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Abstract - Pavement distress analysis plays a big role in keeping roads in good shape, especially in busy spots like Selangor and 

Kuala Lumpur, where heavy traffic and tropical weather make them wear out fast. This work introduces DeepSeg-CrackNet, a 

fresh hybrid deep learning model that uses Deep Gradient ResNet to spot cracks and a Residual block with a Modified Attention 

Mechanism to sort them into types, making it simpler to detect and label pavement damage. The model was trained on real data 

collected from Malaysian roads, with the CRACK500 dataset added in to cover more situations, and captured using a GoPro 

Hero 8 mounted on a vehicle, with GPS mapping keeping everything clear and easy to trace. DeepSeg-CrackNet performs really 

well—it hits a Mean IoU of 0.8388889 for segmentation and scores 85% accuracy in classifying cracks like alligator, longitudinal, 

and transverse, with precision ranging from 0.84 to 0.89, and recall between 0.80 and 0.96. It also measures cracks in meters or 

square meters, which helps in planning repairs smartly, like replacing big alligator cracks or sealing smaller longitudinal ones to 

save resources. Compared to models like CrackNet, DeepSeg-CrackNet stands out, especially for alligator cracks, with a 

precision of 0.84 and recall of 0.96, beating CrackNet’s 0.778 and 0.772. In the end, DeepSeg-CrackNet makes it easier to 

manage Malaysia’s roads in a data-driven way, improving safety and ensuring longer-lasting infrastructure through smarter, 

proactive repair approaches that enhance city travel. 
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1. INTRODUCTION 

Pavement integrity acts as a cornerstone for safe travel and economic growth in Malaysia, especially with rapid 

urbanization and expanding road networks putting huge pressure on infrastructure systems. Roads serve as vital 

links between bustling urban centers like Selangor and Kuala Lumpur and rural areas, keeping goods and people 

moving smoothly while supporting the country’s economic progress. But these essential connections face constant 

wear from harsh monsoon rains, tropical heat causing thermal expansion, oxidative aging, and traffic volumes that 

go far beyond what the roads were originally built to handle. Even small surface cracks often hint at deeper 

structural issues that can grow into serious problems like potholes or complete pavement breakdown if ignored [1]. 

Beyond the obvious safety risks, this kind of damage adds up to massive repair costs, with Malaysia’s Public Works 

Department (JKR) spending over RM 2.8 billion each year just on fixing roads, which makes advanced crack 

detection and analysis a top priority for keeping Malaysia’s infrastructure strong and competitive. 

Traditional crack assessment methods lean heavily on manual inspections, where teams of engineers do visual 

checks or use semi-automated tools like laser profilometry. These techniques have been around for years, but they 

come with big drawbacks that make pavement management tough [2], [3]. Manual surveys often need 3-5 people to 

cover just 10 km of road, taking weeks to finish entire networks and giving inconsistent results, since human 

inspectors can vary by up to 30% in how they rate crack severity, especially when shadows or wet surfaces mess 

with accuracy. Plus, these methods don’t capture key details like crack length, which is crucial for planning 

maintenance, leading to either early repairs that waste money or late fixes that let small issues turn into major 

projects. 

Deep learning has completely changed infrastructure inspection lately, bringing powerful tools for automated crack 

detection, classification, and size analysis [4]. Modern convolutional neural networks (CNNs) like U-Net and Mask 

R-CNN hit over 90% accuracy in controlled settings for pixel-level segmentation, while transformer-based models 

like Swin-UNet pick up on long-range pavement texture patterns. Instance segmentation in systems like YOLOv8 

can spot individual cracks and their shapes at the same time, and the best setups use attention mechanisms (CBAM, 

SE blocks) to focus on important features and ignore distractions like surface markings or debris, cutting inspection 

times by up to 95% compared to manual methods on datasets like CrackTree200 internationally. But making these 

work in Malaysia means dealing with the challenge of not having enough local training data that reflects tropical 

conditions and pavement types. 

Malaysia’s unique pavement conditions call for custom AI solutions that generic models can’t handle. The country’s 

asphalt mixes use 20-30% reclaimed tire polymer to deal with extreme heat, which changes how cracks form 

compared to standard pavements, and heavy monsoon rains speed up stripping and pothole formation, creating 

damage patterns that don’t look like those in temperate climates. So, datasets like CRACK500 or RDD2020 [5] 

don’t really fit, causing models like U-Net trained on other regions to struggle with Malaysian roads due to domain 

shift, potentially leading to more misclassifications. Most models also miss crack measurements, which are key for 

JKR’s Pavement Condition Index (PCI) calculations, leaving maintenance decisions based more on guesswork than 

solid data since they lack precise crack width (to 0.1 mm) and length (to 10 cm) measurements [6]. 

This study steps in to tackle these gaps with two major innovations. First, it brings in the RCD-IIUM dataset [7], 

Malaysia’s first detailed open-source pavement imagery collection with pixel-wise annotations and measurement 

data. Second, it introduces DeepSeg-CrackNet, a new multi-task model that combines crack segmentation, 

classification, and size analysis in one system, using a Deep Gradient ResNet (DG-ResNet) for feature extraction, a 

Crack Attention Fusion Module (CAFM) to cut down on environmental noise, an Augmented SubPixel Shuffling 

(ASPS) decoder for precise crack shapes, a Multi-Scale Context Aggregator (MSCA) to classify cracks by ASTM 

D6433 standards, and a Metrological Branch for real-world measurements through projective geometry. The paper 

is laid out to review crack detection history, explain the dataset and model design, share results benchmarked against 

standards, and wrap up with implications and future steps, aiming to raise the bar for automated pavement distress 

analysis in Malaysia and keep the nation’s roads safe and sustainable through cutting-edge AI. 

 

2. LITERATURE REVIEW 

The area of pavement crack detection and classification has been picking up a lot of interest lately, especially since 

keeping infrastructure in good shape is so important, and with tech advancing quickly, Figure 1 highlights a big 

jump in publications on this topic from 2015 to 2025, particularly conference papers and journal articles hitting their 
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highest numbers around 2023–2024, which really shows how much automated crack detection matters for road 

safety and saving money, all thanks to new computing methods and the growing need for practical, data-driven ways 

to manage pavements [8], [9]. 

 

Figure 1. Distribution of Scholarly Publications on Pavement Crack Detection by Document Type (2015–2025)  

 

2.1 Historical Context: From Manual Inspections to Image Processing 

Pavement crack detection has come a long way, mostly because there’s a real need to keep an eye on infrastructure 

as transportation demands keep going up. Back in the day, it was all about manual inspections, where engineers 

would walk along roads and check for cracks with their own eyes—a method that took forever, wasn’t always 

reliable, and varied a lot depending on who was doing the checking. Then, in the 1990s, digital imaging came into 

play with traditional image processing as a semi-automated option, using tricks like edge detection (Canny 

algorithm), adaptive thresholding, and morphological operations to pick out cracks by sharpening contrast and 

cutting down on noise, as seen in studies that relied on histogram-based methods and wavelet transforms to study 

pavement images [10], [11]. But those approaches were pretty fragile, often thrown off by things like changing light 

or different pavement textures, which led to a lot of mistakes, especially on rough surfaces, making it clear that 

tougher, more adaptable solutions were needed. 

 

2.2. Rise of Deep Learning: Convolutional Neural Networks and Beyond 

Things really shifted in the early 2010s when deep learning came along and changed pavement crack detection, 

using CNNs to pull features right out of raw data, leaving older methods in the dust, like in studies showing CNNs 

spotting cracks with solid accuracy by picking up on edges, contours, and patterns without needing any manual 

tweaks [12]. That opened the door for semantic segmentation models like U-Net [13], which used an encoder-

decoder setup with skip connections to map cracks at the pixel level, doing a great job at outlining them but 

struggling to tell different crack types apart, which was a big issue for planning maintenance. Meanwhile, object 

detection models like YOLO (You Only Look Once) [14] stepped in with real-time detection through versions like 

YOLOv5, pinpointing cracks with bounding boxes but often missing the finer details or getting confused by 

overlapping cracks, and CrackNet [15] tried to fix some of that with multi-scale feature extraction for 3D asphalt 

imagery, performing better but needing a ton of computing power, showing that CNNs still have trouble with things 
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like generalization, shadows, or finding a balance between speed and depth, which pushed research to look for 

smarter approaches. 

 

2.3. Advances in Instance Segmentation and Attention Mechanisms 

Instance segmentation turned things around by mixing detection and segmentation to map out individual cracks with 

pixel-level accuracy, going beyond semantic segmentation’s broader focus, with Mask R-CNN [16] setting a high 

bar by creating masks alongside bounding boxes, improving crack boundary accuracy compared to YOLO-based 

methods, though its complexity makes it tough to use in settings with limited resources. Newer models like 

YOLOv8 [17] have tried to blend speed and detail by adding segmentation to real-time setups, but they still struggle 

with thin or low-contrast cracks that show up a lot in real-world conditions. Attention mechanisms have helped out 

by zeroing in on the important stuff and ignoring distractions, with techniques like Squeeze-and-Excitation (SE) 

blocks [18] and Convolutional Block Attention Module (CBAM) weighting spatial and channel features to better 

spot cracks in messy environments like separating cracks from oil stains or shadows—but these models really need 

diverse training data to shine. 

 

2.4. Regional Insights: Pavement Distress in Southeast Asia and Malaysia 

Pavement distress research in Southeast Asia, especially Malaysia, doesn’t get the attention it deserves, even though 

the region faces some unique challenges, with tropical climates bringing heavy rain, high humidity, and temperature 

swings that speed up crack formation through water damage and thermal stress, not to mention urban traffic adding 

extra wear, yet early Malaysian studies using basic CNNs noticed monsoon effects but didn’t tackle segmentation 

[19], and using YOLOv3 on tropical road data had limited success because of gaps in the dataset [20], especially in 

urban hubs like Selangor and Kuala Lumpur where pavement damage is more severe, while global datasets like 

CRACK500 or GAPs, made for temperate climates, don’t capture Southeast Asia’s specific conditions—think 

monsoon impacts, mixed traffic, and aging roads—pointing to a real need for local solutions that address Malaysia’s 

unique road profiles, mixing in environmental and human factors for better detection and classification to improve 

maintenance planning. 

 

2.5. The Need for Hybrid Innovations in Crack Analysis 

The shortcomings of current models—U-Net not being able to tell crack types apart, YOLO’s rough localization, 

and CrackNet needing so much computing power—make it obvious that hybrid innovations are needed to combine 

segmentation and classification, using residual learning to pull out features across different scales, cutting down on 

computing needs, and adding attention mechanisms to focus on key patterns even with noise around, providing 

accurate crack mapping and type identification for smarter maintenance planning, especially in places like Malaysia 

where urban traffic and tropical weathering make pavement stress worse, paving the way for better accuracy in 

tough conditions, scaling for real-world use, and offering clear insights for prioritizing repairs, setting up advanced, 

tailored solutions that fit specific infrastructure needs. 

 

3. RESEARCH METHODOLOGY  

3.1. Data Acquisition and Dataset Development 

Putting together a solid dataset that captures the real challenges of pavement conditions in Malaysia meant setting up 

a careful data collection process, focusing on the busy road networks of Selangor and Kuala Lumpur, picked 

because of their heavy traffic and mix of road types, from packed highways to quieter residential streets, giving a 

good picture of pavement wear influenced by Malaysia’s tropical climate and city life. Generally, in any deep 

learning model data collection plays the most important role [21][22]. The setup for gathering this data used a GoPro 

Hero 8 camera attached to a Perodua Viva inspection vehicle, specially tweaked for this project, and Figure 2 shows 

how the camera was mounted, giving a clear look at how it worked out on the roads. The camera sat 1.6 meters 

above the pavement, pointed straight down, and was set to cover a 3.1-meter-wide strip—matching the typical width 
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of a single traffic lane in Malaysia—so the images would feel like what you’d see while driving, making the dataset 

perfect for training deep learning models. 

 

 

Figure 2. Vehicle-mounted Camera Setup 

 

The GoPro Hero 8 ran in a custom video mode, with its details laid out in Table 1, and two calibration setups were 

tried out to get the data just right, as shown in Table 2. Setup 1 had the camera at 1.3 meters with a 90° ± 35° angle, 

1.1 meters from the marked road spot, while Setup 2 placed it right above the lane’s midpoint at 1.6 meters with a 

straight 90° angle, which ended up being the better choice for its wider and steadier coverage. To make the dataset 

even stronger and more varied, the images were paired with the CRACK500 dataset, a public collection of 500 

pavement images (2000x1500 pixels) with marked cracks, helping the model learn from a wider range of crack 

types and conditions. 

Table 1. Specifications of the GoPro Hero 8 Camera Configuration 

Attribute Details 

Camera Model GoPro Hero 8 

Mounting Hardware GoPro Rod Mount 

Operating Mode Custom Video Setting 

Image Resolution 1080p (1920x1080) 

Frame Rate Options 24 fps, 60 fps 

Lens Type Linear Field of View 

Video Bit Rate Standard Quality (45 Mbps) 

Minimum ISO Setting 100 

 

  

 

Fig. 2. Data Collection Setup 
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Table 2. Outcomes of Camera Calibration Setups 

Calibration 

Setup 

Road Coverage 

Width 

Camera Orientation 

to Ground 

Proximity to Marked 

Road Segment 

Installation 

Height 

Setup 1 3.1 meters 90° ± 35° 1.1 meters 1.3 meters 

Setup 2 3.1 meters 90° Directly above midpoint 1.6 meters 

 

Keeping things specific and repeatable was a big focus, so detailed GPS mapping was used to track the data 

collection routes in Selangor and Kuala Lumpur, with Figure 3(a) and Figure 3(b) showing these GPS maps for 

Selangor and Kuala Lumpur, making it easy to see exactly where the data came from and letting other researchers 

follow the same paths or expand the work elsewhere. The final dataset includes high-quality video footage and still 

images pulled from it, capturing all kinds of pavement damage under Malaysia’s unique conditions like wear from 

monsoons, stress from city traffic, and different lighting situations setting a strong base for training and testing the 

DeepSeg-CrackNet model. 

 

 

(a)                                                  (b) 

Figure 3. (a) GPS Road Data Around Selangor, (b) GPS Road Data Around Kuala Lumpur 

 

3.2. Data Preprocessing 

Getting the raw video data ready for deep learning meant cleaning it up properly to make sure the model training 

would go smoothly and hold up well. The footage from the GoPro Hero 8 was first broken down into individual 

frames, turning the video streams into still images that could be analysed, and Figure 4 gives a peek at some of these 

frames, showing the quality and variety of the pavement images captured. Each frame was resized to a standard 

640x640 pixels, picked to keep a good balance between not overloading the computer and still holding onto the 

important crack details, making sure it fit what the DeepSeg-CrackNet model needed, which helps avoid issues from 

mismatched image sizes that could mess with the results. 
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Figure 4. Sample Frames Extracted from the Collected Video 

 

To make the dataset better reflect Malaysia’s mix of road and lighting conditions, a few augmentation tricks were 

used, like flipping the images horizontally and vertically with a set chance, basically stretching the dataset by 

showing the same road segments from different angles. Brightness and exposure were also tweaked by ±20%, 

mimicking different times of day or weather, like cloudy skies or bright sun, and a bit of blurring was added, with a 

kernel size between 2 and 4.5 pixels, to imitate real-life issues like camera shake or hazy air. These tweaks help the 

model handle the kind of variety you’d see on Malaysian roads, from rain-soaked surfaces to sunny city lanes. 

The dataset was also standardised and normalised to get it ready for training, with standardization making sure all 

images followed the same format, and normalization adjusting pixel values to a set range, ensuring the deep learning 

algorithms got consistent inputs. A careful balance was kept between cleaned-up images and ones with some noise, 

keeping natural differences—like uneven lighting or pavement textures—so the model could learn to deal with real-

world challenges, and this whole preprocessing setup makes the dataset more useful, helping DeepSeg-CrackNet 

work well even in tricky, unpredictable situations. 

 

3.3. Data Labelling 

Good labelling is key for supervised learning, giving the ground truth the DeepSeg-CrackNet model needs to learn 

how to spot and sort pavement cracks. The Roboflow annotation tool was used to label each image frame, dividing 

cracks into three types: alligator, longitudinal, and transverse, with showing examples of these labelled frames, 

marking alligator cracks in purple, longitudinal cracks in blue, and transverse cracks in pink, giving a clear view of 

the detailed labelling process. This setup lets the model not just find cracks but also figure out what kind they are, 

which is super important for deciding how bad they are and planning repairs. Examples of labelled image frames are 

shown in Figure 5. 
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Figure 5. Examples of Labelled Images Frames 

 

The labeled dataset was split into training, validation, and testing sets, as shown in Table 3, to make sure the model 

could be built and checked thoroughly, using a rough 80-20 split, with 85% of the images (1900 frames) set aside 

for training, 10% (207 frames) for validation, and 5% (103 frames) for testing, which makes sure the model learns 

from a wide range of examples, checks its performance on new data, and gets properly tested for real-world use, 

giving a solid measure of how well it can predict across different crack types. 

 

Table 3. Distribution of Dataset for Training, Validation, and Testing 

Class Label 
Training 

Images 

Validation 

Images 
Testing Images Total 

Alligator Cracks crack-alligator 760 80 40 880 

Longitudinal Cracks crack-long 760 80 40 880 

Transverse Cracks crack-trans 380 47 23 450 

Total  1900 207 103 2210 

 

3.4. DeepSeg-CrackNet Architecture 

DeepSeg-CrackNet is a fresh hybrid deep learning framework built to handle both segmentation and classification 

for a full-on pavement crack analysis, made specially to fit the unique patterns of Malaysian roads. It’s got two main 

parts: a Deep Gradient ResNet for segmentation and a ResNet-50 backbone with a Modified Attention Mechanism 

for classification, working together to map out cracks and identify their types, and Figure 6 gives a clear diagram of 

the DeepSeg-CrackNet setup, showing how its segmentation and classification parts connect. This hybrid design 

taps into the strengths of residual learning and attention mechanisms to nail down high accuracy in spotting and 

sorting alligator, longitudinal, and transverse cracks. 
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Figure 6. Methodological Flow 

 

The segmentation part uses a Deep Gradient ResNet, a beefed-up version of the ResNet setup, fine-tuned for pixel-

level crack mapping, with multiple convolutional layers and residual connections that let the model dig into deep 

features while dodging the vanishing gradient issue. Each residual block has batch normalization to keep training 

steady and ReLU activation to add some non-linearity, making sure it pulls out strong features across different 

scales, and skip connections in the network hold onto spatial details, letting the model catch fine crack patterns, like 

the messy shapes of alligator cracks or the straight lines of longitudinal ones, spitting out a segmentation mask that 

pinpoints crack areas with high accuracy. 

The classification part builds on a ResNet-50 backbone, jazzed up with a Modified Attention Mechanism to sharpen 

focus and cut down on noise, with ResNet-50’s deep 50-layer setup of convolutional and residual blocks giving a 

solid base for feature extraction, while the attention mechanism—pulled from recent ideas—highlights the important 

features, helping the model tell crack types apart even with tricky backgrounds like shadows or pavement markings. 

The attention setup mixes channel and spatial attention, tweaking feature maps to zero in on crack-specific patterns, 

and an Atrous Spatial Pyramid Pooling (ASPS) layer at the end of the classification pipeline pulls together multi-

scale features to tackle cracks of different sizes and shapes, a common challenge on Malaysian city roads. 

Hyperparameters were adjusted to make DeepSeg-CrackNet work best for Malaysian crack patterns, as shown in 

Table 4, and this custom setup, blending segmentation and classification, makes DeepSeg-CrackNet a strong tool for 

pavement distress analysis, ready to give clear, useful insights for keeping Malaysia’s roads in shape. 

 

Table 4. Hyperparameter Settings for DeepSeg-CrackNet 

Hyperparameter Value 

Learning Rate 0.001 

Optimizer Adam 

Epochs 200 

Batch Size 16 

Dropout Rate 0.5 
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The hyperparameter values for DeepSeg-CrackNet, as shown in Table 4, were determined through a trial-and-error 

approach to optimize the model’s performance on Malaysian road data. We started with common baseline values, 

like a learning rate of 0.01 and a batch size of 32, but found the model struggled with convergence on our diverse 

dataset. After several rounds of tweaking, we settled on a learning rate of 0.001, which allowed steady training 

without overshooting, and a batch size of 16 to balance memory constraints with stable gradient updates. The Adam 

optimizer was chosen for its reliability in handling noisy data, and we set 200 epochs to ensure the model had 

enough time to learn crack patterns without overfitting, which we monitored closely. A dropout rate of 0.5 was 

added to prevent the model from relying too heavily on specific features, especially given the varied lighting and 

pavement textures in our images. This iterative process involved testing multiple combinations and checking 

validation metrics like IoU and accuracy to find the sweet spot for our specific use case. 

 

3.5 Crack Size Assessment and Metrological Quantification 

DeepSeg-CrackNet measures crack sizes through a carefully calibrated process that turns segmentation results into 

real-world numbers, calculating length (L) for linear cracks (longitudinal/transverse) by tracing the main axis of 

connected components in the binary mask (𝐼_𝑏), and figuring out surface coverage (A) for areal cracks (alligator) by 

adding up pixels, using the camera’s known setup (1.6m height, 3.1m lane width, 640×640px resolution) for 

accuracy, as shown in Equation (1), Equation (2), and Equation (3). 

Mathematical Formulation 

1. Binary Mask Generation: 

𝐼_𝑏(𝑖, 𝑗)  =  { 1  𝑖𝑓 𝑝𝑖𝑥𝑒𝑙 (𝑖, 𝑗)  ∈  𝑐𝑟𝑎𝑐𝑘 𝑟𝑒𝑔𝑖𝑜𝑛       (1) 

                               { 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

2. Linear Crack Length: 

𝐿_𝑝𝑖𝑥𝑒𝑙𝑠 =  𝑚𝑎𝑥(𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝐴𝑥𝑖𝑠(𝐼_𝑏))      (2) 

𝐿_𝑚𝑒𝑡𝑒𝑟𝑠 =  𝐿_𝑝𝑖𝑥𝑒𝑙𝑠 ×  (3.1 / 640)  

3. Alligator Crack Area: 

𝐴_𝑝𝑖𝑥𝑒𝑙𝑠 =  𝛴𝛴 𝐼_𝑏(𝑖, 𝑗)  (𝑠𝑢𝑚 𝑜𝑣𝑒𝑟 640 × 640 𝑖𝑚𝑎𝑔𝑒)      (3) 

𝐴_𝑚² =  𝐴_𝑝𝑖𝑥𝑒𝑙𝑠 ×  (3.1 ×  2.8) / (640 ×  640)  

(Where 2.8m is the transverse field-of-view length at 1.6m height.) 

This approach lines up with ASTM D6433 standards, making it easier to do automated PCI scoring and data-driven 

maintenance decisions for Malaysia’s road network. 

 

4. RESULTS AND DISCUSSIONS  

4.1. Experimental Setup Overview 

Testing out DeepSeg-CrackNet, a fancy hybrid deep learning model, meant checking how well it could spot, map 

out, and sort pavement cracks using a dataset pulled together from roads in Selangor and Kuala Lumpur, with the 

CRACK500 dataset thrown in to mix things up a bit. The setup for this testing used some serious computing power 

to handle the heavy lifting of deep learning, running on an HP Pavilion 15be408tx with an Intel Core i7-8750H 

processor, 8 GB of DDR4 RAM, and a 1 TB hard drive, plus an NVIDIA GeForce GTX 1050 with 4 GB VRAM for 

onboard graphics work, and some extra help from an NVIDIA GeForce RTX 4080 for faster training and predictions 

when working remotely. The whole thing was built using Anaconda and Google Colab, with PyTorch as the main 

framework since it’s great for setting up DeepSeg-CrackNet’s mixed design. 

The dataset had 2210 images total, split up as 1900 for training, 207 for validation, and 103 for testing, just like it’s 

laid out in the Methodology section (Table 3), with images cleaned up to a standard 640x640 pixel size, and little 
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tweaks like horizontal and vertical flips and ±20% brightness changes to match Malaysia’s range of road and 

lighting conditions. DeepSeg-CrackNet was put through 200 rounds of training, using a learning rate of 0.001, the 

Adam optimizer, a batch size of 16, and a dropout rate of 0.5 to keep it from overfitting, as shown in Table 4, 

making sure the testing gave a solid look at how well the model works for real pavement damage analysis. 

 

4.2. Segmentation Performance Analysis 

DeepSeg-CrackNet’s ability to map out cracks was checked using a bunch of measures—accuracy, precision, recall, 

Jaccard Coefficient (Intersection over Union, IoU), and Dice Coefficient—over the training and validation stages, 

giving a full picture of how well it can outline crack edges. These measures were tracked across all 200 rounds of 

training, showing how the model learns and handles new data it hasn’t seen before. 

The model’s accuracy, shown in Figure 7, looks pretty strong during training, with the training accuracy (blue line) 

starting around 80% and climbing fast, settling just under 95% by the end, while the validation accuracy (orange line) 

keeps up closely, landing at about the same spot, which means it’s good at handling new stuff without overfitting. 

Precision, in Figure 8, shows how many of the crack pixels it flagged were actually correct, hitting around 95% for 

both training and validation, meaning it’s not throwing out too many false alarms. Recall, in Figure 9, levels off at 

about 90% for both stages, showing the model catches most of the cracks out there. 

 

Figure 7. Model Accuracy Plot 

 

Figure 8. Model Precision Plot 
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Figure 9. Model Recall Plot 

The Jaccard Coefficient (IoU), in Figure 10, keeps climbing and settles around 80% for both training and validation, 

showing the model’s pretty consistent at matching up predicted crack areas with the real ones, and the Dice 

Coefficient, in Figure 11, follows a similar path, sitting just a bit higher, which means there’s a lot of overlap 

between what the model predicts and the actual cracks. These charts really back up how well DeepSeg-CrackNet 

maps out cracks, which is super important for getting pavement analysis right. 

 

 

Figure 10. Model Jaccard Coefficient Plot 

 

Figure 11. Model Dice Coefficient Plot 
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Hard numbers back this up too, as laid out in Table 5, with a Mean IoU of 0.8388889 showing the model’s solid at 

overlapping predicted and real crack areas, and a Mean Dice Coefficient of 0.8256968848551859 matching that 

consistency, while the Hausdorff Distance, which checks the biggest gap between predicted and real edges, sits at 

about 3.21 for both background and crack classes, proving the model’s spot-on at outlining cracks, making it a trusty 

tool for real pavement damage analysis in Malaysia. 

 

Table 5. Quantitative Metrics for Segmentation Model 

Metric Value 

Mean IoU 0.8388889 

Mean Dice Coefficient 0.8256968848551859 

Hausdorff Distance (Background) 3.2126949574078867 

Hausdorff Distance (Crack) 3.2126949526675244 

 

 

4.3. Visual Segmentation Results Across Crack Types 

Taking a closer look at DeepSeg-CrackNet’s segmentation results gives a good sense of how it handles different 

crack types—alligator, transverse, and longitudinal—that you’d see a lot on Malaysian city roads. Figure 12 shows 

an alligator crack, with the original grayscale image on the left and the segmented one on the right, where the 

original has a messy web of cracks that look like alligator skin, and the segmented version nails down those tricky 

patterns, showing the model’s great at picking out big, complicated crack setups that are key for spotting serious 

pavement problems. 

 

Figure 12. Original and Segmented Image of Alligator Crack 

 

Figure 13 shows a transverse crack, which cuts across the road direction, with the original image on the left showing 

a clear line across the pavement, and the segmented one on the right capturing that line perfectly, making sure it’s 

ready for deeper analysis. Then Figure 14 has a longitudinal crack, running along the road direction, with the raw 

image on the left showing a thin, stretched-out crack that’s an early sign of trouble, and the segmented version on 

the right tracing its length spot-on, giving a clear picture of the issue. These visuals prove DeepSeg-CrackNet’s solid 

at mapping out all kinds of cracks, which is a must for checking road structures and planning repairs in Malaysia. 
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Figure 13. Original and Segmented Image of Transverse Crack 

 

 

Figure 14. Original and Segmented Image of Longitudinal Crack 

 

4.4. Classification Performance Analysis 

After mapping out the cracks, DeepSeg-CrackNet’s classification part, which uses a Residual block with a Modified 

Attention Mechanism, sorts them into alligator, longitudinal, and transverse types, a big step for figuring out what 

repairs are needed. Table 6 breaks down how well it did, showing precision, recall, and F1-score for each crack type, 

along with the support (how many examples in the test dataset). For alligator cracks (class 0), it hits a precision of 

0.84 and a recall of 0.96, making an F1-score of 0.90, meaning it’s awesome at catching almost all alligator cracks 

accurately. Longitudinal cracks (class 1) get a precision of 0.89, a recall of 0.88, and an F1-score of 0.885, showing 

it’s pretty dependable even with their tricky shapes. Transverse cracks (class 2) have a precision of 0.87 but a recall 

of 0.80, leading to an F1-score of 0.83, which suggests they’re a bit harder to catch. 

 

Table 6. Classification Report for Residual Block with Modified Attention Mechanism 

Class Precision Recall F1-Score Support 

Alligator (0) 0.84 0.96 0.90 114 

Longitudinal (1) 0.89 0.88 0.885 135 

Transverse (2) 0.87 0.80 0.83 121 

Overall Accuracy 0.85   370 

Macro Avg 0.85 0.85 0.85 370 

Weighted Avg 0.85 0.85 0.84 370 
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The overall accuracy for classification is 0.85 (85%), with macro and weighted averages for precision, recall, and 

F1-score all hanging around 0.85, showing it’s pretty balanced across all crack types, and the confusion matrix, 

coming up in Figure 15, gives a visual of how it did, showing alligator cracks correctly sorted in 110 out of 114 

cases, with just 4 mistaken for longitudinal ones, while longitudinal cracks had some mix-ups, with 9 called alligator 

cracks and 14 as transverse, and transverse cracks also got mixed up, mostly with longitudinal ones (18 cases), 

pointing to a spot that could use some work. The spot-on segmentation really helps with these classification results, 

since clear mapping makes it easier to sort cracks right, especially for alligator cracks with their high recall. 

 

Figure 15. Confusion Matrix for Residual block with Modified Attention Mechanism 

 

4.5. Crack Measurement and Classification Results 

DeepSeg-CrackNet’s crack measuring process takes things from just spotting cracks to getting their exact sizes, 

which is key for figuring out how bad the pavement damage is, pulling crack areas from segmentation masks, 

counting up pixels, and turning those into real-world measurements—meters for longitudinal and transverse cracks, 

and square meters for alligator cracks using the camera setup (1.6 meters height, 3.1 meters road width). 

Figure 16 shows a longitudinal crack, measured in meters to show how long it stretches along the road, giving a 

good idea of how it might affect the pavement’s strength, while Figure 17 has a transverse crack, with its length in 

meters showing how much damage crosses the road, which matters for checking risks like water seeping in, and 

Figure 18 displays an alligator crack, measured in square meters to show the damaged area, pointing out the need for 

bigger repairs since it’s a deeper issue. 
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Figure 16. Longitudinal Crack Classification and Measurement 

 

 

Figure 17. Transverse Crack Classification and Measurement 

 

 

Figure 18. Alligator Crack Classification and Measurement 

 

4.6. Validation of Crack Measurement Accuracy 

Checking how accurate DeepSeg-CrackNet’s crack measurements are meant looking at how camera height affects 

the lengths it detects, making sure the real-world conversions hold up, with Table 7 showing a comparison of 

distance measurements at different heights (1.57m, 1.60m, 1.63m), looking at actual lengths versus detected ones 

and their differences, like for a 0.25m actual length (A-B), the detected length at 1.60m is 0.255m (just +0.005m off), 

showing it’s pretty close, while at 1.57m it’s 0.27m (+0.020m off) and at 1.63m it’s 0.238m (-0.012m off), and the 

same pattern shows up for other lengths (like A-E: 1.50m actual, 1.513m at 1.60m with +0.013m off), proving 

1.60m gives the best results. 
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Table 7. Comparative Analysis of Distance Measurements at Different Camera Heights 

Points Actual 

Measured 

Length (m) 

Detected 

Length (m) 

at 1.57m 

Variation 

at 1.57m 

Detected 

Length (m) 

at 1.60m 

Variation 

at 1.60m 

Detected 

Length (m) 

at 1.63m 

Variation 

at 1.63m 

A-B 0.25 0.27 +0.020 0.255 +0.005 0.238 -0.012 

A-C 0.50 0.543 +0.043 0.508 +0.008 0.485 -0.015 

A-D 1.00 1.08 +0.080 1.027 +0.027 0.976 -0.024 

A-E 1.50 1.605 +0.105 1.513 +0.013 1.474 -0.026 

 

Figure 19 shows the detected lengths at the best 1.60m height, proving it’s super accurate, while Figure 20 shows 

lengths at 1.57m that are a bit too high, and Figure 21 shows lengths at 1.63m that are a bit too low, making it clear 

why picking the right camera height matters, and this check confirms the 1.60m height used in the data setup gives 

reliable measurements, making DeepSeg-CrackNet great for precise pavement analysis. 

 

 

Figure 19. Detected Length (Camera Height 1.60m) 
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Figure 20. Detected Length (Camera Height 1.57m) 

 

 

Figure 21. Detected Length (Camera Height 1.63m) 

 

4.7. Benchmarking Against Existing Models 

DeepSeg-CrackNet outperforms CrackNet [6], as shown in Table 8, due to its advanced hybrid architecture, which 

seamlessly integrates Deep Gradient ResNet for segmentation and a Residual block with a Modified Attention 

Mechanism for classification, specifically designed to tackle the complex crack patterns on Malaysian roads. Unlike 

CrackNet’s standard multi-scale feature extraction, DeepSeg-CrackNet’s Deep Gradient ResNet employs residual 

connections to capture fine-grained spatial details across multiple scales, enabling precise delineation of intricate 

structures like alligator cracks, where it achieves a precision of 0.84 and recall of 0.96 compared to CrackNet’s 

0.778 and 0.772. The CAFM enhances this by prioritizing crack-relevant features, effectively filtering out 
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environmental noise such as shadows or road markings that often hinder CrackNet’s accuracy. This refined feature 

extraction, paired with the Augmented SubPixel Shuffling (ASPS) decoder, sharpens crack boundaries, resulting in a 

Mean IoU of 0.8388889, a marked improvement over CrackNet’s less precise segmentation. 

The extended training period of DeepSeg-CrackNet, spanning 200 epochs compared to CrackNet’s 100, allows the 

model to thoroughly learn the diverse crack morphologies in the RCD-IIUM dataset, which is critical for addressing 

Malaysia’s unique pavement conditions. This dataset, tailored to tropical environments, includes pixel-wise 

annotations and GPS-mapped imagery from Selangor and Kuala Lumpur, capturing specific damage patterns like 

monsoon-induced stripping and thermal cracking not adequately represented in CrackNet’s more generic training 

data. Prolonged training ensures robust generalization across varied lighting and pavement textures, as demonstrated 

by DeepSeg-CrackNet’s superior precision (0.89 vs. 0.867) and recall (0.88 vs. 0.849) for longitudinal cracks. This 

comprehensive training strategy enables DeepSeg-CrackNet to adapt to the nuanced crack formations influenced by 

Malaysia’s heavy traffic and reclaimed tire polymer asphalt, providing a significant edge over CrackNet’s shorter 

training approach. 

A key innovation of DeepSeg-CrackNet is its metrological branch, which transforms segmentation masks into real-

world measurements using projective geometry, a feature absent in CrackNet. This capability delivers precise crack 

lengths for longitudinal cracks and areas for alligator cracks, aligning with ASTM D6433 standards and enabling 

data-driven maintenance decisions, such as prioritizing repairs for extensive alligator cracks over minor longitudinal 

ones. The Modified Attention Mechanism further enhances classification by blending channel and spatial attention 

to focus on distinct crack textures and orientations, contributing to high accuracy (85% overall) across crack types. 

By leveraging the RCD-IIUM dataset’s rich local annotations and a carefully calibrated training process, DeepSeg-

CrackNet achieves consistent performance improvements, making it a highly effective tool for automated pavement 

distress analysis in Malaysia’s challenging urban and tropical conditions. 

Table 8. Benchmarking Results 

Features/Criteria DeepSeg-CrackNet (This Study) CrackNet [6] 

Methodology 
Deep Gradient ResNet + Residual Block with Modified 

Attention Mechanism 

CrackNet Network 

Model 

Data Source Custom Collected Data 
Custom Collected 

Data 

Epochs 200 100 

Precision (Alligator) 0.84 0.778 

Precision 

(Longitudinal) 
0.89 0.867 

Precision (Transverse) 0.87 0.839 

Recall (Alligator) 0.96 0.772 

Recall (Longitudinal) 0.88 0.849 

Recall (Transverse) 0.80 0.868 

 

5. CONCLUSION 

DeepSeg-CrackNet turned out to be a game-changer for pavement damage analysis in Malaysia, especially in busy 

spots like Selangor and Kuala Lumpur, where fast city growth and heavy traffic really take a toll on roads, with its 

high segmentation accuracy, hitting a Mean IoU of 0.8388889, and a classification accuracy of 85%, making it great 

at catching alligator, longitudinal, and transverse cracks early on and sorting them out, which helps plan repairs 
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before things get really bad, plus its knack for measuring crack sizes—figuring out big alligator cracks in square 

meters and smaller longitudinal ones in meters—makes it easier to focus repairs where they’re needed most, like 

replacing pavement for huge alligator cracks or just sealing up minor longitudinal ones, saving money and keeping 

roads safer, lining up perfectly with Malaysia’s goals for sustainable city growth by making maintenance smarter 

and helping roads last longer in high-traffic areas. 

Even with all its strengths, DeepSeg-CrackNet has some limits that open the door for more work down the road, 

since things like super bright or dim lighting, or messy backgrounds not covered in the dataset, might throw it off, 

and focusing on city roads might make it less useful for rural Malaysian areas with different pavement types and 

damage patterns, so future efforts could add more variety to the dataset with different weather conditions and rural 

roads to make the model more flexible, plus looking into lighter designs or trimming techniques could let it run in 

real-time on smaller devices, like mobile inspection setups, making it more practical, and mixing in extra data types, 

like 3D pavement scans or infrared images, could give a deeper look at crack severity, making DeepSeg-CrackNet 

even better for keeping Malaysia’s roads safe and strong. 
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