged to distribute model

training across edge devices, reducing central processing but raising concerns around model complexity and data

heterogeneity [13]. For real-time NLP tasks, latency constraints further limit the feasibility of large models, making

compact architectures or classical approaches more attractive [14].

2.1.1 Classical ML Models vs. Deep Learning

Though deep learning has dominated tasks like computer vision and NLP, it may be over-engineered for simpler

classification problems, especially when the target environment requires extremely efficient inference [15]. Classical

algorithms—Multinomial Naive Bayes, Logistic Regression, and Decision Tree—offer smaller model sizes and faster

training/inference times [8]. As a result, they serve as solid baselines for resource-constrained contexts, including

embedded systems and IoT sensors [16]. Moreover, studies such as [17] demonstrate that classical models can

approach deep learning accuracy when paired with effective preprocessing and feature engineering. For instance, bag-

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

128

of-words and TF-IDF representations combined with Logistic Regression have yielded competitive results in text

classification tasks, particularly in low-data or constrained environments [18]. Unlike deep models, classical

algorithms also require less hyperparameter tuning and are easier to deploy on microcontrollers or FPGAs [19].

2.1.2 Compression and Optimization Techniques

Beyond advanced neural compression methods, classical algorithms also benefit from feature selection,

dimensionality reduction, and quantization [20]. Feature selection can greatly reduce the dimensionality in text-based

tasks, where large vocabularies can inflate processing demands and memory usage [14]. Techniques such as Chi-

square selection, mutual information, and L1 regularization have been shown to maintain classification performance

while significantly reducing model size [21]. In parallel, quantization of input features and model weights—even in

classical ML—has proven valuable in reducing runtime complexity [22]. PCA and truncated SVD have also been

explored to reduce dimensionality while preserving key discriminative patterns in text data [23]. Additionally, hybrid

strategies combining feature selection with lightweight ensemble models have proven effective for real-time

applications with minimal trade-off in accuracy [24].

Edge environments impose strict hardware limits, yet most work focuses on neural-network compression rather than

classical ML. Table 1 lists representative studies on resource constraints and classical approaches, highlighting this

gap.

Table 1. Representative Studies on Resource Constraints and Classical Approaches

Reference Focus / Domain Main Approach Key Findings

[6] Fog/Edge computing

paradigm

Data processing near the

source

Reduced latency but tight

hardware constraints

[7]
Efficient neural network

pruning (XNOR-Net)
Binary convolutional layers

Large memory savings but

mainly for CNN-based

models

[8] Naive Bayes in Information

Retrieval (IR)

Simple probabilistic text

modelling

Classical approaches can

still be highly competitive

[22] Pruning filters for efficient

ConvNets

Structural compression of

CNNs
Focused on deep models;

less on classical ML

[25] CNNs for sentence

classification

Demonstrated deep model

capacity

High accuracy but large

resource footprint

2.2. Text Classification in Sentiment Analysis

Text classification covers a broad range of tasks, from document categorization to spam detection and sentiment

analysis[18], [19], [26]. Sentiment analysis typically targets polarity detection—positive, negative, or neutral—of

user-generated text such as product reviews, social media posts, and news articles [14].

For large-scale datasets like the Amazon Reviews Polarity corpus, deep learning has dominated top performance

metrics [14]. Nonetheless, those approaches require considerable resources, making them less suitable for edge

deployment. Classical ML methods can still deliver practical accuracy, particularly when the target device or

environment is memory-bound, lacks consistent network connectivity, or must operate offline [21]. Recent

comparative studies on sentiment analysis techniques further support this claim, demonstrating that traditional

classifiers like Support Vector Machine and Random Forest can achieve robust performance for text classification

tasks without the computational overhead of neural approaches [18].

Text classification in sentiment analysis covers a wide range of methods with varying trade-offs between accuracy

and resource usage. Table 2 shows the major text classification methods is sentiment analysis.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

129

Table 2. Major Text Classification Methods in Sentiment Analysis

Reference Method Dataset Key Insights Limitations

[14] Lexicon-based

sentiment

analysis

Twitter data

No need for large

training sets;

interpretable results

Lower accuracy on

domain-specific texts

[18] Traditional

classifier

ensembles

(SVM, NB)

Movie reviews

Ensemble methods can

outperform single

classifiers in sentiment

High memory usage

with large ensembles

[22] Lightweight

text CNN

Multiple short text

corpora

Simple convolution

layers can be effective

[27] BERT-based

deep learning

Amazon Reviews

Polarity

Near state-of-the-art

accuracy

Very large model size;

requires GPU/TPU

2.3. Research Gap

While significant progress has been made in optimizing neural architectures for cloud-scale resources, there is

comparatively limited research focusing on systematic strategies to implement classical ML models for text

classification under severe hardware limitations. Existing literature tends to emphasize either very large deep learning

frameworks or highly specialized compression techniques tailored to neural networks [2], [7]. Moreover, many studies

overlook the practical constraints of IoT scenarios, where models must provide near-real-time inference despite

minimal CPU/GPU availability and limited storage [10]. This gap suggests a need to investigate simpler, less

parameter-intensive algorithms such as Naive Bayes, Logistic Regression, and Decision Trees enhanced by feature

selection and quantization techniques. Such approaches could benefit various domains requiring efficient inference

on constrained hardware, from text classification to environmental monitoring applications [8]. By rigorously

evaluating these methods on a standard sentiment classification task, we can offer a blueprint for resource-efficient

NLP deployments that preserve acceptable performance while operating in heavily constrained environments.

3. RESEARCH METHODOLOGY

The overarching aim is to demonstrate how lightweight ML models can be efficiently deployed for real-time text

classification under hardware limitations. This section describes data sourcing, preprocessing steps, modelling

approaches, and optimization strategies.

The overall experimental workflow—starting with the 10 000-sample Amazon Reviews subset, then data cleaning,

TF-IDF vectorization, model training (Naive Bayes, Logistic Regression, Decision Tree), Chi-Squared feature

selection, simulated quantization, and final evaluation—is illustrated in Figure 1.

3.1. Dataset obtained: Amazon Reviews Polarity Dataset Selection

The Amazon Reviews Polarity dataset comprises a vast collection of product reviews labelled as __label__1 (negative,

1–2 stars) or __label__2 (positive, 4–5 stars) [5]. For this study, a pre-existing subset of 10,000 reviews (5,000 positive

and 5,000 negative) was obtained directly without performing any additional preprocessing or filtering. We used a

balanced 10 000-sample subset of the Amazon Reviews Polarity dataset; its key statistics are listed in Table 3.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

130

Figure 1. Overall Experimental Workflow Diagram

Table 3. Dataset Statistics for 10 000-Sample Subset

Statistic Value

Statistic Value 10,000

Positive Reviews 5,000

Negative Reviews 5,000

Vocabulary Size (TF-IDF) 10,000

3.2. Model Selection and Implementation

Three lightweight ML algorithms were selected for implementation and evaluation based on their proven efficiency,

interpretability, and low computational requirements making them ideal for resource-constrained environments

targeted in this study:

3.2.1. Multinomial Naive Bayes

This probabilistic classifier applies Bayes' theorem under the assumption of feature independence. It is particularly

effective for text classification due to its simplicity, high speed, and robustness in handling high-dimensional, sparse

data such as bag-of-words or TF-IDF representations. Its low memory footprint makes it well-suited for deployment

on edge devices.

3.2.2. Logistic Regression

A linear model that estimates the probability of binary outcomes, Logistic Regression was chosen for its strong

baseline performance in text classification and ease of implementation. We use LogisticRegression(max_iter=1000),

which includes L2 regularization by default to prevent overfitting while maintaining generalization. Its predictable

behaviour and minimal tuning requirements further justify its selection.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

131

3.2.3. Decision Tree

This non-parametric method builds a flowchart-like structure of decisions, offering high interpretability and fast

inference. A maximum depth of 20 (max_depth=20) is set to control complexity and reduce the risk of overfitting.

Decision Trees are especially useful in environments where transparent decision-making and quick predictions are

crucial.

3.3. Optimization Techniques

The goal of these optimizations is to strike a balance between strong predictive performance and minimal resource

usage. Below are the two main approaches applied in this study:

3.3.1. Feature Selection (Chi-Squared)

A Chi-Squared (χ²) statistical test was used to identify features most strongly correlated with the class labels [21].

Specifically, we ranked each TF-IDF term by its χ² score, retaining only the top 2,000 or 5,000 features out of the

initial 10,000. This selective pruning of the feature space helps reduce model complexity and training overhead, while

preserving the key discriminative signals necessary for accurate classification. Similar approaches have proven

effective in phishing detection applications [19].

The Chi-Squared feature-selection workflow—from the full TF-IDF matrix to the top-k ranked features—is shown

in Figure 2.

Figure 2. Chi-Squared Feature Selection Workflow

3.4. Evaluation Metrics

To comprehensively assess both classification performance and resource efficiency, we employed a dual-metric

evaluation framework. This approach allows us to balance the trade-off between predictive accuracy and

computational constraints that are critical in resource-limited edge deployments.

The evaluation framework considered both performance metrics and resource utilization:

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

132

Performance Metrics:

• Accuracy -Proportion of correctly classified instances

• Precision - Ratio of true positives to all predicted positives

• Recall - Ratio of true positives to all actual positives

• F1-Score - Harmonic mean of precision and recall

• Area Under ROC Curve (AUC) - Model's ability to discriminate between classes

Resource Utilization Metrics:

• Memory Usage - RAM required during inference (MB)

• Model Size - Storage space required for the trained model (MB)

• Inference Time - Average time to classify a single text instance (ms)

• Energy Consumption - Estimated power usage during inference (mJ)

Resource measurements were conducted on a simulated resource-constrained environment using the Python

memory_profiler and time modules. Energy consumption was estimated based on computational operations required

for inference.

4. RESULTS AND DISCUSSIONS

4.1. Baseline Performance

After training each model on the processed data, we evaluated Accuracy, Precision, Recall, F1-Score, Model Size,

and Training Time. Table 4 reflects results obtained from the 10 000-sample test set dataset using 10,000 TF-IDF

features. Logistic Regression leads in accuracy (86.85%), while Naive Bayes boasts the quickest training (0.006 s).

The Decision Tree’s lower accuracy (71.95%) and longer training time reflect its complexity with higher-dimensional

data.

Table 4. Baseline Results for 10 000-Sample Test Set

Model Accuracy Precision Recall F1-Score Model

Size (MB)

Training

Time (s)

Naive Bayes 0.8350 0.8513 0.8231 0.8370 0.306 0.006

Logistic Regression 0.8685 0.8762 0.8669 0.8715 0.077 0.051

Decision Tree 0.7195 0.7549 0.6735 0.7119 0.073 1.806

4.2. Results After Feature Selection (Chi-Squared)

We reduced the TF-IDF feature set to 5,000 terms using a Chi-Squared test. Models were then retrained and evaluated

under the same experimental conditions.

As shown in Table 5, feature selection yields a modest accuracy boost for Naive Bayes (83.90%) and reduces Logistic

Regression’s model size roughly by half (to 0.039 MB). Decision Tree’s performance remains comparable to the

baseline but trains slightly faster.

4.3. Results After Feature Selection + Quantization

Finally, we simulated int8 weight compression on the feature-selected models to further reduce file sizes. Table 6 and

Table 7 compares performance before and after compression.

Combining feature selection with post-training quantization yields substantial file-size reductions especially for the

Decision Tree, which shrinks to just 0.016 MB while preserving most of each model's predictive performance.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

133

Table 5. Results after Chi-Squared Feature Selection (5 000 TF-IDF Features)

Model Accuracy Precision Recall F1-Score Model

Size (MB)

Training

Time (s)

Naive Bayes (FS) 0.8390 0.8524 0.8309 0.8415 0.153 0.007

Logistic Regression (FS) 0.8640 0.8714 0.8630 0.8672 0.039 0.024

Decision Tree (FS) 0.7125 0.7441 0.6725 0.7065 0.075 1.158

Table 6. Results after Post-Training Quantization (10 000 TF-IDF Features)

Model Accuracy Precision Recall F1-Score Model

Size (MB)

Training

Time (s)

Naive Bayes (Q) 0.8350 0.8513 0.8231 0.8370 0.271 0.271

Logistic Regression (Q) 0.8685 0.8762 0.8669 0.8715 0.076 0.024

Decision Tree (Q) 0.7175 0.7522 0.6725 0.7101 0.016 1.158

Table 7. Results after Feature Selection + Quantization

Model Accuracy Precision Recall F1-Score Compressed

Size (MB)

Training

Time (s)

Naive Bayes (Fs+ Q) 0.8390 0.8524 0.8309 0.8415 0.127 0.005

Logistic Regression (Fs+ Q) 0.8640 0.8714 0.8630 0.8672 0.038 0.024

Decision Tree (Fs+ Q) 0.7165 0.7505 0.6725 0.7094 0.016 1.159

4.4. Summary of Findings

• Naive Bayes sees small performance gains with feature selection, remains highly efficient to train, and

compresses well with quantization (whether standalone or combined with FS).

• Logistic Regression consistently achieves the highest accuracy, with its file size dropping considerably after

both feature selection and compression.

• Decision Tree benefits from compression most dramatically in terms of file size, but further tuning could

improve its classification metrics and training speed.

Figure 3 compares the accuracy of each model—Naive Bayes, Logistic Regression, and Decision Tree—across four

configurations: baseline, after feature selection (FS), after quantization (Q), and after both (FS + Q). The stability in

accuracy, with small gains for Naive Bayes post-FS and negligible drops due to quantization, underscores the

robustness of classical models under these optimizations.

Precision levels under different optimization scenarios are compared in Figure 4. Precision is highest for Logistic

Regression across all variants, with only minor decreases following feature selection (FS) or quantization (Q). Naive

Bayes shows a slight improvement after FS, while Decision Tree remains relatively lower.

Recall trends across optimization variants are illustrated in Figure 5. Naive Bayes shows a modest recall gain after

feature selection (FS), while Logistic Regression’s recall remains nearly constant across baseline, FS, Q, and FS + Q.

Decision Tree recall stays lower but consistent through all stages.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

134

Figure 3. Accuracy Comparison Across Model Variants

Figure 4. Precision Comparison Across Model Variants

Figure 5. Recall Comparison Across Model Variants

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

135

File size comparisons across optimization variants are shown in Figure 6. Quantization significantly reduces model

size—especially for the Decision Tree, which shrinks to 0.016 MB—while feature selection also meaningfully reduces

size for Logistic Regression.

Figure 6. Compressed Model Size Comparison (MB)

Training time comparisons across optimization variants are shown in Figure 7. Naive Bayes is the fastest overall—

dropping to 0.005 seconds after feature selection and quantization—while Logistic Regression balances speed and

accuracy, reducing from 0.051 to 0.024 seconds. Decision Tree remains the slowest, exceeding 1 second in all variants,

underscoring the trade-off between model complexity and training efficiency.

Figure 7. Training Time Comparison Across Model Variants

4.5. Limitations of Simulated vs. Real-World Quantization

Our simulated int8 weight compression approximates storage savings but omits several key aspects of production-

grade quantization frameworks such as TensorFlow Lite and ONNX Runtime [16], [17]. First, we do not perform

quantization-aware training, which in real pipelines adjusts model parameters during training to compensate for

reduced numerical precision and minimize accuracy loss. Second, our simulation applies uniform precision across all

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

136

weights, whereas real-world tools support per-channel quantization, operator fusion, and hardware-specific

optimizations that substantially affect inference latency and energy consumption on different edge processors (e.g.,

ARM Cortex-A vs. x86) [16]. Third, production frameworks use calibration steps to determine optimal dynamic

ranges for activations and weights—a process not captured in our prototype. Finally, graph-level optimizations (e.g.,

integer kernel fusion) and custom hardware kernels available in TensorFlow Lite and ONNX Runtime can further

shrink model size and accelerate runtime beyond what our simple compression can achieve. Future work should

integrate these classical ML models into actual TFLite and ONNX quantization workflows to quantify true

performance and accuracy trade-offs on resource-constrained devices.

5. CONCLUSION

A thorough methodology for putting lightweight ML models into practice that allow for real-time text classification

on hardware with limited resources has been shown in this study. We trained Multinomial Naive Bayes, Logistic

Regression, and Decision Tree models as baselines by selecting 10,000 reviews from the Amazon Reviews Polarity

dataset, doing standard preprocessing, and applying TF-IDF vectorization. To further minimize dimensionality,

memory, and storage overhead, we then implemented feature selection (using Chi-Squared) and simulated post-

training quantization.more efficiently.

Our results demonstrate that these classical models are still very promising substitutes for massive neural networks in

edge computing settings when they are optimized. Combining quantization with smaller feature sets resulted in

particularly noticeable memory and file-size savings, frequently reaching near-baseline accuracy. By reducing

dependency on cloud infrastructure, these enhancements protect data privacy, enable offline functioning, and enable

on-device inference. To further balance efficiency and performance, future studies might investigate hybrid modeling

techniques, such as utilizing specialized hardware accelerators or combining smaller neural networks with traditional

ML.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for their valuable comments.

FUNDING STATEMENT

The authors received no funding from any party for the research and publication of this article.

AUTHOR CONTRIBUTIONS

Marwah Zaid Mohammed Al-Helali: Conceptualization, Data Curation, Methodology, Validation, Writing –

Original Draft Preparation;

Naveen Palanichamy: Project Administration, Supervision, Writing – Review & Editing;

K. Revathi: Review & Editing.

CONFLICT OF INTERESTS

No conflict of interests were disclosed.

ETHICS STATEMENTS

Our publication ethics follow The Committee of Publication Ethics (COPE) guideline. https://publicationethics.org/.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

137

REFERENCES

[1] M.G.S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan, and F. Hussain, “Machine Learning at the Network

Edge: A Survey,” ACM Comput Surv, vol. 54, no. 8, pp. 1–37, Nov. 2022, doi: 10.1145/3469029.

[2] D. Mishra, A. Trotta, E. Traversi, M. Di Felice, and E. Natalizio, “Cooperative Cellular UAV-to-Everything (C-U2X)

communication based on 5G sidelink for UAV swarms,” Comput Commun, vol. 192, pp. 173–184, Aug. 2022, doi:

10.1016/j.comcom.2022.06.001.

[3] Y. Chen, “Convolutional Neural Network for Sentence Classification,” 2015. Accessed: Mar. 03, 2025. [Online].

Available: https://dspacemainprd01.lib.uwaterloo.ca/server/api/core/bitstreams/2ef42d4c-aba3-4adb-bd99-

2ceb6099553b/content

[4] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet Classification Using Binary Convolutional

Neural Networks,” in Computer Vision -- ECCV 2016, Springer International Publishing, 2016, pp. 525–542, doi:

10.1007/978-3-319-46493-0_32.

[5] X. Zhang, J. Zhao, and Y. LeCun, “Character-level Convolutional Networks for Text Classification,” in Advances in

Neural Information Processing Systems, vol. 28, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds.,

Curran Associates, Inc., 2015, pp. 649–657.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of things,” in Proceedings of

the first edition of the MCC workshop on Mobile cloud computing, New York, NY, USA: ACM, pp. 13–16, Aug. 2012,

doi: 10.1145/2342509.2342513.

[7] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A Survey of Model Compression and Acceleration for Deep Neural

Networks,” CoRR, 2017, Accessed: Mar. 03, 2025. [Online]. Available: http://arxiv.org/abs/1710.09282.

[8] T.T. Khoei and N. Kaabouch, “Machine Learning: Models, Challenges, and Research Directions,” Future Internet, vol.

15, no. 10, pp. 332, Oct. 2023, doi: 10.3390/fi15100332.

[9] E. Yvinec, “Efficient Neural Networks: Post Training Pruning and Quantization,” Sorbonne Université, 2023. Accessed:

Jun. 03, 2025. [Online]. Available: https://theses.hal.science/tel-04496138

[10] R.I. Mukhamediev et al., “Review of Artificial Intelligence and Machine Learning Technologies: Classification,

Restrictions, Opportunities and Challenges,” Mathematics, vol. 10, no. 15, p. 2552, Jul. 2022, doi: 10.3390/math10152552.

[11] S. Salmani Pour Avval, N.D. Eskue, R.M. Groves, and V. Yaghoubi, “Systematic review on neural architecture search,”

Artif Intell Rev, vol. 58, no. 3, p. 73, Jan. 2025, doi: 10.1007/s10462-024-11058-w.

[12] Y. Zheng, Z. Wei, and J. Liu, “Decoupled Graph Neural Networks for Large Dynamic Graphs,” arXiv preprint, May 2023,

[Online]. Available: https://arxiv.org/pdf/2305.08273

[13] T. Alonso et al., “Elastic-DF: Scaling Performance of DNN Inference in FPGA Clouds through Automatic Partitioning,”

ACM Trans Reconfigurable Technol Syst, vol. 15, no. 2, pp. 1–34, Jun. 2022, doi: 10.1145/3470567.

[14] E. Cambria, D. Das, S. Bandyopadhyay, and A. Feraco, “Affective Computing and Sentiment Analysis,” In A practical

guide to sentiment analysis, pp. 1–10, 2017, doi: 10.1007/978-3-319-55394-8_1.

[15] W. Jiang et al., “Challenges and practices of deep learning model reengineering: A case study on computer vision,” Empir

Softw Eng, vol. 29, no. 6, p. 142, Nov. 2024, doi: 10.1007/s10664-024-10521-0.

[16] “Post-training quantization,” TensorFlow. Accessed: Apr. 01, 2025. [Online]. Available:

https://www.tensorflow.org/model_optimization/guide/quantization/post_training

[17] “Quantize ONNX models.” Accessed: Apr. 01, 2025. [Online]. Available:

https://onnxruntime.ai/docs/performance/model-optimizations/quantization.html

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

138

[18] T. Ahmed Khan, R. Sadiq, Z. Shahid, M.M. Alam, and M.M. Su’ud, “Sentiment Analysis using Support Vector Machine

and Random Forest,” Journal of Informatics and Web Engineering, vol. 3, no. 1, pp. 67–75, Feb. 2024, doi:

10.33093/jiwe.2024.3.1.5.

[19] M.A. Daniel, S.-C. Chong, L.-Y. Chong, and K.-K. Wee, “Optimising Phishing Detection: A Comparative Analysis of

Machine Learning Methods with Feature Selection,” Journal of Informatics and Web Engineering, vol. 4, no. 1, pp. 200–

212, Feb. 2025, doi: 10.33093/jiwe.2025.4.1.15.

[20] X. Cheng, “A Comprehensive Study of Feature Selection Techniques in Machine Learning Models,” Insights in Computer,

Signals and Systems, vol. 1, no. 1, pp. 65–78, Nov. 2024, doi: 10.70088/xpf2b276.

[21] P.V. Dantas, W. Sabino da Silva, L.C. Cordeiro, and C.B. Carvalho, “A comprehensive review of model compression

techniques in machine learning,” Applied Intelligence, vol. 54, no. 22, pp. 11804–11844, Nov. 2024, doi: 10.1007/s10489-

024-05747-w.

[22] B. Hawks, J. Duarte, N. J. Fraser, A. Pappalardo, N. Tran, and Y. Umuroglu, “Ps and Qs: Quantization-Aware Pruning

for Efficient Low Latency Neural Network Inference,” Front Artif Intell, vol. 4, Jul. 2021, doi: 10.3389/frai.2021.676564.

[23] B. Kim, “Dimensionality and data size reduction using singular value decomposition,” Issues in Information Systems, vol.

25, no. 3, pp. 231–237, 2024, doi: 10.48009/3_iis_2024_118.

[24] S. Palaniappan, R. Logeswaran, S. Khanam, and Y. Zhang, “Machine Learning Model for Predicting Net Environmental

Effects,” Journal of Informatics and Web Engineering, vol. 4, no. 1, pp. 243–253, Feb. 2025, doi:

10.33093/jiwe.2025.4.1.18.

[25] M. Zulqarnain, R. Ghazali, Y.M.M. Hassim, and M. Rehan, “A comparative review on deep learning models for text

classification,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 19, no. 1, p. 325, Jul. 2020, doi:

10.11591/ijeecs.v19.i1.pp325-335.

[26] M. Zulqarnain, R. Ghazali, Y.M.M. Hassim, and M. Rehan, “A comparative review on deep learning models for text

classification,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 19, no. 1, p. 325, Jul. 2020, doi:

10.11591/ijeecs.v19.i1.pp325-335.

[27] J. Devlin, M.-W. Chang, K. Lee, K.T. Google, and A.I. Language, “BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding,” 2019. [Online]. Available: https://github.com/tensorflow/tensor2tensor

BIOGRAPHIES OF AUTHORS

Marwah Zaid Mohammed Al-Helali is an undergraduate student at the Faculty of Computing

and Informatics, Multimedia University, Cyberjaya, Malaysia. Her research focuses on

lightweight machine learning models, real-time text classification, and edge computing. She is

particularly interested in optimizing natural language processing tasks for deployment on

resource-constrained devices. Her current work explores efficient algorithm implementation

and model compression techniques for edge intelligence applications. She can be contacted at

email: 1211307415@student.mmu.edu.my.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

139

Palanichamy Naveen is a Senior Lecturer at the Faculty of Computing and Informatics,

Multimedia University. She joined the faculty after completing her PhD at Curtin University,

Malaysia. She earned her Bachelor of Engineering (CSE) and Master of Engineering (CSE)

from Anna University, India. Her research interests include smart grids, cloud computing,

machine learning, deep learning, generative AI and recommender systems. She is actively

involved in several research projects funded by Multimedia University. She can be contacted

at email p.naveen@mmu.edu.my.

K. Revathi is currently working as an Associate Professor at SRM Valliammai Engineering

College, Chennai, India. She has experience of about 15+ Years in Teaching and Research. Her

research interests include Affective Computing, Artificial Intelligence, Machine Learning,

Deep Learning, Internet of T, and Wireless Sensor Networks. She has published 26 articles in

peer-reviewed journals and holds 4 Design Patents and 1 Utility Patent. She also serves as a

reviewer for reputed journals. She can be contacted at email neyadharshini@gmail.com.

