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Abstract - Reliable lane detection is crucial to autonomous driving but continues to be challenging with varying lighting conditions. 

Fluctuations in illuminations due to bright sunlight, shadows or low lighting at night can degrade the visual quality and adversely 

affect the accuracy of the lane detection results. This research proposes an adaptive approach for lane detection under different 

lighting scenarios. For daytime, a Region of Interest (ROI) masking and line averaging technique help in the stability and visibility 

of the lane markings. For nighttime conditions, a Probabilistic Hough Transform-based method improves lane detection in low-

light environments. An evaluation tool has been developed to check if certain parameters correlate with day or night to enable 

dynamic selection of the most suitable detection technique. The proposed new method improves image preprocessing and combines 

several computer vision algorithms for accurate lane tracing. This new solution aids in shadow regions and faded marking areas, 

as well as improves precision for multi-lane roadways with varying lane widths. The approach adds accuracy for real-time lane 

recognition of autonomous vehicles on multi-lane highways with different degrees of illumination. This research also contributes 

toward the goal of improving safety and efficiency in autonomous driving by providing more effective methods of ensuring safe 

driving. 
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1. INTRODUCTION  

Lane detection refers to a major task of self-driving cars where the vehicle detects and follows road lane markings to 

drive safely [1], [2], [3]. The self-driving vehicle's ability to accurately follow lanes is impaired by the external 

environment in the form of frequent light changes that can sometimes make proper lane detection impossible [4], [5], 

[6]. This study develops a robust lane detection system that adapts both daytime and nighttime lane detection strategies 

to dynamically achieve reliable performance in changing illumination conditions. 

Recent advancements in lane detection have shown promise [7-10]. However, there are several limitations. For 

instance, [11] utilized hue, saturation, value (HSV) and grayscale spaces along with edge detection techniques. The 

method could detect the lane edges under normal circumstances, but it could not handle lanes that are severely 
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occluded or faded lane scenarios. [12] introduced a CNN-RNN hybrid architecture that effectively handled temporal 

features in video sequences. Nevertheless, it incurred high computational costs making real-time deployment 

challenging. [13] proposed LaneNet, a deep-learning-based framework with efficient lane edge and line detection 

stages, but it was susceptible to false positives from road markings such as arrows or characters. These methods 

highlight the trade-offs between accuracy, robustness, and efficiency. Motivated by these challenges, our work focuses 

on developing a lane detection algorithm that balances real-time capability and robustness to challenging conditions 

such as poor lighting and occlusion while remaining computationally efficient. 

Daytime lane detection is achieved through computer vision techniques, such as line averaging and ROI masking [14]. 

ROI masking provides the detection focus on the road area and filters out the noise from other areas as a background 

because they are considered irrelevant. The proposed method then implements edge detection and Hough Transform 

for the identification of lane lines. This is followed by line averaging for smoothening out detected lane edges and 

increasing stability. This approach provides robust lane detection under favourable lighting conditions. 

On the other hand, for nighttime, the study employs Probabilistic Hough Transform [15] with sliding window for lane 

detection at night when visibility is poor and traditional techniques are less successful. By adding a probabilistic model 

that gives detected lane lines confidence values, this method improves lane detection. This makes the method more 

robust against noise and partial occlusions. Besides, to improve lane line contrast prior to detection, visibility 

enhancement techniques like HSV filtering and gamma correction are used. 

To achieve stable lane following behaviour under various lighting conditions, the proposed method dynamically 

selects the appropriate method based on real-time brightness analysis. Under well-lit conditions, it prioritizes ROI 

masking and line averaging for precise lane identification. Conversely, when there is low light, the method choses the 

Probabilistic Hough Transform with improved preprocessing techniques. This one-size-fits-all method raises the 

precision of lane recognition to ensure uninterrupted operation even for weather changes. 

The proposed lane detection method is designed to operate effectively in both daytime and nighttime conditions. The 

proposed method utilizes adaptive strategies such as dynamic ROI masking and an adaptive day/night switch to 

enhance lane detection under varying lighting and challenging road conditions. By combining computer vision 

techniques with real-time adaptability, the method improves detection accuracy and stability [16]. The following 

sections detail the proposed architecture, experimental setup, and results, demonstrating the effectiveness of the 

proposed approach in real-world scenarios.  

 

1.1 Novelty and Contributions 

While our method is mainly built on top of computer vision techniques like ROI masking and Kalman filter, its novelty 

lies in the adaptive orchestration of the components in a real-time lane detection framework.  

• The dynamic ROI masking technique enables flexible adaption to different road geometries. 

• Kalman filter is repurposed for both smoothing and validating predictions. 

• A day/night adaptive switch improves the detection accuracy under varying lighting condition which 

is a gap inadequately addressed in the existing literature. 

 

 
2. LITERATURE REVIEW  

As presented by [11], their approach involved both the use of the HSV space to process the yellow lane lines and the 

utilization of the grayscale space in processing the white lane lines. This step improved the sensitivity in curvature-

LCS identifier, as well as in LCS as a concept itself. The method involved the application of Canny edge detection, 

inverse perspective transformation, and a sliding window polynomial fitting algorithm to achieve real-time lane 

detection functionality. Such algorithms are typical in CV and its subfield, and they were successfully integrated in 

this research to determine the lane's location. The authors tested the traffic conditions in real time, after which it was 

shown that their algorithm could detect the curves and lane lines in varying light conditions. Furthermore, the 

algorithm processed the lane line detection findings and calculated the deviation distance. 

[12] also came up with a scheme that considered the lane from a video sequence with consecutive images instead of 

just a single image. This method was created to accommodate heavy shades, bad marks, and vehicle obstructing during 
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traffic. This work came up with a hybrid architecture for deep learning consisting of a convolutional neural network 

(CNN) and recurrent neural network (RNN). In the first part, the information of each frame was transformed into CNN 

features by the CNN block, and the features learned from the continuous images along with the temporal space were 

related and sent into the RNN block for RNN feature training and lane identification. Extensive experimental 

evaluations using two datasets - one of the large scales and the other rather difficult - showed that the proposed method 

significantly outperformed the competing methods in terms of lane detection and were the best for situations that are 

difficult to handle. Lastly, the study established a new way to identify and locate vehicle lanes from driving onto the 

continuous scenes using neural networks. The proposed method illustrated the applicability of deep learning 

techniques in identifying lane areas in complex environment.  

The LaneNet framework proposed by [13] employed a deep neural network strategy that divided lane detection into 

two key stages: lane edge proposal and lane line detection. Initially, lane edge proposition network was used, and it 

was used to provide detailed lane edge categorization at the pixel level. Following the first stage, the lane line 

identification network during the second stage exploited these propositions to be generated by the lane edge network 

to identify lane lines. The main task of LaneNet was concentrated on finding just lines of the lanes. Because of that, 

it was easy to generate false positives by similar markings, such as arrows or characters on the road. However, these 

difficulties are accounted for by the authors who showcased the effectiveness of their lane detection approach for both 

highway and urban driving via the use of precise image processing techniques that did not rely on defined number of 

lanes or lane configurations. The advantages of the LaneNet were operating speed and efficient computational 

requirements, making it feasible to be deployed inside a vehicle- based system. Experimental results showed LaneNet 

as a reliable and efficient solution for recognizing traffic lanes across different real situations.  

A method coined as Vision-based Intelligent Lane Departure Warning System (VILDS) for Autonomous Vehicles 

was introduced by [17] to tackle issues like varying brightness, blur and occlusion in different locations. The 

Generative Adversarial Networks (GAN) of the VILDS exploited the most subtle features to create images that are 

perfect copies of the original but with better sharpness. The method incorporated Long Short-Term Memory (LSTM) 

to understand normal activities that occurred in the samples to forecast lanes live and considered processed images 

effectively, predicting the incomplete lanes and minimizing the traffic error. Also, the authors proposed an approach 

to boost the sensitivity of the prosed method by detecting the direction and angle of the deviation to find out when the 

AV was about to go over a lane. The overall assessment of the designed VILDS system showed that the lane detection 

sub-system and the lane departure warning sub-system could operate successfully with an accuracy of 98.2% and 96.5% 

respectively.  

[18] offered a reliable method of camera (image)-based lane perception. The authors suggested a distinctive system 

that both traction filtering and detection mechanism possessed. The tracking filter was used to select a ROI for the 

tracing of lane segments at different distances. For each successful motion-detection, the information concerning lane 

position would be immediately stored and later used to update the lane geometry. The strategy aimed to optimize lane 

recognition and curve detection by introducing road labels and detection algorithm. The paper focused on lanes 

prediction accuracy as well as its accuracy under different conditions. The authors effectively implemented lane 

detection through Unet and Segnet models. The Tusimple data was used to confirm the accurate results. The Unet 

implementation showed that the Unet model gave better results compared to the Segnet model. A comparison among 

the methods is presented in Table 1.  

 

3. PROPOSED SOLUTION 

 

3.1 Overview 

This study proposes an adaptive lane detection system that combines methods of automatic mode for both daytime 

and nighttime conditions. For the extended daytime period, we employ ROI masking and line averaging to boost lane 

visibility and, as a result, accuracy of detection. During the night, the system uses the Probabilistic Hough Transform 

combined with the gamma correction and HSV filtering to improve the contrast of lane lines in case of low illumination 

conditions. The switching between the two methods, made possible using a dynamic selection system, is based on 

real-time analysis of brightness, which ensures smooth insulation. Additionally, the Kalman filtering is also 

implemented in lane tracking for lane maintaining, abrupt occlusion compensation. In Figure 1, the block diagram 

shows the architecture of the method suggested. 
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Table 1. A comparison of existing methods 

Study Method Real-Time 

Capability 

Handling of Challenging 

Conditions 

Accuracy 

[11] HSV (yellow), Grayscale 

(white), Canny, IPM, Sliding 

Window 

Yes Handles curves and varied 

lighting 

93% 

[12] CNN + RNN for sequential 

video-based detection 

Moderate Robust under occlusion, 

blur, and heavy shade 

96.4% 

[13] Lane Edge Proposal + Lane 

Line Detection via CNN 

Yes Highway, urban roads; 

issues with false positives 

95.1% 

[17] GAN (image enhancement) + 

LSTM (prediction) 

Yes Blur, occlusion, brightness 

variations 

98.2% 

[18] ROI Tracking + Motion 

Filtering + U-Net / SegNet 

Moderate Lane prediction under 

varying distances 

U-Net: ~94%, 

SegNet: ~91% 

  

 

Figure 1. Block Diagram of the Proposed System 

 

3.2 Lane Detection and Tracking during the Day 

3.2.1 Day Time Lane Detection with ROI Masking and Line Averaging 

Image preprocessing is the very first decisive step in lane detection, which guarantees high accuracy of the data 

collected. Starting from the image input, it is converted into grayscale and simplified, which lowers the computational 

burden. Gaussian filter is then utilized to attenuate noise and is further used to smooth the image. Following that, the 

ROI mask is applied to isolate the area where possibly the lane lines reside. Lane lines are identified after preprocessing 

by a Canny edge detector, with the subsequent application of the Hough Transform. To enhance the precision, this 

study adds Lane Line Averaging by which processed lanes' line outputs are averaged to provide uniform and 

adequately defined lane edges. 
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A)  Colour-Based Lane Line Filtering 

The colour selection process [19] includes filtering the image to obtain only the white and yellow colours, which are 

the typical colours for lane lines. This process is implemented using the HLS colour space [20]. The conversion from 

RGB to HLS is performed using: 

 

𝐻, 𝐿, 𝑆 =

{
 
 

 
 𝐻 = 60°  ×  

(𝐺′−𝐵′)

𝐶
+ 0°, if max =  𝑅′

𝐻 = 60°  ×  
(𝐵′−𝑅′)

𝐶
+ 120°, if max = 𝐺′

𝐻 = 60°  ×  
(𝑅′−𝐺′)

𝐶
+ 240°, if max = 𝐵′

𝐻 = 0, if 𝐶 = 0

                                                                                      (1) 

𝐿 =  
max(𝑅′,𝐺′,𝐵′)+(𝑅′,𝐺′,𝐵′)

2
                                                                                                                                      (2) 

𝑆 =  {
0,              if 𝐶 = 0
𝐶

1−|2𝐿−1|
,      otherwise

                                                                                                                            (3) 

where:  

𝑅′ = 
𝑅

255
, 𝐺′ = 

𝐺

255
, 𝐵′ =  

𝐵

255
, and 𝐶 = max (𝑅′, 𝐺′, 𝐵′) – min (𝑅′, 𝐺′, 𝐵′).  

 

After colour selection, the image is converted to grayscale to simplify the image. Gaussian blur is further applied to 

reduce noise and smooth the image. Figure 2, Figure 3 and Figure 4 illustrate the results after applying colour selection, 

grayscale conversion and Gaussian blur, respectively.  

 

Figure 2. Colour Selection 

 

B) ROI Masking 

Masking by ROI is a precautionary method in lane detection to filter out the areas of an image where the lane lines 

are not likely to be found. Such a process, therefore, decreases noise arising from ignored background elements, such 

as other vehicles, trees, or buildings. The attention to this factor has encouraged the enhancement of lane detection 

accuracy. 
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Figure 3. Grayscale Conversion 

 

 

Figure 4. Gaussian Blur Applied 

 

The ROI is specified as a polygon area, which is usually covering the facility surface while filtering the sky and other 

unneeded zones. The choice of this precise polygon is based on the angle at which the camera captures the lane 

markings, making sure that only the lane lines are included in the polygon and no other objects. First, a blank matrix, 

𝑀(𝑥, 𝑦), of the same dimensions as the input image is created, initialized with zeros (black pixels). The polygon 

defining the ROI is then filled with white pixels (value 255), indicating the area of interest, 

𝑀(𝑥, 𝑦) = {
255,      if (𝑥, 𝑦) ∈ polygon defined by vertices

  0 ,           otherwise                                                          
                                                                           (4)  

 

The original image, 𝐼(𝑥, 𝑦), is then element-wise multiplied with the mask to ensure that only the defined ROI is 

retained, while the rest of the image is set to black, 
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𝐼𝑚𝑎𝑠𝑘𝑒𝑑(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) ∙ 𝑀(𝑥, 𝑦)                                                                                                    (5) 

 

Figure 5 illustrates the results of images after applying the ROI mask. The results show that unnecessary regions are 

removed while leaving only the relevant road area for further processing. 

 

Figure 5. ROI Results 

 

C)   Lane Line Averaging  

Lane line detection begins with edge detection using the Canny edge detector. It highlights edges in an image by 

analysing gradient magnitudes and directions. The binary edge map is given by: 

 

𝐼𝑒𝑑𝑔𝑒𝑠 = {

1,                                                              𝑖𝑓 ∇𝐼𝑚𝑎𝑠𝑘𝑒𝑑 > ℎ𝑖𝑔ℎ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0,                                                                𝑖𝑓 ∇𝐼𝑚𝑎𝑠𝑘𝑒𝑑 < 𝑙𝑜𝑤 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑤𝑒𝑎𝑘 𝑒𝑑𝑔𝑒,        𝑖𝑓 𝑙𝑜𝑤 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤  ∇𝐼𝑚𝑎𝑠𝑘𝑒𝑑  ≤ ℎ𝑖𝑔ℎ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
                                                    (6) 

 

where 𝐼𝑒𝑑𝑔𝑒𝑠 represents the binary edge map, and the gradient magnitude ∇𝐼𝑚𝑎𝑠𝑘𝑒𝑑 is computed as: 

 

∇𝐼𝑚𝑎𝑠𝑘𝑒𝑑 = √(
𝜕𝐼𝑚𝑎𝑠𝑘𝑒𝑑

𝜕𝑥
)
2

+ (
𝜕𝐼𝑚𝑎𝑠𝑘𝑒𝑑

𝜕𝑦
)
2

                                                                                                              (7) 

 

Once the edges are detected, Hough Transform is applied to detect lane lines. This method transforms edge points into 

a parameter space to identify straight-line segments. The equation of a line in Hough space is given by, 

𝜌 = 𝑥cos𝜃 + 𝑦sin𝜃                                                                                                                                                    (8) 

where 𝜌 represents the perpendicular distance from the origin to the line, and 𝜃 is the angle between the x-axis and the 

perpendicular to the line. This transformation can detect straight lane lines even in the presence of noise or partial 

occlusions. 
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After detecting multiple line segments using the Hough Transform, Lane Line Averaging is applied to refine the final 

lane lines. The detected lane segments are averaged to obtain stable lane boundaries. The final lane lines are 

determined by calculating the average slope and intercept of the detected segments, 

𝑠𝑙𝑜𝑝𝑒 =  
𝑦2−𝑦1

𝑥2−𝑥1
                                                                                                                                                            (9) 

𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =  𝑦1 − 𝑠𝑙𝑜𝑝𝑒 . 𝑥1                                                                                                                                    (10) 

This process results in final lane lines which are smooth and continuous (refer Figure 6). The proposed method 

improves the accuracy and robustness of the lane detection system, particularly on curved roads or in varying lighting 

conditions. 

 

 

Figure 6. Edge detection 

3.2.2 Lane Tracking during the Day 

Daytime lane tracking relies on the detected lane lines. Lane lines are tracked continuously from frame to frame to 

ensure consistency and accuracy. By monitoring the detected lane lines within nearby frames, the method tracks a 

constant lane position so that the vehicle can stay on its designated path with the least amount of swaying and risk of 

collision. Some sample lane lines detected during the day are illustrated in Figure 7.  

 

3.3 Lane Detection and Tracking at Night 

3.3.1 Night Lane Detection with Probabilistic Hough Transform 

Night lane detection is one of the important components in the proposed system. It incorporates a series of steps to 

enhance visibility and extract lane features effectively. These steps include gamma correction, HSV filtering, 

Probabilistic Hough Line Transform, lane boundary identification and line scaling. 

Unlike the standard Hough Transform, Probabilistic Hough Transform (PHT) assigns a probability to each detected 

line. The transformation process accumulates votes for possible line parameters in a discretized Hough space, 

𝐻(𝜌, 𝜃) = ∑ 𝐼𝑒𝑑𝑔𝑒𝑠(𝑥, 𝑦)                                                                                                                                         (11) 

where 𝐻(𝜌, 𝜃) stores the count of edge points supporting each line parameter. A predefined threshold determines the 

minimum number of votes required for a line to be considered valid. 
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Figure 7. Detected Lane Lines during the Day 

 

A)  Lane Boundary Detection 

Lane boundaries are identified by selecting the two closest lines to the frame centre. The system calculates the 

orientation of each detected line relative to the horizon and filters out unwanted lines. The angle, 𝜃, of each line is 

computed using the inverse tangent function, 

𝜃 = |𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦2−𝑦1

𝑥2−𝑥1
)|                                                                                                                                               (12) 

where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are the endpoints of a detected line. The absolute value ensures positive angle values. The 

horizontal distance d of each detected line from centre, 𝑥𝑐, is calculated as, 

𝑑 = |𝑥𝑚 − 𝑥𝑐|                                                                                                                                                           (13) 

where 𝑥𝑚 represents the line’s midpoint: 

𝑥𝑚 =
𝑥1−𝑥2

2
                                                                                                                                                                (14) 

The detected lane lines are scaled and adjusted to align with the road horizon using the following slope-intercept 

equations: 

𝑚 = 
y2−y1

x2−x1
                                                                                                                                                                  (15) 

𝑐 = 𝑦1 −𝑚𝑥1                                                                                                                                                             (16) 

𝑏𝑎𝑠𝑒𝑐𝑟𝑜𝑠𝑠 = −
𝑐

𝑚
                                                                                                                                                         (17) 

To focus on relevant areas of the image, a masking process is applied by defining a polygon covering the region where 

lane lines are expected. A blank matrix is created, and the selected polygon is filled with white to isolate the lane 

detection area. 

To enhance visibility under low-light conditions, gamma correction is applied. The gamma value is dynamically 

adjusted based on the average brightness of the frame: 

𝛾 =  
−0.3

log10(𝑌average+∈)
                                                                                                                                                   (18) 

𝛾 = 0.7 − 𝛾  
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where 𝑌average  represents the mean brightness level of the frame. Besides, HSV filtering is used to extract lane 

markings by filtering yellow and white pixels: 

𝐻𝑆𝑉 = 𝑓𝑐𝑜𝑛𝑣𝑒𝑟𝑡(𝐼𝑅𝐺𝐵)                                                                                                                                                (19) 

𝑚𝑎𝑠𝑘𝑦𝑒𝑙𝑙𝑜𝑤 = {
1,       𝑖𝑓 𝑚𝑖𝑛 _𝑣𝑎𝑙𝑦 ≤ 𝐻𝑆𝑉 ≤ 𝑚𝑎𝑥_𝑣𝑎𝑙𝑦
0,                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                       (20) 

𝑚𝑎𝑠𝑘𝑤ℎ𝑖𝑡𝑒 = {
1,       𝑖𝑓 𝑚𝑖𝑛 _𝑣𝑎𝑙𝑦 ≤ 𝐻𝑆𝑉 ≤ 𝑚𝑎𝑥_𝑣𝑎𝑙𝑦
0,                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                          (21) 

𝑚𝑎𝑠𝑘 = 𝑚𝑎𝑠𝑘𝑦𝑒𝑙𝑙𝑜𝑤 ∨ 𝑚𝑎𝑠𝑘𝑤ℎ𝑖𝑡𝑒                                                                                                                             (22) 

𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝐼𝑅𝐺𝐵 ⋅ 𝑚𝑎𝑠𝑘                                                                                                                                               (23) 

 

B)  Inverse Perspective Mapping (IPM) 

To provide a bird’s-eye view of the road, IPM is performed. The transformation involves mapping ROI points from 

the original image to a new perspective: 

𝑃𝑠𝑟𝑐 = [
𝑥1 𝑥2 𝑥3 𝑥4
𝑦1 𝑦2 𝑦3 𝑦4

]                                                                                                                                          (24) 

𝑃𝑑𝑠𝑡 = [
0 𝑤 − 1 𝑤 − 1 0
0 0 ℎ − 1 ℎ − 1

]                                                                                                                         (25) 

where w and h represent the width and height of the output image. The homography matrix H maps points from the 

source plane to the destination plane. 

𝐻 = arg𝑚𝑖𝑛 ∑ ‖𝑃𝑑𝑠𝑡
(𝑖)
− 𝐻 𝑃𝑠𝑟𝑐

(𝑖)
‖
2

4
𝑖=1                                                                                                                            (26) 

𝑠 [
𝑥′

𝑦′

1

] = 𝐻 [
𝑥
𝑦
1
]                                                                                                                                                            (27)                 

where s is a scaling factor, and (𝑥′, 𝑦′) are the transformed coordinates. The final inverse perspective-mapped image 

is obtained as: 

𝐼𝐼𝑃𝑀(𝑥
′, 𝑦′) = 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝐻

−1(𝑥′, 𝑦′, 1)𝑇)                                                                                                            (28) 

 

3.3.2 Lane Tracking at Night 

At night, lane tracking is performed using Kalman filter which predicts lane positions and corrects them based on new 

measurements. This ensures smooth and accurate tracking even in low-light conditions. The Kalman filter is initialized 

with the state size, measurement size, and transition matrices. The state vector includes lane line positions and 

velocities: 

𝑋𝑘 = [

𝑥
𝑦
𝑥̇
𝑦̇

]                                                                                                                                                                   (29) 

The state transition matrix model’s lane movement is given by: 

𝐹 =  [

1 0 ∆𝑡
0 1 0
0 0 1

    
0
∆𝑡
0

0  0     0  1

]                                                                                                                                               (30) 

where Δ𝑡 is the time step. The measurement matrix maps the predicted state to the observed lane line positions: 
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𝐻 =  [
1 0 0
0 1 0

    
0
0
]                                                                                                                                                   (31) 

The Kalman Gain is computed to weigh new measurements: 

𝐾𝑘 = 𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝑅𝑘)
−1                                                                                                                                   (32) 

where 𝑃𝑘 is the error covariance matrix, and 𝑅𝑘 represents measurement noise covariance. The state is updated as 

follows: 

𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘𝑥𝑘

−)                                                                                                                                        (33) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
−                                                                                                                                                   (34) 

The predicted state and covariance matrices are updated as, 

𝑥𝑘
− = 𝐹𝑘𝑥𝑘−1                                                                                                                              (35)                                                                                                                                

𝑃𝑘
− = 𝐹𝑘𝑃𝑘−1𝐹𝑘

𝑇 + 𝑄𝑘                                                                                                                                                (36) 

where 𝑄𝑘 is the process noise covariance matrix. By integrating Probabilistic Hough Transform with Kalman filtering, 

the system ensures accurate lane detection and tracking, even in challenging nighttime conditions. 

 

3.4 Adaptive Lane Detection and Tracking for Day and Night Conditions  

The proposed lane detection system dynamically selects the appropriate method for lane detection and tracking based 

on the lighting conditions. The proposed method first determines whether the scene is during the day or night by 

calculating the average brightness of a frame and comparing it to a predefined threshold. The image is converted to 

grayscale, and the mean intensity is computed as follows, 

𝐵 =
1

𝑀 ×𝑁
∑ ∑ 𝐼𝑔𝑟𝑎𝑦(𝑖, 𝑗)

𝑁
𝑗=1

𝑀
𝑖=1                                                                                                                                    (37) 

where B is the average brightness, 𝐼𝑔𝑟𝑎𝑦(𝑖, 𝑗) is the pixel intensity at position (𝑖, 𝑗) in the grayscale image, and M and 

N are the image dimensions. A threshold T is used to classify the scene, 

𝐷 = {
1,            𝑖𝑓 𝐵 > 𝑇(𝐷𝑎𝑦𝑡𝑖𝑚𝑒)  
0,          𝑖𝑓 𝐵 ≤ 𝑇(𝑁𝑖𝑔ℎ𝑡𝑡𝑖𝑚𝑒)

                                                                                                                         (38) 

where D = 1 indicates daytime, D = 0 indicates nighttime, and T = 50 is the predefined threshold value. If daytime is 

detected, the method applies daytime lane detection, which includes ROI masking and line averaging to enhance lane 

visibility. If nighttime is detected, the method uses night lane detection which incorporates Probabilistic Hough 

Transform with Kalman filter for improved lane estimation in low-light conditions.  

In the proposed method, the transition between daytime and nighttime modes is determined by the average pixel 

brightness of the frame. We plan to investigate further ways to handle extreme lighting transitions, such as tunnels or 

areas with frequent lighting changes, in future work. 

 

 

4. EXPERIMENTAL RESULTS 

4.1 Dataset 

In making the evaluation of the new system, a video dataset was created, and a collection of videos with different 

driving conditions was assembled. The dataset comprises assorted factors, including lighting conditions (day and 

night), road types (straight as well as curved), and traffic density. This variability allows every aspect of the lane 

detection system, and under different conditions, its reliability can be confirmed. 
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Algorithm 1: Pseudocode for Adaptive Lane Detection and Tracking for Day and Night Conditions 

BEGIN Lane_Detection_System 
    FUNCTION determine_lighting(frame): 
        gray_frame = convert_to_grayscale(frame) 
        brightness = compute_average_brightness(gray_frame) 
        IF brightness > DAYTIME_THRESHOLD: 
            RETURN "day" 
        ELSE: 
            RETURN "night" 
 
    FUNCTION compute_additional_measurements(frame): 
        gamma_corrected = apply_gamma_correction(frame) 
        hsv_filtered = apply_HSV_filtering(gamma_corrected) 
        lane_edges = detect_edges(hsv_filtered) 
        lane_lines = apply_Hough_Transform(lane_edges) 
        lane_boundaries = detect_lane_boundaries(lane_lines) 
        scaled_lines = scale_lines_to_horizon(lane_boundaries) 
        masked_frame = apply_region_of_interest(scaled_lines) 
        RETURN masked_frame, lane_lines 
 
    FUNCTION choose_detection_method(frame): 
        lighting_condition = determine_lighting(frame) 
        masked_frame, lane_lines = compute_additional_measurements(frame) 
 
        IF lighting_condition == "day": 
            confidence = evaluate_CV_method(masked_frame, lane_lines) 
            IF confidence is HIGH: 
                RETURN "computer_vision" 
            ELSE: 
                RETURN "kalman_filter" 
  
  ELSE:  // Nighttime 
            confidence = evaluate_Kalman_Filter(masked_frame, lane_lines) 
            IF confidence is HIGH: 
                RETURN "kalman_filter" 
            ELSE: 
                RETURN "computer_vision" 
 
    FUNCTION detect_lanes(frame, method): 
        IF method == "computer_vision": 
            grayscale = convert_to_grayscale(frame) 
            blurred = apply_gaussian_blur(grayscale) 
            edges = apply_canny_edge_detection(blurred) 
            lines = apply_Hough_Transform(edges) 
            averaged_lines = average_lane_lines(lines) 
            final_lanes = draw_lane_lines(frame, averaged_lines) 
            RETURN final_lanes 
 
        ELSE IF method == "kalman_filter": 
            initialize_Kalman_Filter() 
            predicted_state = Kalman_Predict() 
            updated_state = Kalman_Update(predicted_state, frame) 
            final_lanes = draw_lane_lines(frame, updated_state) 
            RETURN final_lanes 
 
    FUNCTION process_video(video): 
        FOR each frame in video: 
            detection_method = choose_detection_method(frame) 
            lane_lines = detect_lanes(frame, detection_method) 
            display_lane_lines(frame, lane_lines) 
END Lane_Detection_System 

 

 

The dataset comprises ten videos (with a total of 36,000 frames) collected from publicly available platforms, such as 

the Udacity Self Driving Car Dataset, coupled with different video clips from various online initiatives and 

Shutterstock for additional differentiation. The front camera of the car filmed driving videos. To enhance the reliability 



Journal of Informatics and Web Engineering                 Vol. 4 No. 3 (October 2025) 

348 
 

of the evaluation, the videos were collected from separate sources, and they were shot at times when the day was busy 

or quiet. 

To facilitate effective evaluation, each video in the dataset was annotated frame by frame. The annotations include 

metadata regarding the lighting condition (e.g., daytime, nighttime, low light), road type (e.g., straight, curved), and 

traffic density (e.g., high, medium, low). These contextual tags allow the evaluation of lane detection performance 

under various conditions. While annotations are not pixel-level ground truth, they may be used to systematically label 

environment factors and support qualitative and quantitative performance analysis. 

 

4.2 Evaluation Metrics 

The performance metrics used for lane detection include consistency, distance, slope, and detection of both lines.  

• Consistency - Evaluates the stability of lane detection across consecutive frames. It is computed as, 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝑓𝑟𝑎𝑚𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠
                                                                                                               (39) 

• Distance  Measures the accuracy of detected lane positions by calculating the distance between the detected lane 

lines, 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2                                                                                                                   (40) 

• Slope -  Assesses the correctness of lane angle detection by computing the slope of detected lane lines, 

𝑆𝑙𝑜𝑝𝑒 =  
𝑦2−𝑦1

𝑥2−𝑥1
                                                                                                                                                            (41) 

• Detection of Both Lines - Evaluates whether both lane lines are consistently detected, 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐵𝑜𝑡ℎ 𝐿𝑖𝑛𝑒𝑠 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑏𝑜𝑡ℎ 𝑙𝑖𝑛𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠
                                                                       (42) 

Table 2 lists the important symbols, parameters, and notations used in the manuscript. 

 

Table 2. A summary of symbols and notations 

Symbol/Parameter Description Unit 

𝒙𝟏, 𝒚𝟏 Coordinates of the first point on the detected lane line Pixels 

𝒙𝟐, 𝒚𝟐 Coordinates of the second point on the detected lane line Pixels 

Consistency Stability of detected lane lines across consecutive frames. Ratio 

Distance Euclidean distance between detected left and right lane 

lines. 

Pixels 

Slope Slope of the detected lane lines. Gradient 

Detection of lines Checks if both the left and right lane lines are detected. Ratio 

N Total number of frames evaluated Count 

ROI ROI used for masking irrelevant parts of the image - 

FPS Frames Per Second – processing speed of the algorithm Frames/Second 
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4.3 Assessment of Lane Detection Methods 

The numerical results for the evaluation metrics used to assess the performance of the lane detection methods are 

presented in Table 3. The results are averaged across multiple videos to provide a comprehensive evaluation. 

Table 3. Performance of Lane Detection Methods 

Metric Day Time Lane Detection 

with ROI Masking and Line 

Averaging 

Night Lane Detection with 

Probabilistic Hough 

Transform 

Consistency 1.72 0.62 

Distance 271.64 298.64 

Slope 0.82 0.61 

Detection of Lines 0.81 0.62 

 

The consistency metric evaluates the stability of the identified lane lines across back-to-back frames of video. On the 

average, the nighttime lanes detection system gives a consistency score of 0.62 across the paths, while the daytime 

lanes detection system records a score of 1.72 along the loops. This indicates that the daytime system is a more 

consistent method of lane formation over the course of time. 

The metric of distance investigates both the median distance between respective left and right lanes. The night lane 

detection technique shows an average distance between lanes of 298.64 pixels, while the daytime method gives us 

271.64 pixels apart. Thus, we find that rather than the nighttime lanes being closely spaced, it is the daytime lanes that 

are spaced closely together. 

The slope metric is to determine the angle detection of lanes. The night slope coefficient is 0.61, in the same way that 

the daytime Coefficient is 0.82. This means that the daytime method records lanes which are slightly steeper in slope. 

The capacity of the system to detect the lane borders of left and right simultaneously via both lane lines is assessed 

through the detection of them. The daylight approach thus has a higher detection rate of 0.81, and the nighttime lane 

detection method is at 0.62. This indicates that both lane lines may be reliably detected using the daytime lane detection 

approach. 

 

4.4 Comparison with Baseline Approaches 

A comparative analysis between the proposed method under both day and nighttime conditions is presented in Table 

4. The proposed method consistently outperforms the baselines across all metrics.  

Table 4. Comparison with baseline approaches 

Method Scenario Consistency Distance Slope Detection of 

Lines 

Proposed Method Day-Straight 1.72 271.64 0.82 0.81 

Hough + Static ROI Day-Straight 1.20 285.30 0.65 0.70 

Canny + Line Fit Day-Straight 0.90 310.12 0.60 0.60 

Proposed Method Night-Curved 0.62 298.64 0.61 0.62 

Hough + Static ROI Night-Curved 0.40 320.00 0.55 0.50 

Canny + Line Fit Night-Curved 0.35 345.50 0.48 0.40 
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In the daytime-straight road scenario, it achieves the highest consistency score. It also records a lower average distance 

between detected lanes compared to the baselines. Besides, the proposed method shows a better slope estimation and 

a higher detection rate of both lane lines. In the more challenging night-curved road scenario, although all methods 

experience performance degradation due to poor lighting and road geometry, the proposed method still demonstrates 

promising results. 

 

4.5 Visualization of Daytime Detection and Tracking Results 

The proposed lane detection method was evaluated on videos captured during the daytime under various driving 

conditions. It was tested on both straight and curved roads, as well as under different lighting conditions. Figure 8 

presents tracking results on a straight road with white lane lines, while Figure 9 illustrates tracking results on a straight 

road with yellow lane lines. The lane detection system accurately identified the lane lines in both scenarios. This aligns 

with the performance metrics which indicate high consistency and reasonable lane distance. 

Besides, the method effectively detected lane lines on a curved road with shadows as shown in Figure 10. The 

performance metrics for this scenario also exhibited high consistency that validates the robustness of the daytime lane 

detection approach.    

 

 

 

 
Figure 8. Tracking Results on a Straight Road Containing White Lane Lines during the Daytime 

 

Figure 9. Lane Line Detection Results on a Straight Road Containing Yellow Lines during the Day 
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Figure 10. Tracking Results on a Curved Road with Shadows during the Daytime 

 

4.6 Visualization of Nighttime Detection and Tracking Results 

The lane detection method was also tested on videos captured at night. Figure 11 presents the detection results on a 

curved road at night. We observe that the proposed method successfully tracked both lane lines. Although the 

evaluation metrics were less favourable due to extremely dark lighting, the video results confirm successful lane 

detection using the proposed method.  

Besides, the system effectively detected lane lines in a low-traffic nighttime scenario as shown in Figure 12. The 

performance results indicate accurate lane detection and tracking of both lines using the nighttime lane detection 

method. Despite the evaluation metrics not reflecting success due to poor lighting, the video results validate the 

system's effectiveness.  

Besides, the system performed well on a road with moderate traffic at night as illustrated in Figure 13. The 

performance metrics demonstrate high consistency, reasonable distance, valid slope, and successful detection of both 

lane lines, confirming the reliability of the nighttime detection method. Lastly, Figure 14 showcases the system’s 

ability to detect lane lines in extremely low-light conditions where the proposed nighttime detection method alone 

achieved accurate lane detection and tracking of both lines.  

 

4.7 Discussions 

While the proposed system performs well for most of the challenging conditions, several limitations have been 

encountered. First, when large vehicles or shadows occlude a significant portion of lane lines, the Hough Transform 

may detect false positives or miss one line entirely. Besides, in some real-world cases with faded lane markings, the 

system cannot maintain consistency over successive frames. These limitations suggest the need for integrating deep 

learning-based semantic segmentation in the future work. 

Regarding computational performance, the current system has a processing speed of 30 frames per second (fps) when 

executed on a standard desktop environment equipped with an Intel Core i7-9700K Central Processing Unit (CPU) @ 

3.6 GHz and 16 GB RAM. This frame rate is adequate for real-time applications in simulation or PC-based 

environments. However, deploying this solution in embedded or automotive-grade hardware may require further 

optimization due to limited processing power and energy constraints. In future work, we plan to explore algorithm 

optimization techniques, such as model compression for real-time implementation.  
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Figure 11. Detection Results on Lane Lines on a Curved Road during the Night 

 

Figure 12. Detection Results of Lane Lines in a Low Traffic Condition during the Night 

 

Figure 13. Detection Results of Lane Lines on a Road with Some Traffic Condition during the Night 
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Figure 14. Detection Results of Lane Lines with Extreme Low Lighting 

 

5. CONCLUSION  

The proposed lane detection approach was experimented with videos captured under various driving conditions and 

with various performance metrics to evaluate the effectiveness of the system. Daytime lane detection algorithm 

performed well during daytime. Night-time lane detection algorithm had improved consistency, distance accuracy, 

slope stability, and detection of both lane lines, particularly in low-light conditions. The study comes up with an 

adaptive evaluation approach to select optimally the most appropriate detection method according to illumination 

conditions to better the overall system adaptability. The proposed lane detection method can potentially contribute to 

improving the safety of roads in autonomous vehicles. Future research will be directed towards the integration of state-

of-the-art machine learning approaches such as deep learning models for even greater accuracy and robustness. 
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