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Abstract - Maintaining a balanced diet is essential for overall well-being, yet many individuals face challenges in meal planning 

due to time constraints, limited nutritional knowledge, and difficulty aligning meals with personal dietary needs. Traditional meal 

recommender systems often rely on predefined plans or collaborative filtering techniques, limiting their adaptability and 

personalization. This study presents a generative AI-based Meal Recommender System utilizing Variational Autoencoders (VAEs) 

to generate personalized and nutritionally balanced meal plans. The system processes user inputs, such as dietary preferences, 

nutritional goals, and ingredient availability, to provide tailored recommendations. VAEs effectively uncover hidden dietary 

patterns and nutritional relationships within complex data, facilitating relevant and personalized meal suggestions. The system is 

trained and evaluated using two integrated datasets: one containing detailed nutritional information for complete meal plans, 

including attributes such as calories, protein, fats, carbohydrates, and sodium, and another listing individual dishes along with their 

names and user ratings. The meal plan dataset connects multiple dishes into structured daily meal schedules, while the dish dataset 

provides popularity and quality insights through user feedback. Together, these datasets enable the generation of personalized and 

nutritionally optimized meal recommendations. Experimental evaluation indicates strong ranking performance with a Normalized 

Discounted Cumulative Gain (NDCG) score of 0.963. However, Root Mean Square Error (RMSE), Mean Squared Error (MSE), 

and Mean Absolute Error (MAE) scores of 47.77, 2282.32, and 36.28, respectively, highlight potential areas for improving 

nutritional accuracy. A practical comparison with existing meal recommendation applications demonstrates the VAE model’s 

advantages in terms of personalization, nutritional fine-tuning, and recommendation diversity. The research contributes to AI-

driven nutrition planning, healthcare, and fitness, offering a scalable and intelligent solution for personalized dietary 

recommendations. 
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1. INTRODUCTION 

On this day and age, people are taking care of their health and lifestyle. As people learn more about a healthy lifestyle, 

they try to keep away from junk food and exercise regularly. Although these are key moves toward better health, they 
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are not enough on their own. A key factor in maintaining good health is nutrition, which will essentially determine his 

physical, mental and emotional health. A healthy diet can help you maintain a healthy weight and reduce the risks of 

chronic diseases such as diabetes, heart disease and some types of cancer. Moreover, good nutrition strengthens the 

immune system, enhances mental health, and boosts cognitive performance, thereby enabling people to lead 

productive and fulfilling lives. 

Despite its importance, making sure to get the right nutrition is a major difficulty for many people. Busy lifestyles 

often leave people with little time to prepare balanced meals, leading them to rely on fast food or pre-packaged meals 

that are often high in calories but low in nutritional value [1]. According to [2], [3] limited nutritional knowledge and 

insight can make it difficult to manage dietary preferences, restrictions, and adhere to nutritional guidelines [4]. 

Without proper support, it becomes challenging for individuals to make food choices that align with their health goals. 

These challenges are being addressed by recommender systems and, specifically, those that utilize generative 

artificial intelligence (AI). According to [5], [6], by analysing user data, including dietary preferences, fitness goals, 

and available ingredients, these systems can offer personalized meal recommendations. For instance, a gym person 

looking for a high protein dinner can get suggestions based on his nutritional requirements along with their preferences. 

By filtering relevant options and minimizing cognitive load, these systems simplify decision-making and provide users 

with intelligent support. Thus, they empower individuals to make healthier dietary decisions without necessitating a 

complete overhaul of their eating habits, as emphasized by [6], [7]. 

This research article proposes a novel personalized dietary planning framework by developing a generative AI-based 

Meal Recommender System utilizing Variational Autoencoders (VAEs). VAEs are chosen due to their ability to 

effectively capture complex and hidden nutritional relationships in meal data, making them highly suitable for 

personalized dietary planning. Recent studies demonstrate the global effectiveness of VAE-based recommendation 

systems, such as the work by [8] ,where a VAE-driven nutritional recommender achieved high accuracy (NDCG = 

0.95) across diverse populations. 

To ensure the proposed model generates accurate and reliable recommendations, this system will be evaluated using 

performance metrics such as Normalized Discounted Cumulative Gain (NDCG), Root Mean Square Error (RMSE), 

Mean Squared Error (MSE), and Mean Absolute Error (MAE). These metrics are commonly applied in recommender 

system evaluation and will allow us to assess both the ranking quality and predictive accuracy of the generated meal 

suggestions.  

By integrating these techniques, the proposed system seeks to provide context-aware, goal-driven meal 

recommendations that adapt to user behaviour over time. Through this VAE-based recommender system, the goal is 

to bridge the gap between nutritional requirements, dietary preferences, and practical meal planning [4]. This system 

aims to empower individuals to sustain balanced dietary habits effectively over the long term.  

 

2. LITERATURE REVIEW  

2.1 Overview of Recommender System 

Intelligent technologies designed to manage massive amounts of data and offer customized recommendations enable 

effective tackling of information overload issues via recommender systems. The recommender system analyses the 

data to understand user’s needs, preferences and behaviour [4]. By understanding the input data, the system will 

provide suggestions tailored to individual users, making finding relevant information easier. Based on user actions, 

preferences, and surrounding components, these systems predict and suggest objects that meet certain needs and want. 

Applied generally in numerous sectors, including entertainment, e-commerce, and healthcare, they are crucial in 

improving consumer experience and involvement by way of more conveniently available and actionable information. 

Content-based filtering (CB), Collaborative Filtering (CF), and Hybrid Filtering (HB) approaches often utilized to 

meet this goal, each offering unique advantages in identifying patterns and generating effective recommendations [9], 

[10]. 

Food recommendation systems are dependent on solutions to world health problems and inadequate nutrition [11]. 

Research shows that such poor eating habits explain the incidence of non-contagious diseases such as diabetes, 

overweightness, heart ailments, and so on [12]. They can help people eat healthily by suggesting healthier alternatives, 
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balanced meals, or portion-controlled diets [13]. It benefits these users as well as society. These systems carry extra 

components like nutrition recommendations and personal preferences, which help modify eating habits to reduce 

possible risks from inadequate nutrition[13], [14]. For example, modified meal plans provided by systems such as 

iDietScoreTM to specific groups, such as athletes ensure maximum performance and recuperation [2], [7]. Their food 

requirements and training cycles direct these efforts. 

Further increased capacity of AI and machine learning is their combined application in recommendation systems. AI 

enables these systems to be smarter and more adaptive [14], [15]. Using advanced algorithms, such as GANs and 

VAEs, recommendation systems can make predictions even when little user data is available. Customized 

recommendations are produced even in sparse or novel data contexts using modern approaches, including GANs and 

VAEs. These technologies are quite useful in food recommendation systems and healthcare, where personal needs 

sometimes call for exact and adaptable solutions. Meal planners driven by AI, for example, might suggest dishes 

depending on available ingredients, dietary restrictions, and nutritional goals, thereby providing a wonderful and 

speedy user experience [14]. 

AI-powered solutions for the healthcare sector project health outcomes, offer preventive care and optimize treatment 

plans [14]. These systems enable people to take a more proactive approach toward better living by amalgamating real-

time data from wearable gadgets, electronic health records, and other sources. In addition, their support of a better 

knowledge of the link between nutrition and health helps to promote long-term wellness and quality of life [3], [8]. 

Despite their promise, food and healthcare recommender systems face problems, including data privacy, ethical 

concerns, and big databases[15].While considering users' privacy, the primary concern is making the 

recommendations accurate and reliable. Besides that, it remains quite challenging to design systems that could allow 

multiple populations with varying nutritional needs. Dealing with these challenges requires constant innovation and 

collaboration among legislators, medical professionals, and engineers, among other sectors  [7], [9]. 

The influence of recommender systems on food and healthcare should expand along with their development. These 

technologies improve personal well-being and support broader public health initiatives by providing tailored fact-

based insights. Their importance as basic tools in contemporary society is demonstrated by their help in advancing 

improved food options and preventative healthcare [3], [6]. 

 

2.2 Recommender System Techniques 

Recommender systems are the vital weapons of personalization that can predict an individual's preferences based on 

interaction data. They have a wide variety of applications, such as in e-commerce, entertainment, healthcare, and in 

fields where personalized recommendations would support decisions, improve interactions, and even enhance 

happiness. They have evolved from traditional CB, CF, to HB, Semantic Filtering, and Graph-Based Filtering and 

have advanced to modern generative AI techniques, including VAEs and GANs. 

Traditional recommender systems provide recommendations either from user interaction data or item metadata. CB: 

Item attributes help one to suggest objects like those prior interactions with. CF identifies user-item interaction trends 

by item associations or user similarity [4]. Hybrid filtering helps combine different methods to solve restrictions and 

raise accuracy. While effective, traditional methods have a lot of significant problems [16]. Data sparsity caused by 

limited interaction data results in erroneous predictions. The cold-start problem is caused by a lack of data for new 

users or objects [4], [17], [18]. In addition, traditional algorithms can offer repetitive recommendations, hence limiting 

diversity and failing to expose customers to new ideas. 

Two advanced methods that overcome these restrictions are Graph-based Filtering and Semantic-based Filtering. 

Through contextual knowledge, like ontologies or knowledge graphs, semantic filtering can show deeper connections 

between things, thus allowing more important recommendations. Graph-Based Filtering finds indirect linkages and 

complex interconnections that improve accuracy and diversity using user-item interactions as a graph [19]. 

Combining a new generative model using the AI system will give a different perspective on working with 

recommenders. Unlike traditional methods, which rely heavily on past data, ranging from generative models, they can 

still work better on data sparsity and unforeseen events. GANs build up quality using a discriminator and produce 

synthetic data from a generator [20]. For example, GANs can make personalized meal suggestions based on dietary 
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preferences, availability of ingredients, and nutrition goals. VAEs, on the other hand, are deep models that uncover 

latent patterns for making probabilistic recommendations by compressing user-item interactions into a continuous 

latent space [21]. These models provide the influx of creativity that suits the best fit into the user's palate and seem 

especially effective in scarce environments. Together, GANs and VAEs can be dynamically tuned for user preferences 

and broaden the scope of recommender systems. 

The evolution of recommender systems unravels the benefits and shortcomings of both generative and traditional 

approaches. Conventional methods provide a consistent basis for generating correct and interpretable 

recommendations, especially when the user preferences are well-defined, and the data is rich. 

 

2.3 Generative AI Techniques  

Generative AI, such as VAEs and GANs has dramatically expanded the scope of creativity and personalization in 

many areas, which has revolutionized several fields [18], [22], [23]. In recommendation systems, such advanced 

methods have provided solutions to the suitable room challenges that such systems have suffered the cold-start, lack 

of data, or even over-specialization. In particular, the ability of VAEs as well as GANs, among others, has greatly 

altered some recommender systems by fixing some of the problems they encountered such as cold-start phenomenon 

and overspecialization. These new models enabled the generation of diverse, relevant, and individual 

recommendations that were impossible before [24], [25].  

 

2.3.1 Generative Adversarial Networks (GANs) 

GANs are a generative model that utilizes neural networks to learn and approximate arbitrary probability distributions. 

Through adversarial training, GANs synthesis reasonable user-item interactions to solve problems in recommendation 

systems. This process involves two key components: the generator and the discriminator [26]. The generator is 

responsible for creating synthetic user-item interaction data that resembles real interactions, while the discriminator 

evaluates whether the generated data is authentic or fabricated, thereby guiding the generator to improve its outputs 

over time [25].  

GANs have been great for bringing diversity in recommending products and dealing with cold-start issue situations. 

It can generate personalized recommendations with minimal input data because it can simulate realistic interaction 

scenarios [27], [28]. However, there are several challenges that GANs have experienced, including mode collapse and 

training instability. Such problems might cause repeated outputs as a result of insufficiently diverse data points 

generated by the generator. These challenges emphasize careful hyperparameter tuning and strong optimization 

techniques that guarantee performance consistency and reliability [24], [27]. 

Building upon these foundations, [8] introduced FoodRecGAN, a generative adversarial network specifically designed 

for food recommendation tasks. FoodRecGAN models user preferences and dietary patterns to generate personalized 

meal suggestions. By utilizing adversarial learning, the system is able to refine its recommendations based on user 

feedback, thereby enhancing recommendation diversity and relevance over time. Their results demonstrated 

significant improvements in recommendation accuracy compared to traditional collaborative filtering methods, 

emphasizing the potential of GANs in addressing personalized nutrition challenges [8]. 

GANs have been a powerful mechanism in enhancing recommendation systems by enabling the creation of 

personalized, realistic, and diverse content [29]. Despite being confronted with training instability and mode collapse, 

recent advancements, like FoodRecGAN, demonstrate that adversarial learning models can significantly improve 

recommendation quality by capturing fine-grained user preferences.  

With continuous progress in GAN architectures in the form of incorporating context-awareness, conditional generation, 

and merging these with other approaches, GAN-based models offer promising avenues to overcome the constraints of 

traditional recommender systems such as data sparsity, cold-start problems, and overspecialization. The use of GAN-

based models in food recommendation tasks is a testament to their important role in advancing personalized nutrition 

planning and dynamic meal recommendation systems. 
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2.3.2 Variational Autoencoders (VAEs) 

VAEs are probabilistic generative models for finding latent relationships by encoding user-item interaction in an easily 

reduced latent space, and keep that information limited to basic context. They transform raw user interaction data 

using an encoder-decoder framework into latent variables and decode those latent variables to reshape the original 

interactions. This capability enables VAEs to generate realistic and personalized outputs even in the presence of sparse 

or incomplete data, a common challenge in traditional recommendation systems. With that phenomenal capacity, 

VAEs surpass the difficulties of sparse-data conventional recommenders and can be applied flexibly to several datasets 

[27]. 

VAEs are indeed adaptably practical. They recommend niche products to consumers in e-commerce who have little 

to no interactions prior. VAEs also help in preparing personalized meal plans based on dietary restrictions or available 

items in their storage. Due to such features, they work very well in data-scarce conditions [27].  

Moreover, VAEs introduce a structured method for sampling user preferences, enabling the generation of diverse 

recommendations that are not solely bound by historical behaviour. This property ensures that recommendation 

models using VAEs can suggest novel and favourable options, enhancing user satisfaction and engagement. 

This has its limitations, however. The probabilistic models are computationally intensive, as they require relatively 

high computation resources to train and infer. Training VAEs often involves tuning complex hyperparameters like the 

Kullback-Leibler (KL) divergence weight to balance reconstruction quality and latent space regularization, which can 

complicate optimization. Furthermore, the abstract nature of latent variables diminishes interpretability, which is a 

vital requirement in disciplines such as healthcare, where openness and trust are paramount [24]. 

Recent advancements have sought to address these challenges by integrating attention mechanisms into VAEs to 

improve feature learning and by proposing conditional VAEs (CVAEs) to better control the generation process. For 

example, [30] successfully employed a VAE-based model combined with ChatGPT to generate personalized, 

nutritionally accurate meal plans, highlighting the effectiveness of VAEs in personalized dietary recommendation 

systems.  

These innovations reinforce that VAEs remain a powerful and evolving tool in recommender system development, 

particularly for applications demanding personalization, diversity, and adaptability to sparse or incomplete data 

scenarios. 

 

2.3.3 Comparison of Generative AI frameworks 

Methods such as GANs and VAEs have proven particularly useful for mitigating the cold-start issue and working with 

sparse datasets. From the design viewpoint, GANs introduce diversity and creativity by reproducing real-life user-

item interactions. In contrast, VAEs are effective when working with big data sets and are structured in the form of 

latent space encoders. These trends are relevant in industries starting from entertainment and ending with healthcare 

[24], [27]. 

Each method, however, has its downsides. First, VAEs are highly scalable and easy to use. However, the hidden 

variables are almost entirely opaque. This could translate to low levels of trust by the users. Meanwhile, GANs are 

resource-intensive and prone to mode collapse. Therefore, with a low tractable regime, they become hard to implement. 

All these methods have very complex optimization processes necessary for achieving reliability and efficiency. 

Generative models such as VAEs and GANs have great potential for developing personalization in recommendation 

systems but also face limitations. In the future, more efficient hybridization will increase the efficiency for VAEs and 

GANs, making them integrated parts of recommendation systems. When combined with other methods, they have the 

potential to greatly improve the performance of these systems, enabling more personalized and unique 

recommendations to be made. More research is still needed on the computing requirements of all these mentioned and 

upcoming technologies in enterprises. 
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2.4 Summary of Recommender System Techniques  

Recommendation systems employ diverse filtering methods, which, with their use cases, could fit particular user 

requirements.  All strategies have their limitations, even if they are able to address issues of up-scaling, user 

satisfaction, and the accuracy of the recommendations. These strategies are summarized on Table 1 with their 

advantages and limitation.  

 

Table 1. The Advantages and Limitations of Recommender Techniques 

Technique 

 

Advantages Limitations 

GANs - Create new and diverse recommendations 

- Solve cold-start and data gaps 

- Suggest fresh options beyond user history 

 

- Hard to train (unstable sometimes) 

- Need careful tuning 

- Hard to explain why it recommends 

something 

VAEs - Work well with little or missing data 

- Make personalized and varied 

suggestions 

- Capture hidden patterns in user needs 

 

- Take a lot of computing power 

- Results are harder to interpret 

- Need balance when training 

 

Meal recommender systems are a great fit for generative AI methods such as VAEs and GANs since they can solve 

important issues, including data sparsity, cold-start concerns, and the demand for diverse, customized 

recommendations. These models improve diversity and personalising by constantly adjusting to user choices and 

producing creative meal alternatives that fit dietary restrictions, such as vegan, gluten-free, or high-protein diets. 

Generative AI is a useful technique for contemporary applications in personalised nutrition and meal planning since 

it offers overall dynamic, adaptive, and highly customised meal recommendations. 

 

2.5 Related Works  

In recent years, generative AI techniques have demonstrated significant potential in improving meal recommender 

systems by addressing critical issues such as personalization, nutritional accuracy, and diversity in meal planning. In 

2020, [31] introduced a VAE framework explicitly designed for recognizing food ingredients directly from images, 

effectively bridging textual and visual data domains. The key finding of this work was its superior alignment capability 

of multi-modal data representations using Wasserstein distance [32]. This method surpassed previous state-of-the-art 

models, notably achieving an impressive F1-score of up to 50.05 on the Recipe1M dataset. This advancement closely 

aligns with our study by highlighting VAEs efficiency in managing and integrating complex food-related multi-modal 

data, a critical aspect for generating precise and personalized meal recommendations based on nutritional and 

ingredient-based profiles. 

Besides that, [33] developed RECipe, a new multi-modal recipe recommendation system using knowledge graph 

embedding guided VAE (KG-VAE). The recommendation approaches employed behavior-, review-, and image-based 

recommendations through understanding structured knowledge graphs. Their major findings included cost-effective 

and important improvements on ranking effectiveness, which has been computed by Hit Rate (HR) and NDCG. These 

findings demonstrate the effectiveness of combining structured data with generative models and learned application-

related insights to further advance measure improvement of recommendations. This directly informs our research 

since it would show how structured information integrated with generative AI would improve the quality of 

personalized meal planning and recommendations. 

In 2024, [34] developing NutrifyAI, a sophisticated system integrating real-time food detection, nutritional analysis, 

and personalized meal suggestions. Utilizing advanced computer vision techniques such as YOLOv8 and leveraging 

external nutritional data APIs, the system achieved precision (78.5%), recall (72.8%), F1-score (75.5%), and overall 

accuracy (75.4%), highlight the model’s efficacy in real-time scenarios. A critical insight from this research was its 
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potential for real-time adaptability and immediate dietary feedback, directly impacting user engagement and dietary 

adherence. This aligns closely with our objectives by emphasizing the critical role of accurate nutritional data and 

real-time user interactions to enable dynamic and responsive meal recommender systems. 

In the same year, [35] proposed a groundbreaking nutrition recommendation approach that combined the deep 

generative capabilities of VAEs with the conversational proficiency of ChatGPT. Their proposed system effectively 

generated personalized meal plans tailored explicitly to detailed dietary profiles, achieving exceptional macronutrient 

accuracy levels of 87%. A notable finding of this study was how the integration of conversational AI significantly 

enriched the diversity and adaptability of generated meal plans, making them more appealing and engaging to users. 

This method validates and reinforces the core concept of our study by highlighting how deep generative models can 

effectively combine nutritional precision with engaging, diverse meal recommendations. 

Additionally, [36], introduced a novel generative AI framework specifically for personalized inpatient meal planning. 

Their approach, applying cutting-edge models such as GPT-4 and DALL-E [37], carefully incorporated patient-

specific data like that from Electronic Health Records (EHRs) and strictly adhered to professional nutritional 

guidelines. The system generated detailed textual and visual meal plans, providing a notable increment in patient 

satisfaction and dietary adherence. This research speaks to our study, emphasizing the need to blend expert-driven 

nutritional guidelines with strong generative AI methodologies to deliver precise, personalized, and clinically pertinent 

meal planning. 

These important milestones together form a strong theoretical and applied basis for our research and indicate clearly 

how generative AI methods, particularly VAEs and GANs, can solve very critical problems with regard to nutritional 

accuracy and personalization in also time-sensitive meal recommendation systems. 

 

2.6 Summary of Related Works 

An overview of prior research on meal recommender systems is presented in Table 2, which offers insights into current 

methods and research directions. 

 

Table 2. Key Aspects and Findings of The Research 

Article Paper Title 

 

Key Findings Evaluation Metrics Datasets 

[31] A Cross-Modal 

Variational 

Framework for 

Food Image 

Analysis 

The authors developed a 

VAEs framework for 

ingredient recognition. 

Using datasets like 

Yummly-28K, the system 

improved multi-modal data 

alignment in food analysis. 

The framework's performance 

was assessed using the F1-score 

and Intersection over Union. 

The Yummly-28K dataset 

achieved an F1-score of 46.54 

and an Intersection over Union 

(IoU) of 32.25. On the Recipe1M 

dataset, it reached an F1-score of 

50.05 and an (IoU) of 33.38. 

These results outperformed state-

of-the-art models for ingredient 

recognition, demonstrating 

robustness and adaptability. 

 

Yummly-28K 

and Recipe1M 

 

[33] 
RECipe: A 

Multi-Modal 

Recipe 

Knowledge 

Graph 

The authors introduced a 

multi-modal recipe 

framework integrating 

behavior, reviews, and 

images with knowledge 

graph embedding models, 

improving ranking metrics 

The evaluation utilized the Hit 

Rate, NDCG, Mean Reciprocal 

Rank, and Mean Rank to measure 

ranking effectiveness. The 

framework showed significant 

improvements in ranking tasks 

across behavior-based, review-

Kaggle 

(Food.com and 

Allrecipes) 
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and enabling zero-shot 

recommendations. 

based, and image-based 

recommendations, demonstrating 

its capability to integrate diverse 

modalities. 

 

[34] NutrifyAI: An 

AI-Powered 

System for Real-

Time Food 

Detection, 

Nutritional 

Analysis, and 

Personalized 

Meal 

Recommendatio

ns 

The authors introduced 

NutrifyAI, a real-time 

system integrating food 

detection (YOLOv8), 

nutritional analysis 

(Edamam API), and 

personalized meal 

recommendations. The 

system achieved high 

recognition accuracy and 

supported dietary planning 

via an interactive mobile 

and web interface. 

 

NutrifyAI achieved a precision of 

78.5%, recall of 72.8%, and an 

F1-score of 75.5%, with an 

overall accuracy of 75.4% when 

tested on the Food Recognition 

2022 dataset. The system 

demonstrated efficient real-time 

capabilities, with an average 

detection time of 1.5 seconds per 

image. 

Github-Food-

Recognition 

[35] AI Nutrition 

Recommendatio

n Using a Deep 

Generative 

Model and 

ChatGPT 

The authors integrated 

VAEs with ChatGPT for 

building personalized meal 

recipes and were able to 

get good satisfaction 

concerning nutrient content 

and meal diversity, suitable 

for meal personalization. 

The accuracy of macronutrient 

distribution was assessed, 

achieving over 87% accuracy for 

virtual user profiles and 84.19% 

for real user profiles. These 

metrics validated the system's 

ability to generate highly 

accurate, personalized meal plans 

that align with nutritional 

guidelines while ensuring 

diversity through ChatGPT 

generated meal recommendations. 

 

Zenodo & IEEE 

[36] Personalized 

Meal Planning in 

Inpatient 

Clinical 

Dietetics 

The authors introduced a 

dual generative AI system 

for personalized meal plan 

formulation in clinical 

settings. It applied custom 

patient data to alter and 

illustrate meals, 

emphasising clinical 

relevance and user 

endorsement. 

The evaluation metrics used were 

the degree to which the patients 

and the level of satisfaction of the 

patients have respected dietary 

restrictions. The system was 

constantly refined through 

collaboration and communication 

loops, and the text and visual 

meal plans were readily improved 

to suit changing requirements of 

the patients. 

 

Not publicly 

available 

 

 

3. RESEARCH METHODOLOGY  

3.1 Outline of Research Methodology 

This section gives a clear and structured approach to designing and developing a generative AI-based meal 

recommendation system with the aim of producing a model promising accuracy and efficiency from the user's 

perspective by suggesting a balanced meal customized for the individual. The research follows a stepwise approach, 

beginning with the identification of the problem and gathering and preprocessing data, selecting the appropriate AI 
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model, building up the system itself, and finally, evaluating and analyzing the model's performance. Each stage is 

diligently engineered to respond to the research objectives and guarantee satisfaction along the dimensions of their 

implementation. Figure 1 outlines the process of this research methodology. 

 

 

Figure 1. Flow of Research Methodology 

As shown in Figure 1, the research process includes seven major phases that guide the operation of the step-by-step 

flow of the methodology. Each of these phases have a relationship with the other, and they come together to make 

sure that the entire process is cohesive and stable. The methodology is designed to address the challenges identified 

in the problem statement, such as selecting the most suitable generative AI techniques, optimizing system performance, 

and integrating nutritional data into the recommendation process.  

 

3.2 Dataset and data dictionary 

The data for this project has been taken from the Kaggle Meal Plan Search Dataset, which contains comprehensive 

meal plans and individual dishes. The dataset includes two key components, mealplans.csv and dishes.csv, which are 

stored in the files. The meal plans dataset has records of many meal plans, which include macronutrient and 

micronutrient values, together with references to the individual dishes that make up the meal plan. The names of the 

meals and the user ratings are included in the dishes.csv dataset. 

In the mealplans.csv file contains some info on nutrition values of meal plans like total calories, macronutrient intake 

(proteins, fats, carbs), vitamins, minerals, and so on. The file also includes references for each of the individual dishes, 

categorized by meals into breakfast, lunch, dinner, and snacks. The details and data types of the attributes in this file 

are shown in Table 3. 

Table 3. Attributes Descriptions of the Meal Plans Dataset 

Attribute Name Details Field Type 

id Unique identifier for each meal plan int64 

calories Total caloric content of the meal plan float64 

caloriesFromFat Calories derived from fat float64 

totalFat Total fat content in grams float64 

saturatedFat Saturated fat content in grams float64 

cholesterol Cholesterol content in milligrams float64 

sodium Sodium content in milligrams float64 

potassium Potassium content in milligrams float64 

totalCarbohydrates Total carbohydrate content in grams float64 

dietaryFiber Dietary fiber content in grams float64 

protein Protein content in grams float64 

sugars Total sugar content in grams float64 

vitaminA Vitamin A content in IU float64 

vitaminC Vitamin C content in milligrams float64 
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calcium Calcium content in milligrams float64 

iron Iron content in milligrams float64 

thiamin Thiamin (Vitamin B1) content in milligrams float64 

niacin Niacin (Vitamin B3) content in milligrams float64 

vitaminB6 Vitamin B6 content in milligrams float64 

magnesium Magnesium content in milligrams float64 

folate Folate content in micrograms float64 

breakfast0 - breakfast2 IDs of dishes included in breakfast int64 

lunch0 - lunch4 IDs of dishes included in lunch int64 

dinner0 - dinner6 IDs of dishes included in dinner int64 

snacks0 - snacks1 IDs of dishes included in snacks int64 

id Unique identifier for each meal plan int64 

calories Total caloric content of the meal plan float64 

caloriesFromFat Calories derived from fat float64 

totalFat Total fat content in grams float64 

saturatedFat Saturated fat content in grams float64 

cholesterol Cholesterol content in milligrams float64 

sodium Sodium content in milligrams float64 

potassium Potassium content in milligrams float64 

totalCarbohydrates Total carbohydrate content in grams float64 

dietaryFiber Dietary fiber content in grams float64 

protein Protein content in grams float64 

sugars Total sugar content in grams float64 

vitaminA Vitamin A content in IU float64 

vitaminC Vitamin C content in milligrams float64 

calcium Calcium content in milligrams float64 

iron Iron content in milligrams float64 

thiamin Thiamin (Vitamin B1) content in milligrams float64 

niacin Niacin (Vitamin B3) content in milligrams float64 

vitaminB6 Vitamin B6 content in milligrams float64 

magnesium Magnesium content in milligrams float64 

folate Folate content in micrograms float64 

breakfast0 - breakfast2 IDs of dishes included in breakfast int64 

lunch0 - lunch4 IDs of dishes included in lunch int64 

dinner0 - dinner6 IDs of dishes included in dinner int64 

snacks0 - snacks1 IDs of dishes included in snacks int64 

id Unique identifier for each meal plan int64 

 

The dish.csv file contains a list of dishes with their respective dish id, dish name and user ratings. Just like the meal 

plan mealtime keys refer to the dishes, the dish ID is a single, unique identification for each dish, tying it to a meal 

plan. From user ratings, the system can form a recommendation process that takes into account the popularity of the 

dishes. The attribute details and data types for the dishes.csv dataset are outlined in Table 4. Table 4 describes the 

attributes of the dishes.csv dataset, which includes dish titles and user ratings for ranking meal popularity. 

  

Table 4. Attributes Descriptions of the Dishes Dataset 

Attribute Name Details Field Type 

id Unique identifier for each dish int64 

title Name of the dish string 

rating User rating of the dish float64 
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3.3 Variational Autoencoders (VAEs) 

VAEs proposed by [38] embed the input into a probabilistic latent space to generate diverse and meaningful outputs 

of the model. It generally consists of an encoder that represents input data probabilistically in the latent space and a 

decoder that reconstructs the data by using this representation. Compared to normal autoencoders, a VAE applies a 

probabilistic framework that outputs generated data by merely sampling on the latent space, which is perfect for tasks 

in which variety and adaptability matter, like in personalized recommendations. 

Fundamentally, VAEs optimize a mathematical quantity known as the Evidence Lower Bound (ELBO), which 

balances two objectives reconstruction loss and the KL divergence loss [39] . The ELBO is expressed from Equation. 

The ELBO is expressed from Equation (1). 

𝐿(𝑥; 𝜃, 𝜙) = 𝐸𝑞𝜙( 𝑧 ∣ 𝑥 )[𝑙𝑜𝑔𝑝𝜃( 𝑥 ∣ 𝑧 )] − 𝐾𝐿(𝑞𝜙( 𝑧 ∣ 𝑥 ) ∥ 𝑝(𝑧)) 

 (1) 

The ELBO includes two key parts: 

• The reconstruction loss ensures that the output closely matches the input. 

• The KL-divergence term ensures the latent distribution remains close to a standard prior distribution. 

The reconstruction loss measures how well the decoded output matches the original input. It encourages the decoder 

to generate outputs that are accurate reconstructions of the inputs. This loss can be computed using Binary Cross-

Entropy (BCE) or MSE, depending on the data type. The formula for reconstruction loss using MSE is expressed. It 

is computed as presented in the following Equation (2). 

Reconstruction Loss = |𝑥 − �̂�|2 

 (2) 

 

The KL divergence loss regularizes the latent space by making the approximate posterior distribution 𝑞(𝑧|𝑥) close to 

the prior 𝑝(𝑧), typically assumed to be a standard Gaussian 𝒩(0,𝐼) The KL divergence term is computed as the 

Equation (3). 

KL Divergence Loss = −
1

2
∑(1 + log(σ𝑖

2) − μ𝑖
2 − σ𝑖

2)

𝑑

𝑖=1

 

 (3) 

 

By minimizing the total loss, the VAE learns to encode meaningful representations and generate realistic 

reconstructions. Sampling from the learned latent space enables VAEs to generate new data records, making them 

valuable for recommender systems. In recommender systems, VAEs can manage multi-criteria data by extracting user 

preferences and interactions.  

The VAE model first encodes user-item interaction matrices into a latent space through an encoder network, generating 

latent variables. he decoder then reconstructs the interaction matrix from these latent variables, predicting missing 

values by capturing patterns in user behaviour. 

The VAE model effectively handles data sparsity by mapping incomplete user-item matrices into a dense latent 

representation, inferring missing interactions based on learned correlations. The KL divergence term ensures that the 

latent space is smooth and continuous, making it easier to sample plausible missing values. In multi-criteria 

recommendation settings, VAEs can leverage relationships across different rating aspects to improve imputation 

quality. 

Overall, VAEs combine the benefits of traditional autoencoders (compact representation learning) with probabilistic 

modelling (uncertainty handling and generative capabilities). Their ability to generalize from sparse or incomplete 

data makes them a robust choice for real-world personalized meal planning and nutrition recommendation systems. 

 



Journal of Informatics and Web Engineering                       Vol. 4 No. 2 (June 2025) 

 

326 

 

3.4 Evaluation metrics 

To assess the performance of the VAE-based meal recommender system, several evaluation metrics are employed. 

These include NDCG, RMSE, and MAE. Each metric provides insight into the system’s ability to deliver accurate, 

relevant, and personalized meal recommendations. 

 

3.4.1 NDCG  

NDCG is a metric commonly used to evaluate the quality of rankings, especially in search engines and 

recommendation systems. It measures how well a system ranks items based on their relevance to a specific query or 

user. The primary goal of NDCG is to prioritize highly relevant items appearing earlier in the ranking, as these items 

are considered more beneficial to the user. The formula for DCG at a particular rank 𝑝 is given as in Equation (4). 

𝐷𝐶𝐺 = ∑
𝑟𝑒𝑙𝑖

log2(𝑖+1)

𝑝

𝑖=1

 

(4) 

Where: 

• reli: Represents the relevance score of the item at position i. 

• p: Refers to the total number of items considered for ranking. 

• IDCG: Computed using the same formula as DCG but assumes an ideal ordering of items, where the most 

relevant items are ranked at the top. 

 

IDCG is computed similarly but assumes an ideal ordering of items. NDCG is then defined as in Equation (5). 

𝑁𝐷𝐶𝐺𝑝 =
𝐷𝐶𝐺𝑝

𝐼𝐷𝐶𝐺𝑝
 

 

 (5) 

  

In the context of recommendation systems, NDCG evaluates how well the system ranks items based on their relevance 

to the user. A higher NDCG score, closer to 1, indicates that the system’s ranking aligns closely with the ideal ranking, 

where the most relevant items appear at the top. NDCG is especially useful when comparing the performance of 

various ranking algorithms or systems. This normalization helps prevent the comparison of the DCGs for queries 

with different numbers of relevant items from being skewed. Nevertheless, NDCG has some shortcomings, including 

reliance on the relevance scale, which varies for each application. NDCG is still a strong and commonly used metric 

for assessing the quality of the recommendation systems, followed by ranking and channelling a high-level 

understanding of systems capabilities to better serve the user in terms of the data that is made available to them. 

 

3.4.2 RMSE 

RMSE is a popular tool used in regression and predictive modelling to check how accurate a system's predictions are. 

In recommendation systems, RMSE helps measure the gap between what the system predicts (like the nutrient content 

of a meal) and the actual values from the user or dataset. A smaller RMSE means the predictions are more accurate, 

making it a trustworthy way to gauge how well the system is performing. RMSE is defined as the square root of the 

average of squared differences between predicted values (𝑦̂ ) and actual values as shown in Equation (6). 

RMSE = √
1

𝑁
∑(𝑦̂�̂� − 𝑦̂𝑖)

2

𝑁

𝑖=1

 

 (6) 
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Where: 

• N : The total number of predictions made by the system. 

• 𝑦̂ i : The actual value of the i-th data point. 

• 𝑦̂ i : The predicted value of the i-th data point. 

 

RMSE is an effective measure in recommendation systems for checking the validity of predictions, specifically for 

meal plans or user preferences. For instance, for a meal planning recommendation system, the predicted values can be 

attributes like the calories, protein, fats, or sodium in a given meal recommendation. The actual values would therefore 

be the actual dietary requirements of the user. RMSE gives an idea of how well the recommendations are in relation 

to what the user requires. 

To calculate RMSE, you take the difference between each predicted and actual value, square each difference, average 

them, and then take the square root. The process provides more weight to larger errors, so RMSE is great at picking 

up big gaps between prediction and actuality. 

 

3.4.3 MAE 

MAE is a straightforward metric used to evaluate the accuracy of predictions in recommendation systems. It measures 

the average absolute difference between predicted values (𝑦̂ ) and actual values (y). making it an intuitive way to assess 

system performance. The formula for MAE is given as in the Equation (7). 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦̂�̂� − 𝑦̂𝑖|

𝑁

𝑖=1

 

 (7) 

  

MAE is a direct measure of prediction error, in the sense that it quantifies the average difference between prediction 

and reality without distorting big error impacts. Therefore, MAE is more outlier-robust than RMSE. When it comes 

to meal recommendation, MAE can quantify the level of correspondence between predicted and real values of nutrients.  

 

3.5 Practical Deployment and Evaluation Workflow 

This section provides an overview of the steps carried out in practice for implementation and validation of the VAE-

based meal recommender system. The methodology begins from the exploration data analysis (EDA)  stage to data 

preprocessing, model building, and model assessment. Figure 2 illustrates the overall workflow of the implementation 

process from data ingestion to evaluation. 

 

 

Figure 2. High-Level Workflow  

Firstly, an EDA was made through the investigation of the dataset structure, relations and distribution. Visualizations 

including correlation matrix heatmaps, scatter plot matrices, and boxplots were utilized to explore how nutrients 

interact with one another, identify outliers, and identify potential problems that might impede model performance. 

After EDA, it follows with data preprocessing, which aims to clean the dataset to provide high-quality inputs to the 

model. This included missing value handling by record deletion or imputation used, dropping duplicate rows, and 

scaling numeric features like calories, fats, proteins, and sodium through StandardScaler(). This step is to provide 

equal weightage to all the features during model training. 
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Once the data is clean and properly structured, the modelling phase begins. A VAE model was implemented using 

Python and the TensorFlow library. The encoder compresses input features into a latent representation and the decoder 

reconstructs meal plans from the latent dimension. Sampling methods were used to inject variation that increases the 

diversity of meal suggestions. Figure 3 shows the detailed VAE-based recommendation logic, including user 

preference encoding, the model training feedback loop, similarity calculation, and ranking. 

 

Figure 3. Flow of VAEs Based Model 
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Upon the completion of the VAE model training, its performance was assessed using the following key metrics: 

NDCG, RMSE and MAE. These measures captured salient details regarding the system’s ranking accuracy and overall 

prediction accuracy. This end-to-end workflow captures that the developed model doesn’t only comprehend the 

nutritional objectives but also designs precise and tailored meal suggestions to particular dietary preferences.  

 

3.6 EDA 

EDA allows for deeper engagement with the dataset, finding connections among various features, and identifying any 

unusual data that stand out. In this regard, we utilize three principal types of visualizations: a correlation matrix 

heatmap, a scatter plot matrix, and boxplots for detecting outliers. 

 

3.6.1 Correlation Matrix Heatmap 

The correlation matrix's heatmap assists in visualizing the relationships existing between the various numeric features 

available in the dataset. As for the axes, both X and Y represent nutritional features which are calories, fats, sodium, 

protein, vitamins, and minerals. The corresponding cell of each matrix displays the value of Pearson correlation 

coefficient (CORR) for the nutrient pair. The closer the value is to 1, the stronger the positive correlation, whereas, 

the closer it is to -1, the stronger the negative correlation. For example, calories and total fat exhibit a high correlation 

(0.86), meaning that meals higher in fat tend to have more calories. Similarly, protein is strongly correlated with niacin 

and vitamin B6, reflecting their common presence in high-protein foods. These insights are useful for understanding 

which nutrients are naturally linked and how they influence meal composition. Figure 4 illustrates the correlation 

matrix heatmap.  

 
Figure 4. Correlation Matrix Heatmap 
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3.6.2 Scatter Plot Matrix with Density Plots 

The scatter plot matrix displays the optional nutritional features like calories, caloriesFromFat, total_calories, fat, 

saturated fat, and cholesterol. Lower triangular matrix cells show the scatter plot of respective variables whereas 

diagonal plots show KDE of every feature's distribution. 

Nutritional attribute value on the X and Y axis makes identification of correlation and distribution degree simple and 

visually pleasing. For better understanding, consider scatter plot for total_calories and fat (CORR:0.87). There is a 

clear linear relation, meaning growth in fat content results in greater total calories. Also, caloriesFromFat is nearly the 

same as totalFat (CORR:0.87), pointing that indeed fat is the main constituent of calories. 

The cholesterol variable might be moderately positively correlated with both total fat and saturated fat at around 0.60, 

suggesting high fat meals would also be of high cholesterol. This is aligned with the field’s knowledge because foods 

that have high amount of cholesterol contain large volume of saturated fats [40]. 

The KDE plots evidentially capture the silhouette of the features: both the central tendency and variance. Calories and 

fat features have a right-skewed distribution. This indicates that most of the meals are moderately calorically dense 

with a few meals that are exceedingly high. Sodium and cholesterol are also right-skewed with some extreme upper 

outliers which may require special treatment when dealing with outliers. Like the correlation heatmap, this figure 

strives to supplement and explain the structure and symmetry of the nutritional dataset and helps with feature selection 

for the modelling process. Moreover, it helps understand the interactions between nutrients, thus helping in designing 

accurate meal plans suited for individual needs. Figure 5 shows the updated scatter plot matrix and density curves. 

 

Figure 5. Scatter Plot Matrix with Density Plots 
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3.6.3 Boxplot for Outlier Detection 

Nutritional aspects such as total fat, calories, cholesterol, and sodium are some of the issues addressed by the data set, 

and boxplots identify the outliers. These extreme values are marked as single points demarcated outside the whiskers 

in the boxplot. These extreme values may correspond to high-caloric or high-sodium meal plans that one must be 

cautious of to develop good recommendations. In Figure 6, the boxplot for outlier detection is depicted. 

 

3.7 Data Cleaning  

Before the dataset can be processed for model training, the initial step involves data cleaning. Data cleaning is an 

essential step to ensure the dataset is properly structured and optimized for model training. This step involves handling 

missing values, removing duplicate records, validating data formats, and standardizing nutritional values. Properly 

cleaned data helps improve the accuracy and efficiency of the recommendation system. 

 

 
Figure 6. Boxplot for Outlier Detection 

 

3.7.1 Handling Missing Values 

The dataset is first checked for null or missing values using .isnull().sum(). There are some missing values in the meal 

recommendations, which are breakfast, lunch, dinner, and snack in the meal plan dataset. Some of the ratings for the 

dishes dataset are missing. To handle this missing data, we remove the column that has more than 50% of the missing 

data and remove the rows that have missing data for the meal plan dataset. For the dishes dataset, we fill in the missing 

ratings using the median. 

 

3.7.2 Removing Duplicate Entries 

Duplicate records will suffer the model’s learning process. The dataset is checked for duplicate meal plans or dishes 

using .duplicated().sum(). There is no duplicated data in the dataset.  

 

3.7.3 Standardizing Nutritional Features 

Standardize all the numerical values of the features such as calories, proteins, fats, and sodium using StandardScaler() 

in order to equate their scales. In this step, we make sure that each feature is scaled so that no one feature experiences 
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undue influence on the recommendation system. All the features are put on an equal footing to contribute to the 

outcome. In general, data cleaning consists of handling missing values, duplicates, dish reference checks, and feature 

scaling to make the dataset accurate and consistent for training models. In that respect, the system can do better and 

provide more personalized recommendations of meals. These moves are necessary because they avail some modeling 

performances.  

 

3.8 Data Modeling  

The research development of the phrase of generative AI Based meal recommender system use VAE to create 

personalized meal recommendations. The training begins with the standardization of nutritional data from meal plans. 

This is to ensure all data is on a uniform scale.   

The VAE model comprises two major components: the encoder and the decoder. As illustrated in Figure 6 and Figure 

7, it shows the detailed encoder and decoder code structures, respectively. The encoder is responsible for compressing 

detailed nutritional meal data into a simplified, lower-dimensional representation known as the latent space. This latent 

representation captures underlying patterns and relationships between various nutritional features, facilitating more 

accurate and diverse meal recommendations. Figure 7 provides a detailed illustration of the encoder's code structure, 

showing the systematic transformation of nutritional input features into the latent space. 

 

 

Figure 7. Encoder Architecture 

 

Next, the decoder takes this simplified latent representation and reconstructs it into detailed nutritional information, 

resulting in realistic and varied meal suggestions. This ensures the generated meals align closely with user dietary 

needs and preferences. Figure 8 depicts the decoder's code structure, illustrating how latent variables are expanded 

and transformed back into detailed meal nutritional attributes. 

 

 

Figure 8. Decoder Architecture 

 

The essential point of such a model is the choice of the latent space dimension and has been set to 8. This is a balance 

point between the prediction of nutrition diversity without making the model cumbersome. If dimension numbers are 

low, it will lack diversity, and if too much, they will all have extremely similar meal suggestions that do not possess 
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high novelty. For the purpose of increasing diversity in suggestions, the model incorporates a sampling function within 

it to add controlled randomness to the latent space. With this low variance, users receive a broader set of appealing 

and personalized meal choices. 

VAE trains itself by alternating reconstruction loss and Kullback-Leibler (KL) divergence while training. It thus 

enables the model to generate accurate, varied, and relevant meal suggestions. Generated meals are compared against 

the user-specified nutritional preferences with cosine similarity measures based on these learned embeddings, ordering 

meals based on relevance to the user. 

Lastly, the recommender system is evaluated based on RMSE, MAE and NDCG. These measures guarantee the 

recommended meals by the model are properly matched with user preferences while giving an ideal combination of 

nutrition. 

 

3. RESULTS AND DISCUSSIONS  

The VAE meal recommender program has received preliminary results indicating it is quite efficient at constructing 

user-specific meal plans based on their dietary needs. The system was evaluated using several performance metrics, 

such as the RMSE, MAE and NDCG. These indicators determine the precision and relevance of the generated meal 

plans. Table 5 presents the detailed evaluation results of the VAE model. 

 

Table 5. Evaluation Metrics for VAE-based Meal Recommender System 

Evaluation Metric Result Interpretation 

NDCG 0.9634 
High relevance in ranking recommended meals according to user 

preferences 

MAE 36.28 Moderate deviation between predicted and actual nutritional values 

RMSE 47.77 Indicates slightly larger error magnitude in certain nutrient predictions 

MSE 2282.32 
Represents overall squared differences between predicted and actual 

values 

 

The NDCG value of 0.9634 shows that the recommendation score is relevant and achieves close proximity to the 

nutrient preference maintained with the user. The MAE shows a score of 36.2829, suggesting that this score 

corresponds to the average distance of about 36 units of the potential nutritional outcome from the user-specified 

nutritional target. Thus, it can be inferred that although the model captures most trends, there are significant disparities 

in specific nutrient estimates. 

Besides that, a RMSE of 47.7736 was a bit higher than MAE, showing the errors in some of the nutrient forecasts. 

Furthermore, the MSE value of 2282.3190 This shows how much the predicted values differ from the actual ones, 

helping to identify areas where the model can be improved.  

This VAE-based meal recommendation model has accuracy and relevance based on the results. The refined model 

better aligns with user-specified nutritional targets while maintaining strong predictive performance. Further 

enhancements could focus on optimizing latent space dimensionalities and incorporating additional nutritional 

constraints to fine-tune recommendations even further. 

 

4. LIMITATIONS AND FUTURE WORK 

Although the VAE-based meal recommender framework constructed in this paper has shown some promising 

performance in providing personalized and nutritionally balanced meal plans, there are limitations to this study as 
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well. First, the proposed model is based only on VAEs as the underlying generative model. While VAEs can well 

capture the underlying dietary patterns and mitigate data sparsity, they may lead to recommendations being less 

diverse or overly smoothed because of its probabilistic interpretation. This lack of creativity in the suggestions can 

prevent the system from producing very creative or surprising meal suggestions, that would increase user retention.  

Secondly, the dataset, while large, includes only static nutritional data and pre-defined user ratings. In reality, user 

preferences might also be more dynamic, for example, due to seasonality, changing dietary goals or lifestyle, which 

is not reflected in the current tdataset.  

Another limitation is with the metrics used for evaluation. NDCG, RMSE, and MAE are great at measuring quality 

of ranking and predictive accuracy but system effectiveness in practice would need to be confirmed by user studies 

and longitudinal behavioural measures of dietary adherence and satisfaction.  

In future, we will investigate incorporating GANs into the recommendation pipeline. GANs, which can produce very 

diverse high-quality samples, provide a complementary approach to VAEs. By designing crowd-based models for 

GAN in next studies, we can compare VAE and GAN models directly in completion quality, recommendation 

diversity and robustness. This combination may contribute to more elaborate, creative and personalized meal plans.  

This will also help us in enriching the dataset with a more diversified range in order to adapt the system to other 

cuisines and cultural dietary patterns as well as planning to incorporate real-time user feedback and dynamic user 

profiling in future extensions of the system. These improvements will enable the development of a personalised, 

adaptive, culturally sensitive, user centric meal recommender system that can better adjust to the personal health goals 

and lifestyle of the individual and through time. 

 

5. CONCLUSION 

This study conducted illustrates how AI can be integrated into giving more personalized meal suggestions using one’s 

dietary choices, nutritional objectives, and other health-related restrictions as the Generative AI-based Meal 

Recommender System utilizes the modern tools of AI technology. This work assessed state-of-the-art Generative AI 

models, particularly focusing on VAEs as they attempt to construct solutions to the major issues of meal 

recommendation systems. Some of these include the cold-start problem, data sparsity, and the ever-prevailing issue 

of personalization. 

From a technical standpoint, the research systematically focused on exploratory data analysis (EDA) to understand 

nutrient relationships, preprocessing techniques to ensure clean and standardized data inputs, the construction and 

training of a Variational Autoencoder (VAE) model, and comprehensive evaluation using ranking and error-based 

performance metrics. As a result of extensive data processing, feature selection, and model evaluation, the system was 

able to recommend user specific meals which also had diversity and balance when it came to nutrition. The model’s 

accuracy and relevance were evaluated and confirmed by the competing measures of NDCG, RMSE, and MAE. These 

results were particularly insightful because they showed how well the VAE-based model performs in capturing dietary 

habits and recommending meals. However, model complexity, scalability, and interpretability pose a challenge to 

these promising outcomes and need further development. 

Looking ahead, several directions for future work are proposed. Enhancements can be made by optimizing the latent 

space structure of the VAE, incorporating more complex dietary constraints, and integrating real-time user feedback 

into the system. The system's flexibility and ability to generalize will also be augmented by expanding the dataset to 

include more types of cuisines and cultures, as well as additional dietary and nutritional contexts. 

In general, the research presented makes an important contribution towards the designs of intelligent meal planning 

systems that are easy to use and follow. It further impacts the emerging domain of AI and nutrition and serves useful 

purposes by automating the selection of nutritious foods to promote healthier eating habits. 
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