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Abstract - This paper addresses the growing need for implementing intelligent Natural Language Processing (NLP) systems on
low-power, memory-limited devices such as Raspberry Pi, mobile phones, and IoT edge hardware. As edge computing and smart
devices proliferate, there is an urgent need for more advanced NLP technology that does not require constant cloud access and is
efficient in computing and provides results in real time. While deep learning and cloud-based models typically offer high text-
classification accuracy and have demonstrated exceptional performance across a range of NLP tasks, they are often too resource-
intensive for real-time deployment in constrained environments. To overcome these limitations, we explore a set of lightweight
machine learning (ML) models—Multinomial Naive Bayes, Logistic Regression, and Decision Tree—to perform sentiment
classification on a subset of the Amazon Reviews Polarity dataset. Following thorough data preprocessing and Term Frequency-
Inverse Document Frequency (TF-IDF) vectorization, two optimization techniques are employed: feature selection via Chi-Squared
tests and simulated post-training quantization. Our experimental results show that resource consumption can be substantially
reduced, with minimal accuracy loss, thereby demonstrating feasibility for edge-based text analytics and offline functionality. We
provide a detailed comparative analysis that highlights how classical ML models remain viable in scenarios where modern deep
learning architectures cannot be efficiently deployed.
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1. INTRODUCTION

Modern computing ecosystems have evolved to rely more on resource-constrained devices, including mobile phones,
low-power microcomputers, and different Internet of Things (IoT) edge nodes [1]. However, stringent constraints on
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CPU power, memory, storage, and networking make it difficult to install standard ML models—often created for
cloud-scale infrastructure—on such devices [2]. In NLP activities, where models such as transformers require
substantial computational resources that are much above the capabilities of edge devices, these constraints are
particularly important.

Lightweight ML models are crucial in this situation because they can operate locally with less resource usage and still
produce accurate predictions. Applications that demand low latency, offline functionality, energy efficiency, and data
privacy are the ones driving this need. For example, relying on cloud-based computation is impractical or perhaps
impossible in disaster areas, rural locations with poor connectivity, or healthcare monitoring. By avoiding the delays
or data breaches that come with online communication, lightweight models allow real-time inference right on-device.

While large neural architectures generally offer higher accuracy, their deployment on constrained hardware is not
feasible [3]. As a result, the field of on-device text classification has gained momentum, with some researchers using
model pruning, quantization, and knowledge distillation to compress deep neural networks without significantly
sacrificing accuracy [4]. As a result, many applications require immediate feedback and secure processing of textual
data [5]. Others have investigated using classical models with carefully designed features to preserve lightweight
performance, such as SVM and Naive Bayes [6]. Furthermore, hybrid approaches that combine quick classifiers and
rule-based filtering have demonstrated potential in time-sensitive applications [7]. Therefore, as potential substitutes,
this work investigates the application of lightweight classical ML models, including Multinomial Naive Bayes,
Logistic Regression, and Decision Tree. Predictive performance and computational economy are balanced in these
models when they are optimized using methods like feature selection and quantization [8].

The structure of this paper is as follows section 1 provides an introduction and highlights the need for lightweight
models on resource-constrained devices. Section 2 presents a review of related work in the field of text classification
and model optimization. Section 3 details the methodology, including dataset preparation, model selection, and
optimization techniques. Section 4 discusses the experimental results and evaluates the performance of the models.
Finally, Section 5 concludes the paper and outlines potential directions for future research.

2. LITERATURE REVIEW

This section reviews prior research on deploying ML models in resource-limited environments, focusing on the nature
of edge constraints and the strategies researchers have applied to reduce computational overhead. We also delve into
text classification efforts in sentiment analysis, outlining key methods and data sources.

2.1 Resource Constraints in Edge Computing

Edge computing aims to process data as close to the source as possible, which improves latency and reduces bandwidth
usage but also imposes severe restrictions on available hardware resources [6]. Studies underscore that while deep
neural networks can yield excellent results, their memory footprint and compute demands are often incompatible with
edge deployment [7]. Various lightweight techniques such as pruning and quantization have been explored, yet many
revolve around neural architectures rather than classical ML [9]. Researchers have also explored model distillation
[[10], hardware-aware Neural Architecture Search (NAS) [11], and dynamic computation graphs [12] to tailor
networks to specific resource budgets. Additionally, federated learning frameworks have emerged to distribute model
training across edge devices, reducing central processing but raising concerns around model complexity and data
heterogeneity [13]. For real-time NLP tasks, latency constraints further limit the feasibility of large models, making
compact architectures or classical approaches more attractive [14].

2.1.1 Classical ML Models vs. Deep Learning

Though deep learning has dominated tasks like computer vision and NLP, it may be over-engineered for simpler
classification problems, especially when the target environment requires extremely efficient inference [15]. Classical
algorithms—Multinomial Naive Bayes, Logistic Regression, and Decision Tree—offer smaller model sizes and faster
training/inference times [8]. As a result, they serve as solid baselines for resource-constrained contexts, including
embedded systems and IoT sensors [16]. Moreover, studies such as [17] demonstrate that classical models can
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approach deep learning accuracy when paired with effective preprocessing and feature engineering. For instance, bag-
of-words and TF-IDF representations combined with Logistic Regression have yielded competitive results in text
classification tasks, particularly in low-data or constrained environments [18]. Unlike deep models, classical
algorithms also require less hyperparameter tuning and are easier to deploy on microcontrollers or FPGAs [19].

2.1.2 Compression and Optimization Techniques

Beyond advanced neural compression methods, classical algorithms also benefit from feature selection,
dimensionality reduction, and quantization [20]. Feature selection can greatly reduce the dimensionality in text-based
tasks, where large vocabularies can inflate processing demands and memory usage [14]. Techniques such as Chi-
square selection, mutual information, and L1 regularization have been shown to maintain classification performance
while significantly reducing model size [21]. In parallel, quantization of input features and model weights—even in
classical ML—has proven valuable in reducing runtime complexity [22]. PCA and truncated SVD have also been
explored to reduce dimensionality while preserving key discriminative patterns in text data [23]. Additionally, hybrid
strategies combining feature selection with lightweight ensemble models have proven effective for real-time
applications with minimal trade-off in accuracy [24].

Edge environments impose strict hardware limits, yet most work focuses on neural-network compression rather than
classical ML. Table 1 lists representative studies on resource constraints and classical approaches, highlighting this

£ap.

Table 1. Representative Studies on Resource Constraints and Classical Approaches

Efficient neural network
pruning (XNOR-Net)

Binary convolutional layers

Reference Focus / Domain Main Approach Key Findings
[6] Fog/Edge computing Data processing near the Reduced latency but tight
paradigm source hardware constraints
[7] Large memory savings but

mainly for CNN-based
models

(8] Naive Bayes in Information | Simple probabilistic text Classical approaches can
Y ple p pp
Retrieval (IR) modelling still be highly competitive
[22] Pruning filters for efficient Structural compression of Focused on deep models;
ConvNets CNNs less on classical ML
[25] CNN s for sentence Demonstrated deep model High accuracy but large

classification capacity resource footprint

2.2. Text Classification in Sentiment Analysis

Text classification covers a broad range of tasks, from document categorization to spam detection and sentiment
analysis[18], [19], [26]. Sentiment analysis typically targets polarity detection—positive, negative, or neutral—of
user-generated text such as product reviews, social media posts, and news articles [14].

For large-scale datasets like the Amazon Reviews Polarity corpus, deep learning has dominated top performance
metrics [14]. Nonetheless, those approaches require considerable resources, making them less suitable for edge
deployment. Classical ML methods can still deliver practical accuracy, particularly when the target device or
environment is memory-bound, lacks consistent network connectivity, or must operate offline [21]. Recent
comparative studies on sentiment analysis techniques further support this claim, demonstrating that traditional
classifiers like Support Vector Machine and Random Forest can achieve robust performance for text classification
tasks without the computational overhead of neural approaches [18].

Text classification in sentiment analysis covers a wide range of methods with varying trade-offs between accuracy
and resource usage. Table 2 shows the major text classification methods is sentiment analysis.
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Table 2. Major Text Classification Methods in Sentiment Analysis

Reference Method Dataset Key Insights Limitations

[14] Lexicon-based No need for large
sentiment Twitter data training sets;
analysis interpretable results

Lower accuracy on
domain-specific texts

[18] Traditional Ensemble methods can

classifier . . . High memory usage
Movie reviews outperform single .

ensembles classifiers in sentiment with large ensembles
(SVM, NB)

[22] Lightweight Multiple short text | Simple convolution
text CNN corpora layers can be effective

[27] BERT-based Amazon Reviews | Near state-of-the-art Very large model size;
deep learning | Polarity accuracy requires GPU/TPU

2.3. Research Gap

While significant progress has been made in optimizing neural architectures for cloud-scale resources, there is
comparatively limited research focusing on systematic strategies to implement classical ML models for text
classification under severe hardware limitations. Existing literature tends to emphasize either very large deep learning
frameworks or highly specialized compression techniques tailored to neural networks [2], [7]. Moreover, many studies
overlook the practical constraints of IoT scenarios, where models must provide near-real-time inference despite
minimal CPU/GPU availability and limited storage [10]. This gap suggests a need to investigate simpler, less
parameter-intensive algorithms such as Naive Bayes, Logistic Regression, and Decision Trees enhanced by feature
selection and quantization techniques. Such approaches could benefit various domains requiring efficient inference
on constrained hardware, from text classification to environmental monitoring applications [8]. By rigorously
evaluating these methods on a standard sentiment classification task, we can offer a blueprint for resource-efficient
NLP deployments that preserve acceptable performance while operating in heavily constrained environments.

3. RESEARCH METHODOLOGY

The overarching aim is to demonstrate how lightweight ML models can be efficiently deployed for real-time text
classification under hardware limitations. This section describes data sourcing, preprocessing steps, modelling
approaches, and optimization strategies.

The overall experimental workflow—starting with the 10 000-sample Amazon Reviews subset, then data cleaning,
TF-IDF vectorization, model training (Naive Bayes, Logistic Regression, Decision Tree), Chi-Squared feature
selection, simulated quantization, and final evaluation—is illustrated in Figure 1.

3.1. Dataset obtained: Amazon Reviews Polarity Dataset Selection

The Amazon Reviews Polarity dataset comprises a vast collection of product reviews labelled as __label 1 (negative,
1-2 stars) or __ label 2 (positive, 4-5 stars) [5]. For this study, a pre-existing subset of 10,000 reviews (5,000 positive
and 5,000 negative) was obtained directly without performing any additional preprocessing or filtering. We used a
balanced 10 000-sample subset of the Amazon Reviews Polarity dataset; its key statistics are listed in Table 3.
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Figure 1. Overall Experimental Workflow Diagram

Table 3. Dataset Statistics for 10 000-Sample Subset

Statistic Value
Statistic Value 10,000
Positive Reviews 5,000
Negative Reviews 5,000
Vocabulary Size (TF-IDF) 10,000

3.2. Model Selection and Implementation

Three lightweight ML algorithms were selected for implementation and evaluation based on their proven efficiency,
interpretability, and low computational requirements making them ideal for resource-constrained environments
targeted in this study:

3.2.1. Multinomial Naive Bayes

This probabilistic classifier applies Bayes' theorem under the assumption of feature independence. It is particularly
effective for text classification due to its simplicity, high speed, and robustness in handling high-dimensional, sparse
data such as bag-of-words or TF-IDF representations. Its low memory footprint makes it well-suited for deployment
on edge devices.

3.2.2. Logistic Regression

A linear model that estimates the probability of binary outcomes, Logistic Regression was chosen for its strong
baseline performance in text classification and ease of implementation. We use LogisticRegression(max_iter=1000),
which includes L2 regularization by default to prevent overfitting while maintaining generalization. Its predictable
behaviour and minimal tuning requirements further justify its selection.
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3.2.3. Decision Tree

This non-parametric method builds a flowchart-like structure of decisions, offering high interpretability and fast
inference. A maximum depth of 20 (max_depth=20) is set to control complexity and reduce the risk of overfitting.
Decision Trees are especially useful in environments where transparent decision-making and quick predictions are
crucial.

3.3. Optimization Techniques

The goal of these optimizations is to strike a balance between strong predictive performance and minimal resource
usage. Below are the two main approaches applied in this study:

3.3.1. Feature Selection (Chi-Squared)

A Chi-Squared (?) statistical test was used to identify features most strongly correlated with the class labels [21].
Specifically, we ranked each TF-IDF term by its ¥* score, retaining only the top 2,000 or 5,000 features out of the
initial 10,000. This selective pruning of the feature space helps reduce model complexity and training overhead, while
preserving the key discriminative signals necessary for accurate classification. Similar approaches have proven
effective in phishing detection applications [19].

The Chi-Squared feature-selection workflow—from the full TF-IDF matrix to the top-k ranked features—is shown
in Figure 2.
Input
TF-IDF Matrix
term | documents

v

Compute Feature Importance
Chi-Squared test
relation to class labels

!

Rank and Select Features
ranking by importance
select top k features

!

Model Training

Figure 2. Chi-Squared Feature Selection Workflow

3.4. Evaluation Metrics

To comprehensively assess both classification performance and resource efficiency, we employed a dual-metric
evaluation framework. This approach allows us to balance the trade-off between predictive accuracy and
computational constraints that are critical in resource-limited edge deployments.

The evaluation framework considered both performance metrics and resource utilization:
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Performance Metrics:

Accuracy -Proportion of correctly classified instances

Precision - Ratio of true positives to all predicted positives

Recall - Ratio of true positives to all actual positives

F1-Score - Harmonic mean of precision and recall

Area Under ROC Curve (AUC) - Model's ability to discriminate between classes

Resource Utilization Metrics:

Memory Usage - RAM required during inference (MB)

Model Size - Storage space required for the trained model (MB)
Inference Time - Average time to classify a single text instance (ms)
Energy Consumption - Estimated power usage during inference (mlJ)

Resource measurements were conducted on a simulated resource-constrained environment using the Python
memory_profiler and time modules. Energy consumption was estimated based on computational operations required
for inference.

4. RESULTS AND DISCUSSIONS
4.1. Baseline Performance

After training each model on the processed data, we evaluated Accuracy, Precision, Recall, F1-Score, Model Size,
and Training Time. Table 4 reflects results obtained from the 10 000-sample test set dataset using 10,000 TF-IDF
features. Logistic Regression leads in accuracy (86.85%), while Naive Bayes boasts the quickest training (0.006 s).
The Decision Tree’s lower accuracy (71.95%) and longer training time reflect its complexity with higher-dimensional
data.

Table 4. Baseline Results for 10 000-Sample Test Set

Model Accuracy | Precision Recall F1-Score Model Training

Size (MB) | Time (s)
Naive Bayes 0.8350 0.8513 0.8231 0.8370 0.306 0.006
Logistic Regression 0.8685 0.8762 0.8669 0.8715 0.077 0.051
Decision Tree 0.7195 0.7549 0.6735 0.7119 0.073 1.806

4.2. Results After Feature Selection (Chi-Squared)

We reduced the TF-IDF feature set to 5,000 terms using a Chi-Squared test. Models were then retrained and evaluated
under the same experimental conditions.

As shown in Table 5, feature selection yields a modest accuracy boost for Naive Bayes (83.90%) and reduces Logistic
Regression’s model size roughly by half (to 0.039 MB). Decision Tree’s performance remains comparable to the
baseline but trains slightly faster.

4.3. Results After Feature Selection + Quantization

Finally, we simulated int8 weight compression on the feature-selected models to further reduce file sizes. Table 6 and
Table 7 compares performance before and after compression.

Combining feature selection with post-training quantization yields substantial file-size reductions especially for the
Decision Tree, which shrinks to just 0.016 MB while preserving most of each model's predictive performance.
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Table 5. Results after Chi-Squared Feature Selection (5 000 TF-IDF Features)

Model Accuracy | Precision Recall F1-Score Model Training

Size (MB) | Time (s)
Naive Bayes (FS) 0.8390 0.8524 0.8309 0.8415 0.153 0.007
Logistic Regression (FS) 0.8640 0.8714 0.8630 0.8672 0.039 0.024
Decision Tree (FS) 0.7125 0.7441 0.6725 0.7065 0.075 1.158

Table 6. Results after Post-Training Quantization (10 000 TF-IDF Features)

Model Accuracy | Precision Recall F1-Score Model Training

Size (MB) | Time (s)
Naive Bayes (Q) 0.8350 0.8513 0.8231 0.8370 0.271 0.271
Logistic Regression (Q) 0.8685 0.8762 0.8669 0.8715 0.076 0.024
Decision Tree (Q) 0.7175 0.7522 0.6725 0.7101 0.016 1.158

Table 7. Results after Feature Selection + Quantization

Model Accuracy | Precision Recall F1-Score | Compressed | Training
Size (MB) Time (s)

Naive Bayes (Fs+ Q) 0.8390 0.8524 0.8309 0.8415 0.127 0.005
Logistic Regression (Fs+ Q) 0.8640 0.8714 0.8630 0.8672 0.038 0.024
Decision Tree (Fs+ Q) 0.7165 0.7505 0.6725 0.7094 0.016 1.159

4.4. Summary of Findings

e Nuaive Bayes sees small performance gains with feature selection, remains highly efficient to train, and
compresses well with quantization (whether standalone or combined with FS).

e Logistic Regression consistently achieves the highest accuracy, with its file size dropping considerably after
both feature selection and compression.

e Decision Tree benefits from compression most dramatically in terms of file size, but further tuning could
improve its classification metrics and training speed.

Figure 3 compares the accuracy of each model—Naive Bayes, Logistic Regression, and Decision Tree—across four
configurations: baseline, after feature selection (FS), after quantization (Q), and after both (FS + Q). The stability in
accuracy, with small gains for Naive Bayes post-FS and negligible drops due to quantization, underscores the
robustness of classical models under these optimizations.

Precision levels under different optimization scenarios are compared in Figure 4. Precision is highest for Logistic
Regression across all variants, with only minor decreases following feature selection (FS) or quantization (Q). Naive
Bayes shows a slight improvement after FS, while Decision Tree remains relatively lower.

Recall trends across optimization variants are illustrated in Figure 5. Naive Bayes shows a modest recall gain after
feature selection (FS), while Logistic Regression’s recall remains nearly constant across baseline, FS, Q, and FS + Q.
Decision Tree recall stays lower but consistent through all stages.
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Accuracy Comparison by Model Variant (Based on Report Tables)
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Figure 3. Accuracy Comparison Across Model Variants
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File size comparisons across optimization variants are shown in Figure 6. Quantization significantly reduces model

size—especially for the Decision Tree, which shrinks to 0.016 MB—while feature selection also meaningfully reduces
size for Logistic Regression.

Compressed Model Size Comparison by Variant
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Figure 6. Compressed Model Size Comparison (MB)

Training time comparisons across optimization variants are shown in Figure 7. Naive Bayes is the fastest overall—
dropping to 0.005 seconds after feature selection and quantization—while Logistic Regression balances speed and
accuracy, reducing from 0.051 to 0.024 seconds. Decision Tree remains the slowest, exceeding 1 second in all variants,
underscoring the trade-off between model complexity and training efficiency.

Training Time Comparison by Model Variant (Based on Report Tables)
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Figure 7. Training Time Comparison Across Model Variants

4.5. Limitations of Simulated vs. Real-World Quantization

Our simulated int8 weight compression approximates storage savings but omits several key aspects of production-
grade quantization frameworks such as TensorFlow Lite and ONNX Runtime [16], [17]. First, we do not perform
quantization-aware training, which in real pipelines adjusts model parameters during training to compensate for
reduced numerical precision and minimize accuracy loss. Second, our simulation applies uniform precision across all
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weights, whereas real-world tools support per-channel quantization, operator fusion, and hardware-specific
optimizations that substantially affect inference latency and energy consumption on different edge processors (e.g.,
ARM Cortex-A vs. x86) [16]. Third, production frameworks use calibration steps to determine optimal dynamic
ranges for activations and weights—a process not captured in our prototype. Finally, graph-level optimizations (e.g.,
integer kernel fusion) and custom hardware kernels available in TensorFlow Lite and ONNX Runtime can further
shrink model size and accelerate runtime beyond what our simple compression can achieve. Future work should
integrate these classical ML models into actual TFLite and ONNX quantization workflows to quantify true
performance and accuracy trade-offs on resource-constrained devices.

5. CONCLUSION

A thorough methodology for putting lightweight ML models into practice that allow for real-time text classification
on hardware with limited resources has been shown in this study. We trained Multinomial Naive Bayes, Logistic
Regression, and Decision Tree models as baselines by selecting 10,000 reviews from the Amazon Reviews Polarity
dataset, doing standard preprocessing, and applying TF-IDF vectorization. To further minimize dimensionality,
memory, and storage overhead, we then implemented feature selection (using Chi-Squared) and simulated post-
training quantization.more efficiently.

Our results demonstrate that these classical models are still very promising substitutes for massive neural networks in
edge computing settings when they are optimized. Combining quantization with smaller feature sets resulted in
particularly noticeable memory and file-size savings, frequently reaching near-baseline accuracy. By reducing
dependency on cloud infrastructure, these enhancements protect data privacy, enable offline functioning, and enable
on-device inference. To further balance efficiency and performance, future studies might investigate hybrid modeling
techniques, such as utilizing specialized hardware accelerators or combining smaller neural networks with traditional
ML.
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