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Abstract – Accurate estimation of signal-to-noise ratio (SNR) in Scanning Electron Microscopy (SEM) is crucial because it 

evaluates the image quality. SEM images faced a challenge whereby Gaussian noise commonly appears in the images. Thus, 

researchers have developed several methods to estimate the SNR value. With the introduction of deep learning, most of the 

limitations in the classical methods can be addressed. This paper proposes a novel deep learning, CNN-based Calibration Map 

Network (CalibNet) to estimate the SNR value from SEM images using a calibration map between classical SNR and 

autocorrelation function SNR. The architecture consists of convolutional layers, rectified linear unit (ReLU) activations, max-

pooling layers, adaptive pooling, and a regression head to predict the SNR value correctly. The proposed model is trained, validated 

and tested on two SEM images, the Biofilm SEM dataset (67 images) and the NFFA-EUROPE SEM dataset (961 images). Each 

image was artificially corrupted with Gaussian noise variance ranging from 0.001 to 0.01 to simulate realistic SEM imaging 

conditions. The proposed model was compared with Classical SNR, Autocorrelation Function (ACF), Nearest Neighbour (NN)-

ACF, First-Order Linear Interpolation (LI)-ACF, and Quadratic-Sigmoid (Quarsig)-ACF methods. The results show that CalibNet 

outperformed all the classical methods in terms of mean absolute error (MAE), root mean square error (RMSE), mean absolute 

percentage error (MAPE) and R-squared (R²). Statistical analyses further confirmed that CalibNet predictions closely align with 

the Classical SNR values. Future work includes exploring more advanced model architectures, alternative calibration techniques, 

and real-time SNR estimation applications. 
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1. INTRODUCTION 

Scanning Electron Microscope (SEM) produces high-resolution images by scanning a surface with focused electrons 

[1]. SEM imaging has shown its value in many sectors, including material science, biological research, and industrial 

semiconductor chip manufacturing. SEM images can capture the nanoscale details invisible to the naked eye, proving 

their value [2]. Chip production requires SEM imaging because it can help detect defective chips and examine 

microscopic components [3]. In biological research, SEM offers precise visualisation of cellular structures [4]. It can 

also help examine the material surface in a high-resolution visualisation. 

The challenge that SEM imaging constantly faces is Gaussian noise in the images [5]. The Gaussian noise is white 

noise produced by the microscope's internal parts during image capture [6]. A poor-quality SEM image has a higher 

noise level because the noise corrupts the details [7]. The noises are everywhere in the images, and they overlap with 

the signal of the image, so the image quality is getting lower and lower [8]. Moreover, it will also cause the image to 

take longer to analyse, making it harder to interpret [9]. As the details of the image start to get smaller, there is nothing 

meaningful in the image [10]. The SNR is introduced to estimate the image's signal level to overcome the gap [11]. 

The SNR uses the ratio of the signal and noise to estimate the quality of the images [12]. The SNR produces a lower 

value if the noise value is higher than the signal noise. It will be vice versa if the noise value is lower than the signal 

noise. A good image quality has a high SNR value and a low noise level, which shows that SNR is good at checking 

the image quality. Therefore, many researchers have started using SNR to identify the image's noise level and improve 

their quality. The SNR has improved many filters, and the image can be denoise without losing the details. 

Many researchers conducted studies regarding the noise problems in SEM images. Their interest has led them to create 

various filtering methods that help reduce noise. They have developed mathematical equations and foundational 

theories to support their work. The filters, such as Gaussian smoothing, median filtering, and adaptive filtering, can 

reduce the noise without damaging the details of the images. They are good at reducing noise, but they require an SNR 

value to perform optimally. The filters can sometimes over-smooth the images without a known SNR value because 

the details in the image are assumed to be the noise and removed. The filters without known SNR can greatly cause 

the image to lose value and make it hard to interpret. This impact causes the researcher to develop even more enhanced 

techniques to estimate the SNR to get a better, clearer SEM image and better noise reduction. 

Classical approaches for estimating SNR values include patch-based estimation, Fourier-based analysis, wavelet-

based methods, and autocorrelation-based approaches [13]. These are statistical methods because they rely on 

mathematical equations and manual calculations. When used on a large dataset, this usually leads to a longer 

computation time. Patch-based estimation techniques are suitable for analysing details in small image regions [14]. 

Fourier-based analysis methods perform differently from patch-based estimation because they convert the image into 

the frequency domain to estimate noise levels [15]. Wavelet-based methods require multiple scales of the image to 

analyse the noise and split it from important details [16]. Moreover, the autocorrelation-based approach converts the 

image into a centre-sliced one-dimensional (1d) autocorrelation to identify the peak value of the centre. It subtracts 

this from the original image's peak value to obtain the SNR value. All these methods show their strength in SNR and 

noise level estimation, but they often come with weaknesses. They need to manually configure their parameters and 

select the appropriate image regions, which can lead to human error and reduce the reliability in estimating SNR. Deep 

learning is introduced to address these manual configurations and the manual selection of image regions to improve 

the accuracy and reliability of SNR estimation. 

Recent advancements in deep learning have developed many applications for image processing, including noise 

estimation and reduction. These applications show promising results in estimating the SNR values in SEM images 

[17]. Deep learning techniques significantly differ from the classical methods because they only need a model, a 

convolutional neural network (CNN) and a labelled dataset to perform the SNR estimation. They not only remove the 

usage of mathematical equations, but they can also self-learn based on the provided datasets and labels. The CNN is 

unique because of its ability to extract the image features automatically. Moreover, the existing deep learning methods 

usually focus on the denoising of images, which does not require knowing the SNR values  [18]. In this paper, a novel 

deep learning model, Calibration Map Network (CalibNet), is explicitly designed to address this issue by estimating 

SNR accurately in SEM images. CalibNet uses a calibration map derived from classical and autocorrelation-based 

SNR methods to estimate SNR across a wide range of noise levels effectively. This method is unique because of the 

combination of the calibration map with the deep learning method. This shows that it is possible to do and the first to 

develop it. 
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In light of this, the first objective of this paper is to develop CalibNet that can accurately estimate SNR values in SEM 

images. The CalibNet is used for regression tasks because it only outputs a single estimation on a single image. These 

images are corrupted with Gaussian noise at variance levels ranging from 0.001 to 0.01. Each image is also resized 

into 256 x 256 pixels, so every image is standardised. The model is trained with a calibration map created using linear 

regression. This is because linear regression can give a suitable parameter for CalibNet to train. The parameter 

selection is based on the coefficient in classical and autocorrelation-based SNR calculations. This objective can 

address the limitations of classical methods and provide a reliable SNR estimation in SEM images. 

The second objective is to prove that the proposal model can outperform the other classical methods. The proof is to 

evaluate the performance of the CalibNet by comparing it with other classical autocorrelation-based SNR estimation 

methods. The baseline for this paper is the classical SNR, which only uses a single image to estimate its SNR. The 

autocorrelation-based methods are the benchmark for the CalibNet because the training input of the CalibNet consists 

of ACF SNR, which is used in the calibration map. This makes the benchmarking relevant in comparison with the 

CalibNet.  

The main research question is addressed based on below objective and contribution. 

How accurate is the deep learning method that uses a calibration map as input for training to estimate the SNR value 

in SEM images? 

 

1.1 Paper Contributions 

One of the contributions of this paper is developing a deep learning model to estimate the SNR value closest to the 

classical SNR. This method can reduce the processing time and be reliable when estimating the SNR value compared 

to the classical methods. 

The second contribution that can be found in this paper is a comprehensive evaluation of CalibNet's performance. It 

is compared with autocorrelation-based methods. A quantitative and statistical test has been performed to highlight 

the performance of the CalibNet. Two datasets are used to evaluate their performance. This shows the robustness of 

the CalibNet for automated and precise SNR estimation.  

 

1.2 Paper Structure 

The remainder of this paper is organised as follows. The Literature Review section reviews related work based on 

noise level and SNR estimation in SEM images. The Methodology section explains the proposed methodology for 

SNR estimation using CalibNet, providing a detailed explanation of the architecture and training procedures used to 

develop the model. The section on Experimental Results, Analysis, and Discussion highlights significant experimental 

outcomes, emphasising the advantages and limitations of the proposed paradigm. The section also examines the 

impact of these discoveries relative to other autocorrelation-based techniques, such as NN, LI, and QSE. The 

Conclusion summarises the whole paper and provides several suggestions for future work to expand this paper. 

 

2. LITERATURE REVIEW  

This section compares classical and deep learning techniques for calculating SNR and noise levels by reviewing 

related work. While deep learning techniques use CNNs or other advanced models to carry out these estimates 

automatically, classical approaches usually depend on mathematical equations to calculate noise and SNR values. 

 

2.1 Classical Methods 

Classical techniques use mathematical equations to calculate images' SNR and noise levels. A patch-based noise level 

estimating technique capable of performing denoising the image blindly was presented by Liu et al. Their approach 

calculates noise levels from a single noisy image and then applies denoising. Experimental results indicated superior 

performance in accuracy and stability compared to other methods. [19] created a locally adaptive patch-based (LAPB) 
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denoising method in the wavelet domain that efficiently lowers noise while maintaining picture features; their findings 

indicate competitive performance compared to existing methods. [20] presented a new three-step fusion technique 

consisting of pre-estimation, fusion, and final computation. Their solution outperformed techniques like BM3D, DDID, 

MLP, and EPLL in peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and visual quality by merging 

spatial and fractional Fourier domain findings from many denoising algorithms. [21] introduced three novel methods 

to estimate noise standard deviation directly from wavelet components and compared them with mean absolute 

deviation (MAD) methods. Their results indicated that these new methods provided more accurate noise-level 

estimations than the MAD approach. Lew et al. introduced a novel single-image SNR estimation technique, Quarsig 

SNR Estimation (QSE), which was designed explicitly for SEM images. This technique utilises the ACF to calculate 

peak values for both original and noisy images. Experimental findings demonstrated that QSE approximated actual 

SNR values, surpassing methods such as NN, LI, and their combination. [22] developed an SNR estimation method 

for SEM images using the piecewise cubic Hermite interpolation (PCHI) model. As demonstrated by asses including 

Cramer-Rao lower bound (CRLB), t-test, scatter plots, and Bland-Altman plots, their experimental comparisons 

showed better performance over other methods, including adaptive slope nearest neighbourhood (ASNN), linear least 

square regression (LLSR), and nonlinear least square regression (NLLSR). Table 1 shows the summary of the classical 

SNR methods from previous work. 

Table 1. Summary of Classical SNR Methods from Previous Works 

Authors Method Name Approach Application Performance / Results 

[23] 

Patch-based Noise 

Estimation 

Algorithm 

Patch-based 

estimation 

Blind denoising 

(single noisy image) 

Superior accuracy and 

stability; outperformed other 

methods 

[19] 
Locally Adaptive 

Patch-based (LAPB) 

Patch-based wavelet 

domain denoising 
Image denoising 

Effectively reduced noise, 

preserved image details; 

competitive results 

[20] 
Three-step Fusion 

Method 

Fusion of spatial and 

fractional Fourier 

domains 

Image denoising 

High performance (PSNR, 

SSIM, visual quality); 

outperformed BM3D, DDID, 

MLP, EPLL 

[21] 

Wavelet-based noise 

estimation methods 

(vs. MAD) 

Wavelet-based noise 

estimation 

Estimating noise 

standard deviation 

More accurate and robust than 

MAD; better noise estimation 

accuracy 

[24]  QSE  ACF 
SNR estimation in 

SEM images 

Closest to actual SNR; 

outperformed NN, LI, and 

NN+LI methods 

[22] 

Piecewise Cubic 

Hermite 

Interpolation (PCHI) 

Interpolation-based 

SNR estimation 

SNR estimation in 

SEM images 

Superior results (CRLB, t-test, 

scatter plot, Bland-Altman); 

outperformed ASNN, LLSR, 

NLLSR 

 

2.2. Deep Learning Methods 

Deep learning methods use CNN or other advanced models to estimate the noise level automatically and SNR in 

images. [25] proposed a two-step approach that uses a classifier, CNN, to detect the noise type and then denoise based 

on the detected noise type using a denoising autoencoder (DAE). Their classifier classified various types of noise with 

an accuracy of 98.2–100%, and the DAE model improved the PSNR and SSIM compared to other state-of-the-art 

models. [24] integrated convolutional feature extraction with a combination of deep wavelet machine learning 

classifiers in the related approach. Their model with support vector machine (SVM) archived 91.30% in accuracy and 

outperformed other machine learning classifiers. [26] adopted an alternative strategy by converting the images into 

histograms as training datasets. The dataset then feeds into the Gaussian-Noise Convolutional Neural Network (GN-
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CNN) to classify the noise levels. This approach successfully differentiated the noise variance ranging from 

0.001, 0.002 and 0.003 in the images with the F1 score of 93.97% and testing accuracy of 93.8%, outperforming 

other deep learning modes. [27] addressed single and mixed noise in images using dual-model architecture to 

classify the noise types and denoising based on the classification result. The architecture surpassed the existing 

methods by archiving high PSNR and SSIM values. [28] further expand the research with their Proposed System 

Architecture (PSA) to detect and identify the noise type in the given images. It can identify five types of noise: 

Gaussian noise, impulse noise, Poisson noise, and speckle noise. It had 99.25% accuracy in classifying the noise 

types and outperforming other models. [29] presented customised CNN architecture to classify three types of 

noise: Salt and pepper, Gaussian and Sinusoidal noise. Their proposed model achieved the highest accuracy in 

classifying the noise type and outperformed other classical methods. Table 2 shows the summary of deep learning 

based on recent studies. 

Table 2. Summary of Deep Learning-based from Recent Studies 

Authors Method Approach Noise Types / Levels Key Results 

 [11] CNN Classifier + 

DAE 
Two-step (Noise 

detection + 

Denoising) 

Multiple noise types 98.2–100% classification 

accuracy; highest PSNR and 

SSIM compared to state-of-

the-art methods 

[12] CNN + Wavelet + 

ML Classifier 

(SVM) 

Two-step (Noise 

detection + 

Classification) 

Multiple noise types 91.30% accuracy (SVM), 

outperforming other 

classifiers 

[13] GN-CNN Noise variance 

classification 

using histogram-

based CNN 

Gaussian noise 

variance (0.001, 

0.002, 0.003) 

F1 Score: 93.97%; 

Accuracy: 93.8% 

(outperformed other 

models) 

 [14] Two Deep 

Learning Models 
Two-step 

(Classification + 

Denoising) 

Single and mixed 

noise types 
Higher classification 

accuracy; superior PSNR 

and SSIM values 

 [15] Proposed System 

Architecture (PSA) 
Deep learning-

based noise 

detection and 

classification 

Gaussian, Impulse, 

Poisson, Speckle 
99.25% classification 

accuracy; superior 

performance 

 [16] Customised CNN CNN-based noise 

classification 
Salt & Pepper, 

Gaussian, Sinusoidal 
Highest classification 

accuracy; outperformed 

classical methods 

 

2.3 Research Gap 

Both classical and deep learning methods have shown their strength in estimating noise levels and SNR in images, but 

these methods still have limitations. The classical methods use mathematical equations to compute the estimation and 

require manual parameter tuning. Manually tuning parameters in classical methods is tedious and susceptible to human 

error. While existing deep learning methods can estimate noise levels, classify noise types, and perform image 

denoising automatically, they lack domain-specific calibration to estimate SNR.  

This limitation restricts their accuracy and heavily depends on the provided datasets, which could lead to little 

exploration in estimation SNR. The development of deep learning-based SNR estimation using calibration maps can 

enhance SNR estimation in SEM imaging, making it more reliable for users and opening new avenues for exploration. 
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3. RESEARCH METHODOLOGY 

This section explains the details of the architecture used in CalibNet, allowing for a better understanding of 

reproducing the CalibNet. This section also describes the method used to generate a calibration map. The calibration 

map uses linear regression on the classical SNR and the ACF-based SNR to create the suitable parameter. Figure 1 

shows the flowchart of the process in this paper. 

 

3.1 CNN-based Calibration Map Network (CalibNet) 

The CalibNet was developed to estimate the SNR value in SEM images. It uses the calibration map as the training 

input. The architecture of the CalibNet consists of three convolutional layers with ReLU activation functions, two 

max-pooling layers, an adaptive pooling layer, and a regression head. CalibNet uses grayscale, 256x256 pixel images 

as its inputs. The first convolutional layer has one input channel and 16 output channels with a kernel size of 3 and 

padding, followed by a ReLU and a max-pooling layer with a size of 2. The single input channel is to receive the input 

as a grayscale image. The ReLU is used to introduce non-linearity to the model. Max-pooling is used to reduce the 

spatial dimension. The second  

convolution layer has the same configuration and structure, producing 32 output channels with 16 input channels. The 

third convolution layer has the same configuration as the first and second ones, receiving 32 input channels and 

producing 64 channels. The output is then passed to an adaptive pooling layer to fix the dimension into 4x4. Lastly, 

the regression head consists of two linear layers and a ReLU activation function. The output features are then flattened 

into a 1D tensor and passed to the first linear layer with an input of 1024 and an output of 64, followed by a ReLU, 

then passed to the second linear layer with an input of 64 and an output of 1 so it will only produce one output to 

estimate the SNR value. 

All the convolution layers use a kernel size of 3 because it is commonly used in other deep learning models and can 

capture local feature patterns while keeping computational resources manageable. The max pooling size is 2. Each 

time the output from the convolution layer is passed to max pooling, the size of the feature map is reduced by two. 

This forms hierarchical learning, as each feature map differs at each layer. The adaptive pooling layer can accept any 

feature map size output from the convolutional layer. It only ensures the feature map is 4 x 4 before passing it to the 

regression head. Figure 2 shows the architecture of the CalibNet. 

 

3.2 Calibration‑Map Learning: Bridging Classical ACF and CNNs 

The calibration map is a linear regression-based mathematical model developed to accurately relate classical SNR 

values to the corresponding ACF SNR values. Linear regression is based on both values to get the perfect fit line 

optimal when training the model. The calibration map ensures that the predicted ACF SNR value closely aligns with 

the classical SNR value. Moreover, it can also ensure the predicted value's accuracy and reliability. Both classical 

SNR and ACF SNR values used for calibration were computed from the train set.  

Classical SNR is a conventional definition of SNR based on pixel intensity information. It is commonly used in image 

processing and communication fields. Equations (1) and (2) show the equation of the classical SNR. 

𝑆𝑁𝑅𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝑑𝐵) = 10 𝑙𝑜𝑔10 (
𝜇2

𝜎2)     (1) 

𝑆𝑁𝑅𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙(𝑑𝐵) = 20 𝑙𝑜𝑔10 (
𝜇

𝜎
)     (2) 

where 𝜇 is the mean pixel intensity, and 𝜎 is the standard deviation of the noise image. (1) is commonly used for 

power ratio, while (2) applies to amplitude ratio. Thus, (2) is used in this paper.  
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Figure 1. The Flowchart of the Process 
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Figure 2. The Architecture of the CalibNet 

 

ACF SNR is based on the autocorrelation function to estimate the SNR value. The SEM image undergoes a Fast 

Fourier Transform (FFT) and subsequently shifts to obtain a two-dimensional (2D) ACF. This 2D ACF is then center-

sliced to generate a one-dimensional (1D) ACF graph, which shows the peak value at lag 0. The total image signal 

consists of the original signal and Gaussian noise shown in Equation (3). 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑠𝑖𝑔𝑛𝑎𝑙 + 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒    (3) 

Gaussian noise is additive noise and thus relevant for this analysis. The ACF SNR ratio requires only one pair of 

images, the original and corresponding noise-image, to estimate the SNR ratio. The difference between their peak 

values at lag zero is computed using Equation (4). 

𝑆𝑁𝑅𝑟𝑎𝑡𝑖𝑜 =
ℎ𝑁𝐹(0,𝑦)−𝜇2

ℎ (0,𝑦)− ℎ𝑁𝐹(0,𝑦)
     (4) 

where ℎ𝑁𝐹  is the peak value from the autocorrelation of the noise-free image (original), 𝜇 is the mean intensity of the 

pixel of the original image and ℎ (0, 𝑦) is the peak value from the autocorrelation of the noise-corrupted image. After 

computed the 𝑆𝑁𝑅𝑟𝑎𝑡𝑖𝑜 from (4), the value is converted to decibels (dB) using Equation (5). 

𝑆𝑁𝑅𝐴𝐶𝐹(𝑑𝐵) = 20 log10(𝑆𝑁𝑅𝑟𝑎𝑡𝑖𝑜)    (5) 

After calculating both the classical and ACF SNR values, linear regression is performed to determine the calibration 

parameters a and b. These parameters are used in Equation (6), which shows the calibration equation.  

𝑆𝑁𝑅𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 ≈ 𝑎 ∙  𝑆𝑁𝑅𝐴𝐶𝐹 + 𝑏     (6) 

The accuracy of these calibration parameters is crucial, as incorrect values could compromise the reliability of the 

entire calibration model. Algorithm 1 shows the CalibNet in estimating SNR value in SEM images. 
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Algorithm 1: CNN-Based Calibration for SNR Estimation in SEM Images 

Step Procedure 

1 Initialization & Configuration 

 • Import required libraries (e.g., PyTorch, NumPy, Pandas). 

 • Set up training configurations (batch size, epochs, learning rate, device). 

2 Define Utility Functions 

 • Functions for saving model weights. 

3 Dataset Loading & Splitting 

 • Load SEM images and corresponding SNR labels (ACF-based and classical) from Excel files. 

 • Split the dataset into training (60%), validation (20%), and test (20%) subsets. 

4 Linear Regression Calibration 

 • Perform linear regression to establish a mapping from ACF-based SNR to classical SNR: 

 SNR_classical = a × SNR_acf + b 

 • Evaluate regression performance using coefficient of determination (R²). 

5 Dataset Construction 

 • Create a custom dataset class to load SEM images and apply preprocessing (resize to 256×256, 

grayscale conversion). 

 • Generate calibrated labels using the linear regression parameters (a and b). 

6 Model Definition 

 • Define CNN architecture with convolutional layers, ReLU activations, pooling layers, and fully 

connected layers for regression. 

7 Training Setup 

 • Prepare data loaders for training and validation sets. 

 • Select an optimiser (e.g., AdamW) and define Mean Squared Error (MSE) as the loss function. 

8 Training and Validation 

 • For each epoch: 

 - Train the model using the training set to update weights via backpropagation. 

 - Validate model performance on the validation set. 

 - Save the model checkpoint when validation loss improves. 

9 Testing 

 • Load the best-performing model based on validation loss. 

 • Predict SNR values on the test dataset. 

 • Compute evaluation metrics: MAE, Mean Squared Error (MSE), RMSE, MAPE, and R² score. 

10 Visualisation of Results 

 • Plot predictions vs. actual values, residual plots, histograms, and boxplots to analyse model 

performance. 
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No published SEM study has blended the classical pixel‑intensity SNR (Equation (2)) with the ACF‑based SNR 

(Equation (5)) into a single target value before deep learning. This paper's training set fits with a linear calibration 

map (Equation (6)). The resulting scalar serves as the ground‑truth label for CalibNet, so the network predicts a single 

image's SNR. 

 

4. EXPERIMENTAL RESULTS, ANALYSIS, AND DISCUSSIONS  

4.1 Dataset 

Two SEM datasets, namely the Biofilm SEM dataset [30] and the NFFA-EUROPE SEM dataset [31], were used to 

train, validate and test the CalibNet.  

The Biofilm SEM dataset is the first dataset captured from biofilms on indium tin oxide electrodes, stored in Tagged 

Image File (TIF) format. It consists of 67 images. The NFFA-EUROPE SEM dataset is the second dataset used in this 

paper. It consists of 961 biological SEM images stored in Joint Photographic Experts Group (JPG) format. The 

selection of these datasets ensures sufficient diversity in image characteristics, noise distribution, and sample type, 

enabling robust evaluation of CalibNet performance.  

Both datasets did not specify the SEM equipment models used for image acquisition. However, given the clarity and 

quality of the images provided, it can be assumed that they were captured under standard SEM operating conditions, 

which are suitable for typical research applications involving minimal imaging artefacts and moderate noise levels. 

Each image from both datasets was resized to 256 x 256 pixels to standardise the training, validation and testing 

processes and ensure they are grayscale. After that, each image was corrupted with Gaussian noise variance ranging 

from 0.001 to 0.01. Table 3 shows the number of images in each dataset before and after being corrupted with Gaussian 

noise. 

Table 3. Number of Images in Each Dataset Before and After Being Corrupted with Gaussian Noise 

Dataset Number of Images in Original 

Dataset 

Number of Images in Dataset 

After Corrupted with Gaussian 

noise variance 

Biofilm SEM dataset [30] 67 670 

NFFA-EUROPE SEM dataset [31] 961 9610 

 

The noise levels were selected to simulate realistic conditions in SEM imaging. Noise levels higher than 0.01 were 

not included because SEM images would become excessively corrupted and lose critical details. This makes the SEM 

images less realistic and impractical for SNR estimation. Each dataset was then split into three subsets, such as training, 

validation, and test set, with a ratio of 60:20:20 respectively. The seed used for randomisation in splitting the dataset 

is 42, so the splitting can be reproduced. Table 4 shows the number of images from each dataset in the training, 

validation, and test sets. 

Table 4. Number of Images from Each Dataset in the Train, Validation, and Test Sets 

Dataset Train Set Validation Set  Test Set 

Biofilm SEM dataset 404 134 134 

NFFA-EUROPE SEM 

dataset 

5766 1922 1922 

 

4.2 Model Setting 

The deep learning model and classical methods used for comparison were coded in Python. The deep learning model 

was developed using Pytorch. The training ran for 100 epochs at a learning rate of 0.001. The batch size is 32, and the 

grayscale image size is 256 x 256 pixels. The loss function used in this paper was the mean squared error (MSE) loss 

function, as it is commonly used in regression tasks. The optimiser chosen was Adaptive Moment Estimation with 
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decoupled weight decay (AdamW) with the weight decay set to 0.00001. The training was performed on an RTX2080 

Ti GPU with 11 GB of memory. 

 

4.3 Method Used for Comparison 

Five methods were used to compare with the CalibNet performances. These methods were chosen to show the 

effectiveness and robustness of CalibNet in estimating the SNR value. 

The Classical method is the conventional method that computes the SNR value shown in (2). The ACF method is an 

autocorrelation-based method that computes the SNR value, as shown in (4). The Nearest Neighbor (NN) ACF method 

is autocorrelation-based but takes the nearest point adjacent to lag zero. It uses (4) by replacing the ℎ (0, 𝑦) to compute 

the SNR ratio and the SNR value is calculated using (5).  

The first-order linear interpolation (FOLI) ACF method is also autocorrelation-based but differs from the NN ACF 

method. It estimates the peak value by combining the first two nearest points adjacent to the peak and replacing the 

ℎ (0, 𝑦) in (4) to compute the SNR ratio. After that, the SNR value is calculated using (5). The Quarsig ACF method 

is one of the recent autocorrelation-based methods. It uses a combination of quadratic and sigmoid functions to 

estimate the SNR ratio. The SNR value is computed using (5). 

 

4.4 Results and Discussions 

The performance of the proposed CalibNet was evaluated by comparing the five other methods (ACF, QSE, NN-ACF, 

LI-ACF, and baseline Classical SNR). Table 5 compares Classical SNR, CalibNet, and four conventional methods on 

selected test images in the Biofilm SEM dataset. The CalibNet predicted that the SNR value is nearest to the classical 

SNR, clearly outperforming all the methods. The QSR showed the worst estimation SNR because all the SNR values 

are negatives.  

 

Table 5. Comparison of Classical SNR, CalibNet, and Four Conventional Methods on Selected Test Images in 

Biofilm SEM Dataset 

No. Actual ACF SNR 

(dB) 

Classical SNR 

(dB) 

CalibNet 

(dB)(Proposed) 

QSE 

(dB) 

NN 

(dB) 

LI 

(dB) 

1 15.90 6.72 10.90 -26.91 8.21 23.55 

2 -0.67 11.63 12.80 -32.95 -5.81 -0.57 

3 -12.85 12.89 14.68 -31.36 -19.42 -17.33 

4 -5.15 12.54 13.47 -24.92 -8.91 -6.81 

5 4.80 16.87 11.96 -7.41 2.47 5.94 

6 -9.84 12.05 13.86 -25.78 -12.55 -8.81 

7 14.84 14.30 10.67 -25.75 0.07 11.03 

8 5.21 9.65 11.70 -26.25 -0.76 6.19 

9 -5.43 15.39 13.57 -21.37 -7.13 -3.97 

10 5.68 14.30 12.08 -42.30 -3.82 3.02 

 

Table 6 compares classical SNR, CalibNet, and four conventional methods on selected test images in the NFFA-

EUROPE SEM dataset. CalibNet shows its strength in estimating the SNR value closest to the classical SNR value, 

and it outperforms all the methods. The QSE again shows weakness in estimating SNR by getting a negative SNR 

value. This shows that QSE struggles under noise conditions. 
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Table 6. Comparison of Classical SNR, CalibNet, and Four Conventional Methods on Selected Test Images in 

NFFA-EUROPE SEM Dataset 

No. Actual ACF SNR (dB) Classical SNR (dB) CalibNet (Proposed) QSE (dB) NN (dB) LI (dB) 

1 -9.33 14.68 9.63 -27.67 -14.03 -8.58 

2 -38.39 5.93 8.86 -23.64 -23.38 -22.87 

3 -4.21 13.71 9.40 -29.34 -7.41 -4.02 

4 -18.31 9.41 9.12 -22.85 -16.28 -15.26 

5 -42.04 8.99 9.14 -31.27 -33.04 -32.41 

6 -20.39 10.75 9.24 -42.52 -23.95 -20.48 

7 14.74 11.85 9.86 -9.81 8.81 16.51 

8 -44.98 7.58 8.99 -28.59 -31.11 -30.16 

9 27.48 4.50 10.42 -0.73 18.25 29.36 

10 -6.95 6.07 9.48 -21.38 -9.20 -5.45 

 

Table 7 shows the quantitative metrics of all the methods in the Biofilm SEM dataset. CalibNet has the lowest MAE, 

RMSE, MAPE and the highest R² value among all the methods, showing that CalibNet has the most accurate and 

consistent SNR estimation. The QSE has the highest MAE, RMSE, MAPE and extremely low negative R² value. The 

results show that QSE performed the worst in estimating SNR value. 

Table 7. Quantitative Metrics of All the Methods in Biofilm SEM Dataset 

Method MAE RMSE MAPE (%) R² 

CalibNet 2.97 3.63 40.84 -0.03 

QSE 32.53 34.39 358.80 -92.74 

NN 23.90 26.80 278.68 -56.29 

LI 22.97 25.71 285.86 -51.22 

Actual ACF SNR  24.60 28.19 302.56 -60.98 

 

Table 8 shows the quantitative metrics of all the methods in the NFFA-EUROPE SEM dataset. CalibNet has the lowest 

MAE, RMSE, MAPE and the highest R² value among all the methods, showing that CalibNet has the most accurate 

and consistent SNR estimation. The QSE has the highest MAE, RMSE, MAPE and extremely low negative R² value. 

The results show that QSE performed the worst in estimating SNR value. 

Table 8. Quantitative Metrics of All the Methods in the NFFA-EUROPE SEM Dataset 

Method MAE RMSE MAPE (%) R² 

CalibNet 2.46 3.13 30.23 0.19 

QSE 36.40 38.16 321.76 -122.05 

NN 17.78 20.77 143.21 -34.89 

LI 15.34 18.41 131.86 -28.33 

Actual ACF SNR  14.54 17.37 125.51 -24.01 
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When comparing the performance of the CalibNet in two datasets, the second dataset showed improvement, with 

lower MAE (2.46 vs 2.97), RMSE (3.13 vs 3.63), and MAPE (30.23% vs. 40.84%), and a better R² value (0.19 vs. -

0.03). The QSE method performed worse on the second dataset, with much higher metrics errors and a significantly 

poorer R² (-122.05 vs. -92.74). This indicates that CalibNet is more stable and reliable when applied to different SEM 

datasets. 

Table 9 shows the results of paired t-tests comparing CalibNet to other conventional methods in the Biofilm SEM 

dataset. CalibNet achieved the lowest errors compared to all other methods with p<0.01. The QSE has the highest 

difference in performance compared to CalibNet. It has a mean difference of 29.42 dB lower error, followed by Actual 

ACF SNR (21.63 dB), NN (20.91 dB), and LI (19.99 dB). These results show that CalibNet estimates the SNR values 

more accurately. 

Table 9. The Results of Paired T-Tests Comparing CalibNet to Other Conventional Methods in Biofilm SEM 

Dataset 

Method CalibNet 

MAE 

Method 

MAE 

Mean 

Difference 

t-statistic p-value Significance N 

QSE 3.11 32.53 -29.42 -28.45 6.35924E-

55 

(p<0.01) 120 

NN 2.99 23.90 -20.91 -19.59 1.27967E-

40 

(p<0.01) 131 

LI 2.99 22.97 -19.99 -19.70 5.44274E-

41 

(p<0.01) 132 

Actual ACF 

SNR  

2.97 24.60 -21.63 -17.68 9.77543E-

37 

(p<0.01) 134 

 

Table 10 shows the results of paired t-tests comparing CalibNet to other conventional methods in the NFFA-EUROPE 

SEM dataset. 

CalibNet achieved the lowest errors compared to all other methods with p<0.01, the same as the Biofilm dataset. The 

QSE has the highest difference in performance compared to CalibNet, which is the same as the first dataset. It has a 

mean difference of 33.94 dB lower error, the worst among other methods. These results show that CalibNet estimates 

the SNR values more accurately. 

Table 10. The Results of Paired T-Tests Comparing CalibNet to Other Conventional Methods In the NFFA-

EUROPE SEM Dataset 

Method CalibNet 

MAE 

Method 

MAE 

Mean 

Difference 

t-statistic p-value Significance N 

QSE 2.46 36.40 -33.94 -121.70 0 (p<0.01) 1725 

NN 2.47 17.78 -15.31 -61.25 0 (p<0.01) 1904 

LI 2.46 15.34 -12.88 -53.86 0 (p<0.01) 1863 

Actual 

ACF SNR  

2.46 14.54 -12.08 -53.36 0 (p<0.01) 1922 

 

Based on the overall results, CalibNet demonstrated strong performances and outperformed all the other methods. 

These results suggest that the deep learning method can perform better than the classical methods by extracting the 

image features. The classical techniques and statistical analysis result confirms this performance in estimating SNR 

value. Deep learning addressed the gap between classical and deep learning by automatically calculating the SNR 

value. However, this study is limited to a moderate noise variance range (0.001 to 0.01), chosen to simulate realistic 

SEM conditions without compromising image integrity. 
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5. CONCLUSION  

In this paper, a deep learning model, CalibNet, was successfully developed for accurately estimating the SNR value 

in SEM images. CalibNet outperformed all the classical autocorrelation-based methods. It had the lowest MAE, RMSE, 

MAPE and highest R2. Moreover, the results also showed that the SNR value estimated by CalibNet is the closest to 

the classical SNR. Statistical analysis confirmed the performance improvement (p<0.001) compared to all classical 

methods. CalibNet can bring benefits with its high accuracy to real-world applications, including image quality 

assessment and quantitative analyses in biological and materials science fields. 

The paper still has room for improvement. Future work could explore other models, such as transformer-based 

architectures, attention mechanisms, or hybrid CNN-RNN models, to better address SNR estimation tasks. 

Additionally, the calibration map can be enhanced by applying advanced calibration techniques such as polynomial 

regression, non-linear regression, or machine-learning-based calibration to achieve more accurate SNR estimations. 

Furthermore, CalibNet could be extended for real-time applications, allowing immediate and practical estimation of 

SNR values for SEM images. 
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