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Abstract - This paper addresses the growing need for implementing intelligent Natural Language Processing (NLP) systems on 

low-power, memory-limited devices such as Raspberry Pi, mobile phones, and IoT edge hardware. As edge computing and smart 

devices proliferate, there is an urgent need for more advanced NLP technology that does not require constant cloud access and is 

efficient in computing and provides results in real time. While deep learning and cloud-based models typically offer high text-

classification accuracy and have demonstrated exceptional performance across a range of NLP tasks, they are often too resource-

intensive for real-time deployment in constrained environments. To overcome these limitations, we explore a set of lightweight 

machine learning (ML) models—Multinomial Naive Bayes, Logistic Regression, and Decision Tree—to perform sentiment 

classification on a subset of the Amazon Reviews Polarity dataset. Following thorough data preprocessing and Term Frequency-

Inverse Document Frequency (TF-IDF) vectorization, two optimization techniques are employed: feature selection via Chi-Squared 

tests and simulated post-training quantization. Our experimental results show that resource consumption can be substantially 

reduced, with minimal accuracy loss, thereby demonstrating feasibility for edge-based text analytics and offline functionality. We 

provide a detailed comparative analysis that highlights how classical ML models remain viable in scenarios where modern deep 

learning architectures cannot be efficiently deployed. 
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1. INTRODUCTION  

Modern computing ecosystems have evolved to rely more on resource-constrained devices, including mobile phones, 

low-power microcomputers, and different Internet of Things (IoT) edge nodes [1]. However, stringent constraints on 

CPU power, memory, storage, and networking make it difficult to install standard ML models—often created for 
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cloud-scale infrastructure—on such devices [2]. In NLP activities, where models such as transformers require 

substantial computational resources that are much above the capabilities of edge devices, these constraints are 

particularly important. 

Lightweight ML models are crucial in this situation because they can operate locally with less resource usage and still 

produce accurate predictions. Applications that demand low latency, offline functionality, energy efficiency, and data 

privacy are the ones driving this need. For example, relying on cloud-based computation is impractical or perhaps 

impossible in disaster areas, rural locations with poor connectivity, or healthcare monitoring. By avoiding the delays 

or data breaches that come with online communication, lightweight models allow real-time inference right on-device. 

While large neural architectures generally offer higher accuracy, their deployment on constrained hardware is not 

feasible [3]. As a result, the field of on-device text classification has gained momentum, with some researchers using 

model pruning, quantization, and knowledge distillation to compress deep neural networks without significantly 

sacrificing accuracy [4]. As a result, many applications require immediate feedback and secure processing of textual 

data [5]. Others have investigated using classical models with carefully designed features to preserve lightweight 

performance, such as SVM and Naive Bayes [6]. Furthermore, hybrid approaches that combine quick classifiers and 

rule-based filtering have demonstrated potential in time-sensitive applications [7]. Therefore, as potential substitutes, 

this work investigates the application of lightweight classical ML models, including Multinomial Naive Bayes, 

Logistic Regression, and Decision Tree. Predictive performance and computational economy are balanced in these 

models when they are optimized using methods like feature selection and quantization [8]. 

The structure of this paper is as follows section 1 provides an introduction and highlights the need for lightweight 

models on resource-constrained devices. Section 2 presents a review of related work in the field of text classification 

and model optimization. Section 3 details the methodology, including dataset preparation, model selection, and 

optimization techniques. Section 4 discusses the experimental results and evaluates the performance of the models. 

Finally, Section 5 concludes the paper and outlines potential directions for future research. 

 

2. LITERATURE REVIEW  

This section reviews prior research on deploying ML models in resource-limited environments, focusing on the nature 

of edge constraints and the strategies researchers have applied to reduce computational overhead. We also delve into 

text classification efforts in sentiment analysis, outlining key methods and data sources. 

 

2.1 Resource Constraints in Edge Computing 

Edge computing aims to process data as close to the source as possible, which improves latency and reduces bandwidth 

usage but also imposes severe restrictions on available hardware resources [6]. Studies underscore that while deep 

neural networks can yield excellent results, their memory footprint and compute demands are often incompatible with 

edge deployment [7]. Various lightweight techniques such as pruning and quantization have been explored, yet many 

revolve around neural architectures rather than classical ML [9]. Researchers have also explored model distillation 

[[10], hardware-aware Neural Architecture Search (NAS) [11], and dynamic computation graphs [12] to tailor 

networks to specific resource budgets. Additionally, federated learning frameworks have emerged to distribute model 

training across edge devices, reducing central processing but raising concerns around model complexity and data 

heterogeneity [13]. For real-time NLP tasks, latency constraints further limit the feasibility of large models, making 

compact architectures or classical approaches more attractive [14]. 

 

2.1.1 Classical ML Models vs. Deep Learning 

Though deep learning has dominated tasks like computer vision and NLP, it may be over-engineered for simpler 

classification problems, especially when the target environment requires extremely efficient inference [15]. Classical 

algorithms—Multinomial Naive Bayes, Logistic Regression, and Decision Tree—offer smaller model sizes and faster 

training/inference times [8]. As a result, they serve as solid baselines for resource-constrained contexts, including 

embedded systems and IoT sensors [16]. Moreover, studies such as [17] demonstrate that classical models can 

approach deep learning accuracy when paired with effective preprocessing and feature engineering. For instance, bag-
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of-words and TF-IDF representations combined with Logistic Regression have yielded competitive results in text 

classification tasks, particularly in low-data or constrained environments [18]. Unlike deep models, classical 

algorithms also require less hyperparameter tuning and are easier to deploy on microcontrollers or FPGAs [19]. 

 

2.1.2 Compression and Optimization Techniques 

Beyond advanced neural compression methods, classical algorithms also benefit from feature selection, 

dimensionality reduction, and quantization [20]. Feature selection can greatly reduce the dimensionality in text-based 

tasks, where large vocabularies can inflate processing demands and memory usage [14]. Techniques such as Chi-

square selection, mutual information, and L1 regularization have been shown to maintain classification performance 

while significantly reducing model size [21]. In parallel, quantization of input features and model weights—even in 

classical ML—has proven valuable in reducing runtime complexity [22]. PCA and truncated SVD have also been 

explored to reduce dimensionality while preserving key discriminative patterns in text data [23]. Additionally, hybrid 

strategies combining feature selection with lightweight ensemble models have proven effective for real-time 

applications with minimal trade-off in accuracy [24]. 

Edge environments impose strict hardware limits, yet most work focuses on neural-network compression rather than 

classical ML. Table 1 lists representative studies on resource constraints and classical approaches, highlighting this 

gap. 

Table 1. Representative Studies on Resource Constraints and Classical Approaches 

Reference Focus / Domain  Main Approach Key Findings 

[6] Fog/Edge computing 

paradigm 

Data processing near the 

source 

Reduced latency but tight 

hardware constraints 

[7] 
Efficient neural network 

pruning (XNOR-Net) 
Binary convolutional layers 

Large memory savings but 

mainly for CNN-based 

models 

[8] Naive Bayes in Information 

Retrieval (IR) 

Simple probabilistic text 

modelling 

Classical approaches can 

still be highly competitive 

 

[22] Pruning filters for efficient 

ConvNets 

Structural compression of 

CNNs 
Focused on deep models; 

less on classical ML 

[25] CNNs for sentence 

classification 

Demonstrated deep model 

capacity 

High accuracy but large 

resource footprint 

 

2.2. Text Classification in Sentiment Analysis 

Text classification covers a broad range of tasks, from document categorization to spam detection and sentiment 

analysis[18], [19], [26]. Sentiment analysis typically targets polarity detection—positive, negative, or neutral—of 

user-generated text such as product reviews, social media posts, and news articles [14]. 

For large-scale datasets like the Amazon Reviews Polarity corpus, deep learning has dominated top performance 

metrics [14]. Nonetheless, those approaches require considerable resources, making them less suitable for edge 

deployment. Classical ML methods can still deliver practical accuracy, particularly when the target device or 

environment is memory-bound, lacks consistent network connectivity, or must operate offline [21]. Recent 

comparative studies on sentiment analysis techniques further support this claim, demonstrating that traditional 

classifiers like Support Vector Machine and Random Forest can achieve robust performance for text classification 

tasks without the computational overhead of neural approaches [18]. 

Text classification in sentiment analysis covers a wide range of methods with varying trade-offs between accuracy 

and resource usage. Table 2 shows the major text classification methods is sentiment analysis. 
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Table 2. Major Text Classification Methods in Sentiment Analysis 

Reference Method Dataset  Key Insights Limitations 

[14] Lexicon-based 

sentiment 

analysis 

Twitter data 

No need for large 

training sets; 

interpretable results 

Lower accuracy on 

domain-specific texts 

[18] Traditional 

classifier 

ensembles 

(SVM, NB) 

Movie reviews 

Ensemble methods can 

outperform single 

classifiers in sentiment 

High memory usage 

with large ensembles 

[22] Lightweight 

text CNN 

Multiple short text 

corpora 

Simple convolution 

layers can be effective 
 

[27] BERT-based 

deep learning 

Amazon Reviews 

Polarity 

Near state-of-the-art 

accuracy 

Very large model size; 

requires GPU/TPU 

 

2.3. Research Gap 

While significant progress has been made in optimizing neural architectures for cloud-scale resources, there is 

comparatively limited research focusing on systematic strategies to implement classical ML models for text 

classification under severe hardware limitations. Existing literature tends to emphasize either very large deep learning 

frameworks or highly specialized compression techniques tailored to neural networks [2], [7]. Moreover, many studies 

overlook the practical constraints of IoT scenarios, where models must provide near-real-time inference despite 

minimal CPU/GPU availability and limited storage [10]. This gap suggests a need to investigate simpler, less 

parameter-intensive algorithms such as Naive Bayes, Logistic Regression, and Decision Trees enhanced by feature 

selection and quantization techniques. Such approaches could benefit various domains requiring efficient inference 

on constrained hardware, from text classification to environmental monitoring applications [8]. By rigorously 

evaluating these methods on a standard sentiment classification task, we can offer a blueprint for resource-efficient 

NLP deployments that preserve acceptable performance while operating in heavily constrained environments. 

 

3. RESEARCH METHODOLOGY  

The overarching aim is to demonstrate how lightweight ML models can be efficiently deployed for real-time text 

classification under hardware limitations. This section describes data sourcing, preprocessing steps, modelling 

approaches, and optimization strategies. 

The overall experimental workflow—starting with the 10 000-sample Amazon Reviews subset, then data cleaning, 

TF-IDF vectorization, model training (Naive Bayes, Logistic Regression, Decision Tree), Chi-Squared feature 

selection, simulated quantization, and final evaluation—is illustrated in Figure 1. 

 

3.1. Dataset obtained: Amazon Reviews Polarity Dataset Selection 

The Amazon Reviews Polarity dataset comprises a vast collection of product reviews labelled as __label__1 (negative, 

1–2 stars) or __label__2 (positive, 4–5 stars) [5]. For this study, a pre-existing subset of 10,000 reviews (5,000 positive 

and 5,000 negative) was obtained directly without performing any additional preprocessing or filtering. We used a 

balanced 10 000-sample subset of the Amazon Reviews Polarity dataset; its key statistics are listed in Table 3. 
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Figure 1. Overall Experimental Workflow Diagram 

 

Table 3. Dataset Statistics for 10 000-Sample Subset 

Statistic Value 

Statistic Value 10,000 

Positive Reviews 5,000 

Negative Reviews 5,000 

Vocabulary Size (TF-IDF) 10,000 

 

3.2. Model Selection and Implementation 

Three lightweight ML algorithms were selected for implementation and evaluation based on their proven efficiency, 

interpretability, and low computational requirements making them ideal for resource-constrained environments 

targeted in this study: 

 

3.2.1. Multinomial Naive Bayes 

This probabilistic classifier applies Bayes' theorem under the assumption of feature independence. It is particularly 

effective for text classification due to its simplicity, high speed, and robustness in handling high-dimensional, sparse 

data such as bag-of-words or TF-IDF representations. Its low memory footprint makes it well-suited for deployment 

on edge devices. 

 

3.2.2. Logistic Regression 

A linear model that estimates the probability of binary outcomes, Logistic Regression was chosen for its strong 

baseline performance in text classification and ease of implementation. We use LogisticRegression(max_iter=1000), 

which includes L2 regularization by default to prevent overfitting while maintaining generalization. Its predictable 

behaviour and minimal tuning requirements further justify its selection. 
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3.2.3. Decision Tree 

This non-parametric method builds a flowchart-like structure of decisions, offering high interpretability and fast 

inference. A maximum depth of 20 (max_depth=20) is set to control complexity and reduce the risk of overfitting. 

Decision Trees are especially useful in environments where transparent decision-making and quick predictions are 

crucial. 

 

3.3. Optimization Techniques  

The goal of these optimizations is to strike a balance between strong predictive performance and minimal resource 

usage. Below are the two main approaches applied in this study: 

 

3.3.1. Feature Selection (Chi-Squared) 

A Chi-Squared (χ²) statistical test was used to identify features most strongly correlated with the class labels [21]. 

Specifically, we ranked each TF-IDF term by its χ² score, retaining only the top 2,000 or 5,000 features out of the 

initial 10,000. This selective pruning of the feature space helps reduce model complexity and training overhead, while 

preserving the key discriminative signals necessary for accurate classification. Similar approaches have proven 

effective in phishing detection applications [19]. 

The Chi-Squared feature-selection workflow—from the full TF-IDF matrix to the top-k ranked features—is shown 

in Figure 2. 

 

Figure 2. Chi-Squared Feature Selection Workflow 

 

3.4. Evaluation Metrics 

To comprehensively assess both classification performance and resource efficiency, we employed a dual-metric 

evaluation framework. This approach allows us to balance the trade-off between predictive accuracy and 

computational constraints that are critical in resource-limited edge deployments. 

The evaluation framework considered both performance metrics and resource utilization: 
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Performance Metrics: 

• Accuracy -Proportion of correctly classified instances 

• Precision - Ratio of true positives to all predicted positives 

• Recall - Ratio of true positives to all actual positives 

• F1-Score - Harmonic mean of precision and recall 

• Area Under ROC Curve (AUC) - Model's ability to discriminate between classes 

Resource Utilization Metrics: 

• Memory Usage - RAM required during inference (MB) 

• Model Size - Storage space required for the trained model (MB) 

• Inference Time - Average time to classify a single text instance (ms) 

• Energy Consumption - Estimated power usage during inference (mJ) 

Resource measurements were conducted on a simulated resource-constrained environment using the Python 

memory_profiler and time modules. Energy consumption was estimated based on computational operations required 

for inference. 

 

4. RESULTS AND DISCUSSIONS  

4.1. Baseline Performance 

After training each model on the processed data, we evaluated Accuracy, Precision, Recall, F1-Score, Model Size, 

and Training Time. Table 4 reflects results obtained from the 10 000-sample test set dataset using 10,000 TF-IDF 

features. Logistic Regression leads in accuracy (86.85%), while Naive Bayes boasts the quickest training (0.006 s). 

The Decision Tree’s lower accuracy (71.95%) and longer training time reflect its complexity with higher-dimensional 

data. 

Table 4. Baseline Results for 10 000-Sample Test Set 

Model Accuracy  Precision Recall F1-Score Model 

Size (MB) 

Training 

Time (s) 

Naive Bayes 0.8350 0.8513 0.8231 0.8370 0.306 0.006 

Logistic Regression 0.8685 0.8762 0.8669 0.8715 0.077 0.051 

Decision Tree 0.7195 0.7549 0.6735 0.7119 0.073 1.806 

 

4.2. Results After Feature Selection (Chi-Squared) 

We reduced the TF-IDF feature set to 5,000 terms using a Chi-Squared test. Models were then retrained and evaluated 

under the same experimental conditions. 

As shown in Table 5, feature selection yields a modest accuracy boost for Naive Bayes (83.90%) and reduces Logistic 

Regression’s model size roughly by half (to 0.039 MB). Decision Tree’s performance remains comparable to the 

baseline but trains slightly faster. 

 

4.3. Results After Feature Selection + Quantization 

Finally, we simulated int8 weight compression on the feature-selected models to further reduce file sizes. Table 6 and 

Table 7 compares performance before and after compression. 

Combining feature selection with post-training quantization yields substantial file-size reductions especially for the 

Decision Tree, which shrinks to just 0.016 MB while preserving most of each model's predictive performance. 
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Table 5. Results after Chi-Squared Feature Selection (5 000 TF-IDF Features) 

Model Accuracy  Precision Recall F1-Score Model 

Size (MB) 

Training 

Time (s) 

Naive Bayes (FS) 0.8390 0.8524 0.8309 0.8415 0.153 0.007 

Logistic Regression (FS) 0.8640 0.8714 0.8630 0.8672 0.039 0.024 

Decision Tree (FS) 0.7125 0.7441 0.6725 0.7065 0.075 1.158 

 

Table 6. Results after Post-Training Quantization (10 000 TF-IDF Features) 

Model Accuracy  Precision Recall F1-Score Model 

Size (MB) 

Training 

Time (s) 

Naive Bayes (Q) 0.8350 0.8513 0.8231 0.8370 0.271 0.271 

Logistic Regression (Q) 0.8685 0.8762 0.8669 0.8715 0.076 0.024 

Decision Tree (Q) 0.7175 0.7522 0.6725 0.7101 0.016 1.158 

 

Table 7. Results after Feature Selection + Quantization 

Model Accuracy  Precision Recall F1-Score Compressed 

Size (MB) 

Training 

Time (s) 

Naive Bayes (Fs+ Q) 0.8390 0.8524 0.8309 0.8415 0.127 0.005 

Logistic Regression (Fs+ Q) 0.8640 0.8714 0.8630 0.8672 0.038 0.024 

Decision Tree (Fs+ Q) 0.7165 0.7505 0.6725 0.7094 0.016 1.159 

 

4.4. Summary of Findings 

• Naive Bayes sees small performance gains with feature selection, remains highly efficient to train, and 

compresses well with quantization (whether standalone or combined with FS). 

• Logistic Regression consistently achieves the highest accuracy, with its file size dropping considerably after 

both feature selection and compression. 

• Decision Tree benefits from compression most dramatically in terms of file size, but further tuning could 

improve its classification metrics and training speed. 

Figure 3 compares the accuracy of each model—Naive Bayes, Logistic Regression, and Decision Tree—across four 

configurations: baseline, after feature selection (FS), after quantization (Q), and after both (FS + Q). The stability in 

accuracy, with small gains for Naive Bayes post-FS and negligible drops due to quantization, underscores the 

robustness of classical models under these optimizations. 

Precision levels under different optimization scenarios are compared in Figure 4. Precision is highest for Logistic 

Regression across all variants, with only minor decreases following feature selection (FS) or quantization (Q). Naive 

Bayes shows a slight improvement after FS, while Decision Tree remains relatively lower. 

Recall trends across optimization variants are illustrated in Figure 5. Naive Bayes shows a modest recall gain after 

feature selection (FS), while Logistic Regression’s recall remains nearly constant across baseline, FS, Q, and FS + Q. 

Decision Tree recall stays lower but consistent through all stages. 
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Figure 3. Accuracy Comparison Across Model Variants 

Figure 4. Precision Comparison Across Model Variants 

 

 

Figure 5. Recall Comparison Across Model Variants 
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File size comparisons across optimization variants are shown in Figure 6. Quantization significantly reduces model 

size—especially for the Decision Tree, which shrinks to 0.016 MB—while feature selection also meaningfully reduces 

size for Logistic Regression. 

 

 

Figure 6. Compressed Model Size Comparison (MB) 

Training time comparisons across optimization variants are shown in Figure 7. Naive Bayes is the fastest overall—

dropping to 0.005 seconds after feature selection and quantization—while Logistic Regression balances speed and 

accuracy, reducing from 0.051 to 0.024 seconds. Decision Tree remains the slowest, exceeding 1 second in all variants, 

underscoring the trade-off between model complexity and training efficiency. 

 

 

Figure 7. Training Time Comparison Across Model Variants 

 

4.5. Limitations of Simulated vs. Real-World Quantization 

Our simulated int8 weight compression approximates storage savings but omits several key aspects of production-

grade quantization frameworks such as TensorFlow Lite and ONNX Runtime [16], [17]. First, we do not perform 

quantization-aware training, which in real pipelines adjusts model parameters during training to compensate for 

reduced numerical precision and minimize accuracy loss. Second, our simulation applies uniform precision across all 
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weights, whereas real-world tools support per-channel quantization, operator fusion, and hardware-specific 

optimizations that substantially affect inference latency and energy consumption on different edge processors (e.g., 

ARM Cortex-A vs. x86) [16]. Third, production frameworks use calibration steps to determine optimal dynamic 

ranges for activations and weights—a process not captured in our prototype. Finally, graph-level optimizations (e.g., 

integer kernel fusion) and custom hardware kernels available in TensorFlow Lite and ONNX Runtime can further 

shrink model size and accelerate runtime beyond what our simple compression can achieve. Future work should 

integrate these classical ML models into actual TFLite and ONNX quantization workflows to quantify true 

performance and accuracy trade-offs on resource-constrained devices. 

 

5. CONCLUSION  

A thorough methodology for putting lightweight ML models into practice that allow for real-time text classification 

on hardware with limited resources has been shown in this study. We trained Multinomial Naive Bayes, Logistic 

Regression, and Decision Tree models as baselines by selecting 10,000 reviews from the Amazon Reviews Polarity 

dataset, doing standard preprocessing, and applying TF-IDF vectorization. To further minimize dimensionality, 

memory, and storage overhead, we then implemented feature selection (using Chi-Squared) and simulated post-

training quantization.more efficiently. 

Our results demonstrate that these classical models are still very promising substitutes for massive neural networks in 

edge computing settings when they are optimized. Combining quantization with smaller feature sets resulted in 

particularly noticeable memory and file-size savings, frequently reaching near-baseline accuracy. By reducing 

dependency on cloud infrastructure, these enhancements protect data privacy, enable offline functioning, and enable 

on-device inference. To further balance efficiency and performance, future studies might investigate hybrid modeling 

techniques, such as utilizing specialized hardware accelerators or combining smaller neural networks with traditional 

ML. 
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