Journal of Informatics and
Web Engineering

Vol. 4 No. 3 (October 2025) eISSN: 2821-370X

Mapping Relational Database to Full-Text XML
for Open Journal System Cross-Platform Article
Distribution

Chee-Xiang Ling', Kok-Why Ng2, Heru Agus Santoso*”
1.2Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Malaysia
3Department of Informatics Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang, Indonesia
*corresponding author: (heru.agus.santoso@dsn.dinus.ac.id; ORCiD: 0000-0002-5436-1739)

Abstract - In academic publications, the automation of full-text eXtensible Markup Language (XML) is increasingly essential, as
generating full-text XML for article distribution is a complex and time-consuming process that requires metadata extraction from
a relational database and transformation into hierarchical structures such as Journal Article Tag Suite (JATS). The lack of
automation in this transformation process may cause inconsistencies and inaccuracies and may cause errors due to human error.
The primary aim is to develop an automation system for transforming metadata from a relational database to full-text XML by
reducing errors and speeding the process of generating full-text XML. This is crucial since the demand for automation has been
increasing year by year. Furthermore, the motivation behind this research is the growing adoption of the Open Journal System
(OJS), one of the popular platforms for managing scholarly journals. It supports a relational database to store the metadata and
article information. Therefore, developing an automated system is essential for transforming this structured metadata to full-text
XML. To address this issue, various techniques for mapping will be explored to enable the transformation of relational database
structures into full-text XML formats. The proposed method involves metadata extraction, mapping logic, and various validation
mechanisms to ensure the XML is structured and the accuracy of it. The preliminary result indicates that the metadata has been
successfully mapped from a relational database to XML. However, the JATS-specific tagging has not yet been implemented and
will be addressed in future work. This research is significant to the publication community, as it brings convenience by reducing
some manual work and ensuring metadata standardization.

Keywords—Relational Database, XML, Open Journal System, Full-text XML, Metadata Mapping

Received: 21 February 2025; Accepted: 25 May 2025, Published: 16 October 2025
This is an open access article under the CC BY-NC-ND 4.0 license.

1. INTRODUCTION

In the digital age, the management and organization of online articles have evolved rapidly in recent years due to the
increasing availability of digital content and the increasing demand for structured storage metadata [1], [2]. An article
contains various metadata. For instance, author name, article title, issues, and so on [2]. Metadata plays a crucial role
in indexing scientific documents and improving accessibility to enhance searchability in alignment with FAIR

® Journal of Informatics and Web Engineering
® https://doi.org/10.33093/jiwe.2025.4.3.16
© Universiti Telekom Sdn Bhd.

MULTIMEDIA UNIVERSITY Published by MMU Press. URL: https://journals.mmupress.com/jiwe

https://doi.org/10.33093/jiwe.2025.4.3.16
https://doi.org/10.33093/jiwe.2025.4.3.16
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe
https://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

principles (Findability, Accessibility, Interoperability, and Reusability) [1], [3]. Additionally, tagging for journal
articles is also required so it will be structured [4]. Therefore, Full-Text XML has been widely used since it is beneficial
with uniquely identifiable tags in a tree-like structure [5], [6], [7] .This could ensure that it is readable while
maintaining a structured format [8]. Additionally, there are several XML-based standards/schemas which provide a
structured format such as JATS, Text Encoding Initiative (TEI), and ePub (eBook format in XML).

One of the most widely used platforms for managing peer-reviewed academic journals is the OJS. OJS serves as a
platform for storing and managing various types of data related to academic journal publishing, and it is an essential
tool for editors, authors, and reviewers. Therefore, scholarly journals are most likely stored in a relational database,
and OJS is no exception [9], [10], [11]. However, generating Full-Text XML from relational databases is challenging,
as it requires various metadata and full-text content while restructuring it into a hierarchical XML format [12]. This
process will be time-consuming and complex, making manual conversion impossible for large-scale publications [3],
[13], [14]. Thus, automation has been recommended to simplify the process and improve scalability for publications
that handle huge numbers of articles to provide user convenience in generating Full-Text XML [5], [15], [16].
Therefore, this paper aims to develop automation that could map the data from relational databases to formulate the
Full-Text XML.

This paper explores various mapping techniques of mapping relational databases to Full-Text XML. However, to
ensure automation can handle nested XML structures and scalability [17], some challenges must be faced. One
significant challenge is to ensure the metadata is mapped to XML tags correctly and accurately while fully
understanding the database structure. Additionally, inefficiencies, inaccuracies, and potential loss of academic reach
may arise for journal publishers [18]. Therefore, to achieve a stable and scalable solution.

The contributions of this paper are:

e Developed a tool to convert the content of a relational database from OJS to structured Full-Text XML, thus
minimizing the errors caused by manual processing.

e Enhanced XML generation and compliance through adherence to industry standards, accessibility and
discoverability of the article were improved.

e Tested the tool on its accuracy, efficiency, and compliance, which showed an increase in data integrity and
the speed of the processing system.

2. RELATED WORKS

[19] aimed to use open-source tools to make a conversion from Microsoft Word submission to XML format because
of the wide advantages that could be found through JATS since it is accessible, and increased standard indexing format.
The method was divided into four stages, which were submission, conversion (using the tool meTypeset), editing
(using the Texture editor,) and presentation (evaluating plugin JATS Parser Plugin). Figure 1 shows the workflow for
JATS XML in Septentrio.

1: Submission 2: Conversion 3: Editing 4:Presentation
(" ~ AY4 ™ Y4 Layout\ 4)
i~ Author ap» Editor designer

BRI DOCX
JATS o DOCX . e | PDF

DOCX==-0JS =t=dpPDF 0 IATSH o JATS Ay Q LML
PDF JATS ATS
\ J

_ J \L VAN J

Figure 1. Workflow for JATS XML in Septentrio [19]

260

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

Metrics such as compatibility with Microsoft Word and the ability to retain textual and non-textual elements while
converting Microsoft Word files into XML were evaluated. Furthermore, they found that not all tools could work
effectively; for example docxToJats did not support all major features of Microsoft Word, and the plugin did not
support non-textual elements.

[20] proposed a collection of mapping that can convert from XML Schema Definition (XSD) to Shape Expression
(ShEx), a prototype implementation for a subset of the proposed mappings. Methodologically, XSD elements such as
datatypes, complex types, and attributes were mapped to similar ShEx structures via predicates and constraints, and a
parser was used to analyze XSD and iteratively convert its components to ShEx Compact Format (ShExc). Once the
conversion was done, metrics were used to verify the equivalence of validation results between XSD for XML data
and ShEx for RDF data. The advantages that were found included bridging the XML RDF gap, performing an easier
way to semantic web standards, and reducing manual work with automated tools. However, a limitation that occurred
was that not all XSD constructions could be fully reversed in ShEx, causing partial semantic loss. In addition, there
was a lack of mapping for Schematron and Relax NG.

[21] proposed a four-phase approach to recognize, annotate, and visualize parallel content structures in XML
documents. This helped to identify the similarities and differences between XML documents. The phases were as
follows:

e Decomposition - To split the XML documents into plain text, images, and mathematical expressions.

¢ Find common elements in the documents and identify changed positions - By applying algorithms to
detect similarities or differences in text, images, and so on. Preserved the structure and context from the
original documents by relating the changes to the original XML/HTML tags.

e Split common elements into minimal, non-overlapping elements - To avoid conflict between the pre-
existing XML tags and formatting, identified the common elements and divided them into minimal, non-
overlapping components.

e Recombine match groups and insert highlight tags - This phrase involved recombining the previously
identified match groups and inserting highlight tags by referencing the type of content.

The evaluation metrics highlighted the capability of these four workable phrases. The limitation that occurred during
the process of removing XML tags was that the plain text may lose proper spacing between words.

[22] discussed using an open-source code to convert JATS XML into various output formats such as XHTML,
PubReader, PDF, and so on. It also converted JATS XML to Cross-ref XML, PubMed XML, and DOAJ XML. This
approach enabled the flexibility for users to retrieve different formats for their needs. XSLT stylesheets were used to
transform the XML into formats visible on the web. In addition, HTML and XSLT were used to convert XML into a
more readable format for small screens. Furthermore, it transformed XML into an eBook format with components
optimized for various devices and generated PDFs using XSL-FO (Formatting Objects). The dataset was made
available at https://doi.org/10.7910/DVN/S1BHPO0. By adopting open-source methods, the publishing process and
various digital services became much easier to manage, allowing small publishers to implement efficient workflows
without requiring technical expertise. However, the staff shortage was limited by the lack of professionals, such as
professional editors, managing editors, and IT engineers, especially in Korea, and the lack of JATS professionals.

[23] proposed an automation system named OS-APS. It was an automation tool that extracted the underlying XML
from Word manuscripts and offered choices for export and optimization in formats such as PDF, HTML, and EPUB.
In addition, some publishing platforms such as OJS, Open Monograph Press (OMP), and DSpace were considered
capable of implementing this system. Methodologically, they conducted interviews and surveys to gather a structured
overview and broaden insights for performing the software requirements analysis. The tools that they leveraged
included Pandoc, Docker, and Paged.js for the development and testing workflow. The “Hallesches Jahrbuch fur
Geowissenschaften” (the Yearbook of Geosciences in Halle) and the ULB-SA’s series “Schriften zum Bibliotheks-
und Buchereiwesen in Sachsen-Anhalt” (series on librarianship studies in Saxony-Anhalt) were used as input materials
to enhance and generate new layouts through the use of the OS-APS suite. As a result, OS-APS recognized the XML
structure and extracted elements from the manuscripts. For example, column titles, page breaks, tables, etc, were
successfully extracted.

[13] constructed an automated conversion system that converted Microsoft Word format to JATS XML, which was
applied to non-XML experts. In their proposed methodology, they used Pandoc.org as the main tool to convert full-
text Microsoft Word into JATS XML. The second tool was AnyStyle, which was used to identify references and parse

261

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

them into separate XML elements. The JATS XML files were automatically created after the article in Microsoft
Word format was uploaded and transformed into HTML once the JATS XML file was created. They used the dataset
from the HRCAK database which consisted of 530 Croatian scientific journals and 287000 full-text open-access
articles. The adoption rate achieved 17 journals within the first month of release and an improvement was made to
Anystyle by applying machine learning to perform better in handling language-specific challenges. Furthermore, the
advantages of this conversion system were that it could be accessible to the non-XML expert and that no expensive
tools were required. Within this tool, the cost, time, and complexity were reduced since generating a JATS without
automation was quite tedious. The limitation was that the feature was currently only available in HRCAK journals,
although there were plans to expand in the future.

[8] proposed an automated tool named Research XML (RX) to parse academic documents into XML format. They
used a formal approach involving Context-Free Grammars (CFGs) and Regular Expressions to extract syntactic and
semantic structures, which were then encoded into an XML tree like structure. This method involved three core steps:
slicing, tokenizing, and parsing, ensuring that the documents were transformed into an XML tree. The purpose of
slicing was to extract the lines of words from the document, tokenizing referred to converting the text slices into
predefined tokens and parsing constructed an Abstract Syntax Tree that was serialized into XML. Besides that, they
implemented CFG-based rules to map sections of the documents, such as title pages and chapters, into an XML
representation. This research was applied to around 50 academic research proposals averaging 160 pages each, totaling
8004 pages across all 50 documents, from disciplines such as information systems. These datasets were sourced from
institutional repositories of universities across South Africa, Ghana, Nigeria, and India. Regarding the evaluation
metrics, the success rate of the RX tool reached 91% accuracy for varied document structures and was evaluated using
a confusion matrix. The RX tool demonstrated several advantages, including preserving the structure and semantics
of the input document, providing detailed evaluation and metrics, and lastly, efficiently recognizing title and
preliminary pages while limitations included poor performance in identifying the title page section, parsing tables,
and figures.

[11] proposed a workflow named PubLink, which was suitable for digital humanities publications. It aimed to
overcome traditional formats by simplifying the transition from traditional formats to JATS XML format. The
workflow included steps such as using SciFlow for drafting, which integrated with Zotero for bibliography
management. Drafts were transformed into JATS files by applying XSLT and Python scripts, correcting the
bibliography data, and filling in missing fields by replacing the content of the BibTex file, integrated with OJS
platform though XML files and using QuickSubmit for the uploading process. Articles were formatted in InDesign
for visually rich PDF outputs and exported as HTML when possible. Finally, Publink was developed to automate
various processes, including the submission of files to OJS, metadata entry, and so on. They used bibliographic
databases such as WorldCat and Kubikat to validate and enhance the metadata. The workflow’s efficiency was
evaluated based on its ability to save time by using Native XML instead of QuickSubmit since it is quite tedious and
time-consuming. Error reduction was assessed through the workflow's design to minimize errors in metadata entry
and bibliography management using tools like Zotero and external bibliographic databases, evidenced by the
statement". The advantages that can be found are other institutes can easily adapt this workflow, it was open source,
cost effective, and helped control budgets. Besides that, the limitations included the need for manual correction of the
JATS XML output from SciFlow and the lack of complete revision control in SciFlow.

Table 1 summarizes the work described above, emphasizing key aspects and findings of the research.

3. METHODOLOGY
3.1 Study Design

The study aims to develop an automated system for mapping relational databases from OJS to Full-Text XML. The
study will follow a workflow that includes data extraction which extracts metadata from the relational database and
maps it to generate a Full-Text XML. Additionally, define the mapping rules to ensure compliance with Full-Text
XML standards. Lastly, XML schema validation will be performed by verifying that the generated XML adheres to
the required schema. Besides that, for the system architecture, metadata from the relational database will be the input,
the mapping process will be the process and the output will be the full-text XML.

262

Journal of Informatics and Web Engineering

Vol. 4 No. 3 (October 2025)

Table 1. Key Aspects and Findings of the Research

automation paper named OS-
APS. It was an automation
tool that could extract the
underlying XML from Word
manuscripts and offer choices
for export and optimization in
various formats such as PDF,
HTML, and EPUB.

XML structure and elements
from the manuscript. For
example, column titles, page
breaks, tables, etc were
successfully extracted.

References | Findings Evaluation Metrics Datasets
[19] The authors aimed to use Metrics were evaluated, such as | N/A
open-source tools to make a compatibility with Microsoft
conversion from Microsoft Word and the ability to retain
Word submission to XML textual and non-textual elements
format since many advantages | while converting Microsoft
existed in JATS. Word files into XML.
[20] The authors proposed a Metrics were to verify the N/A
collection of mapping that equivalence of validation results
could convert from XSD to between XSD for XML data and
ShEx, along with a prototype ShEx for RDF data.
implementation for a subset of
the proposed mappings.
[21] The authors proposed a four- The evaluation metrics N/A
phase approach to recognize, highlighted the capability of
annotate, and visualize parallel | these four workable phrases.
content structures in XML
documents.
[22] The authors proposed using N/A Dataset could be found
open-source code to convert though this link:
JATS XML to various output https://doi.org/10.7910/DV
formats such as XHTML, N/S1BHPO.
PubReader, PDF, etc.
[23] The authors proposed an OS-APS could recognize the The input materials were

The “Hallesches Jahrbuch
fur Geowissenschaften”
(the Yearbook of
Geosciences in Halle) and
the ULB-SA’s own series
“Schriften zum
Bibliotheks- und
Buchereiwesen in Sachsen-
Anhalt” (series on
librarianship studies in
Saxony-Anhalt).

[13]

The authors constructed an
automated conversion system
that converted Microsoft Word
format to JATS XML.

The adoption rate was achieved
by 17 journals within the first
month of release, performing
better by using machine learning
to handle language-specific
challenges.

Dataset from the HRCAK
database consisted of 530
Croatian scientific journals
and 287000 full-text open-
access articles.

(8]

The authors proposed an
automated tool named RX for
parsing Zcademic documents
into XML format.

The success rate of the RX tool
reached 91% accuracy for varied
document structures and was
evaluated using the confusion
matrix.

Used around 50 academic
research proposals which
were 160 pages on average
and a total of 8004 pages
for all 50 documents from
disciplines like information
systems. These datasets
were sourced from

263

Journal of Informatics and Web Engineering

Vol. 4 No. 3 (October 2025)

institutional repositories of
Universities across South
Africa, Ghana, Nigeria, and
India.

humanities publications.

instead of QuickSubmit since it

[11] The authors proposed a The workflow efficiency was Using Bibliographic
workflow named PubLink evaluated by its ability to save databases which were from
which was suitable for digital | time by using Native XML WorldCat and Kubika.

was quite tedious and time-
consuming. Error reduction was
assessed through the workflow's
design to minimize errors in
metadata entry and bibliography
management using tools using
tools like Zotero and external
bibliographic databases,
evidenced by the statement".

3.2 Data Collection

The study utilizes datasets from OJS version 3.4.0-0, available on GitHub and uploaded by the Public Knowledge
Project. This dataset comprises 124 tables and 845 columns, thoroughly representing article and publication data
within OJS. It includes information on journals, editorial workflows, peer reviews, authors, and more. It includes
various stages of manuscript submission, peer review processes, OJS’s user information, etc. Furthermore, the dataset
contains historical records from 2014 until 2023 with most recent modifications made on June 10, 2023. Overall, this
dataset is highly structured and serves as a good resource for developing automation to extract this metadata.
Furthermore, the key entities in this dataset include:

authors: Stores the information of authors such as author id, email, etc.

author_settings: Stores additional metadata of authors such as affiliation, family name, country, etc.
publications: Represents individual publications, linked to submissions and authors tables.
publication_settings: Stores additional metadata of publications.

Issues: Stores details about journal issues which include volume, number, and publication date.
submission_search_keyword_list, submission_search_object keywords, submission_search_objects:
Includes keywords and their relationships to facilitate search functionalities.

Figure 2 shows a partial view of the relational schema which will be implemented.

3.3. Data Preprocessing
3.3.1 Data Retrieval

This step retrieves the necessary data by selecting only the specific fields required for XML mapping. An SQL query
will be utilized to join data from the tables, which include publications, authors, author_settings, publication _settings,
issues, and submission_search keyword _list.

3.3.2 Data Cleaning

a) Handling duplicated data: Ensure that no duplicate articles are processed multiple times. Figure 3 illustrates
how to prevent duplicate keywords from appearing.

264

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

— | issues v | submission_search_objects ¥
ssue_id BIGINT(20) _| submission_search_keyword_list ¥ object_id BIGINT({20)
journal_id BIGINT(20) keyword_id BIGINT(20) submisson_id BIGINT (20)
volume SMALLINT(&) keyword_text V ARCHAR(60) type INT(11)
number VARCHAR(40) > assoc_id BIGINT(20)
year SMALLINT(6) ¥ >
published SMALLINT(5) ol e +
A T P
date_published DATETIME fi
date_notified DATETIME | submission_search_object_keywords ¥) author_settings ¥
ast modified DATETIME submission_search_object_keyword_id BIGINT(20) author setting_id BIGINT(2D)
access_status SMALLINT(6) object_id BIGINT(20) author_jd BIGINT(20)
open_access_date DATETIME keyword _id BIGINT(20) locale VARCHAR(14)
show_vaume SMALLINT(8) pos INT(11) setting_name VARGHAR(255)
show_number SMALLINT(6) » setting_value MEDIUMTEXT
show_year SMALLINT(6) - publications - >
show_title SMALLINT(S) |
style file name VARGHAR(S0) publication_id BIGINT (20) L _¥
- o access_status BIGINT(20) 1
original_style_file_name VARCHAR(255) L
ul_path VARGHAR(64) date_published DATE j authors v
o 1d BIGINT(20) last_moditied D ATETIME by a author_id BIGINT(20)
= primary_contact_id BIGINT(20) 1| Email VARCHAR(SD)
o section_id BIGINT (20) include_in_browse SMALLINT(8)
~] publication_settings ¥ I s=q DCUBLE(S,2) publication_id BIGINT(20)
publication_setting_id BIGINT (20) | submisson_id BIGINT (20) —iH s2q DOUBLE(S,2)
publication_id BIGINT (20) | status SMALLINT(®) #—1 user_group_id BIGINT(20)
ocale VARCHAR(14) B —-l url_path VARGHAR(64) »
verdon BIGINT(20)

stting_name VARCHAR(255)

seting_value MEDIUMTEXT dai_id BIGINT (20)

Figure 2. Partial View of the Relational Schema Diagram

if keyword text and keyword text not in article ir

ET.SubElement(article info[’ "1,

. keyword_text
article_info["k (t"].add(keyword_text)

Figure 3. Prevent Duplicate Keywords from Appearing
b) Handling missing or null values: It will ignore the null values and not formulate its tag/entry. Figure 4
illustrates how to avoid missing values from corrupting the structured output.

if volume or number or year or date_published:

article_info[” b ["volume"”: volume, "i _number”: number, ") ar, "date_publi : date_published}

Figure 4. Avoid Missing Values from Corrupting the Structured Output

265

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

3.4. Implementation Details

The proposed study will extract metadata from relational database and maps it to a hierarchical XML element. Figure
5 shows the processes of mapping.

Connect to MySQL
Database

& =N
Create a root el

" J

p——

Extract data from
database

Create a new entry]

Retrieve Existing
Entry

According to Database |«
Relationships J

Map data to XML
elements
{ Save XML file]

[Nest Elements

Figure 5. Flowchart of the Mapping Process
The process consists of the following steps:
Steps:

a) Establishing a connection with OJS relational database using MySQL.

b) Create a root element of different types of metadata.

¢) Retrieving structured data from the database. For instance, author’s name, author’s affiliation, article title,
etc.

d) To check does the entry exists in XML or not, if exists, then retrieve the existing entry and nest the elements
into it. Additionally, if an entry is not found in the XML, create a new entry for it.

e) Mapping the data to XML elements by assigning structured data to the appropriate XML tags.

f) Savathe XML file as output.

266

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

3.5 Pseudocode

Algorithm 1 depicts the pseudocode for the mapping from relational database to full-text XML.

Algorithm 1

INPUT: MySQL database with multiple relational tables

OUTPUT: XML file

1: BEGIN

2: INITIALIZE the HOST, USER, PASSWORD, DATABASE

3: FUNCTION fetch_data(HOST, USER, PASSWORD, DATABASE)

4: CONNECT to MySQL database using HOST, USER, PASSWORD, DATABASE
5: INITIALIZE cursor

6: EXECUTE SQL query to extract data:

7: (publication_id, author_id, author_settings, author email

8: publication settings, issue details, and keywords) FROM JOINING TABLES
9: (publications, authors, author_settings, publication_settings,

10: issues,submission_search keyword_list)

11: INITTALIZE submission_data as an empty dictionary

12: FOR EACH row in query results DO

13: EXTRACT publication _id, author id, author setting name,

14: author_setting_value,

15: author_email, pub_setting_name, pub_setting_value, volume,

16: number, year, date_published, keyword_text

17: IF publication_id NOT in submission_data THEN

18: CREATE <article> root element

19: CREATE <author-meta> element inside <article>

20: CREATE <keyword> element inside <article>

21: ADD publication_id to submission_data with:

22: (article_element, author-meta element, authors dictionary,

23: publication, settings dictionary, issues dictionary, keyword
24: element, keyword_set (to store unique keywords)

25: END IF

26: SET article info as submission_data[publication_id]

27: IF author_id NOT in article_info["authors"] THEN

28: CREATE <author> element inside <author-meta>

29: ADD author _id to article_info["authors"] with: author element,
30: added_fields set

31: END IF

32: SET author_element as article_info["authors"][author_id]["element"]
33: SET author_fields as article _info["authors"][author id]["added fields"]
34: IF author_email exists AND "email" NOT in author_fields:

35: CREATE <email> element inside <author>

36: SET text of <email> as author _email

37: ADD "email" to author fields

38: END IF

39: IF author_setting name AND author_setting value exist AND NOT in
40: author fields:

41: CREATE <author_setting name> element inside <author>
42: SET text of element as author_setting value

43: ADD author_setting name to author fields

44 END IF

45: IF pub_setting name AND pub_setting_value exist AND

46: pub_setting name NOT 36: in article_info["publication_settings"]:
47: ADD pub_setting name with pub_setting_value to

48: article_info["publication_settings"]

267

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

49: END IF

50: IF volume, number, year, OR date_published exist:

51: STORE these values in article info["issues"]

52: END IF

53: IF keyword_text exists AND NOT in article info["keyword set"]:
54: CREATE <keyword> element inside <keyword-meta>
55: SET text of <keyword> as keyword_text

56: ADD keyword_text to keyword_set

57: END IF

58: END FOR

59: FOR each publication_id in submission_data:

60: FOR each publication setting:

61: CREATE element with setting name inside <article>
62: SET text of element as setting_value

63: END FOR

64: IF issue details exist:

65: CREATE <volume>, <issue_number>, <year>, and
66: <date_published> elements

67: SET text of each element from issue details

68: END IF

69: CONVERT XML tree to string with indentation

70: WRITE formatted XML string to file "article pub_id.xml"

71: END FOR

72: END OF FUNCTION

73: CALL fetch data(HOST, USER, PASSWORD, DATABASE)
74: END

The program start with initialize the database connection (Lines 1-2). Then create a function and pass the database
MySQL connection credentials as the parameter (Line 3). Using these parameters to establishes a connection to
MySQL and create a cursor object to execute SQL queries (Lines 4-5). Furthermore, execute a SQL query to fetch the
metadata like publication, author, and keyword details from multiple tables using JOIN and LEFT JOIN clauses (Lines
6-10). An empty dictionary will be created to store XML data (Line 11) and it will loop through each row from the
fetched data (Line 12), unpacking each row’s values into useful variables (Lines 13-16). If the publication_id appeared
for the first time from the list, create an article root element, create author-meta and keyword XML element, and place
it under the root element (Lines 17-24). These elements will be stored in submission data under the publication ID
(Line 26).

Besides that, the program will check the if author id appeared for the first time, if yes, create an author element under
author-meta (Lines 27-30) while avoiding any duplicated authors (Lines 32-33). If the author’s email is available and
has not yet been added, add it to XML (Lines 34-37). The author information is then dynamically added (Lines 39-
43). Additionally, store publication settings in the dictionary (Lines 45-48), including the volume, number, year, and
data_published into the dictionary if they exist (Lines 50-51). If the keyword _text exists and has not appeared in the
article_info, add it in (Lines 53-56). Subsequently, publication settings (Lines 59-62) and issues details (Lines 64-68)
are converted into XML elements if available. Lastly, convert the collected data into XML (Lines 69-70) and (Line
73) is the calling the fetch_data function by passing the parameter into it.

3.6 Mapping Rules
Step 1: Ontology Development

o Explore the OJS database, define an ontology that identify the key tables and the relationship within them.
For instance, authors (author information), publications (article paper) and submission_search_keyword _list
(keywords of articles).

Step 2: Extract Data from the Relational Database

268

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

e Extract the schema structure from the OJS database and identify the relevant tables. For instance, authors and
the author settings tables, there is a relationship between them.
e Apply Structured query language (SQL) queries to extract the needed data from relational database.

Step 3: Define XML Structure and Mapping Rules

e Determine the key elements that are needed to form an XML. For example, author’s name, article title,
keywords of the article, etc.

e Define the root element with nested elements by representing related information.

e Plan meaningful tags. For example, it should be in tag.

e Keep all records in a consistent format. For instance, Figure 6 shows that every author follows the same
structure.

amwandenga@mailinator.com email

University of Cape Town affiliation
countr

Mwandenga ilyMame

Adan give

notanemailamansour@mailinator.com
BB Ty
Mansour +
Amina giwve

nriouf@mailinator.com email

Figure 6. Example of XML Structure
Step 4: Semantic Matching

e Handle missing value by removing the column. For instance, the author does not have affiliation, then not
need to include the affiliation tag instead of placing N/A.

Step 5: Data Transformation and Integration

e Convert the relational database entries to XML format.
e Use Python libraries such as xml.etree.ElementTree, SQL queries and etc.

Step 6: Evaluation

e Ensure the XML output is structured correctly. Validate against XSD.
e Refine the mapping rules if any problem caused though validation.

Step 7: Continuous Maintenance

e Update the mapping rules time by time to accommodate schema changes.
e Automate other journal articles.

269

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

4. RESULTS AND DISCUSSIONS
4.1 Data Analysis

The metadata was extracted from the OJS relational database by using SQL queries. The join command has been used
to combine data from two or more tables in the database. Figure 7 shows the query used to retrieve the metadata by
applying the join command clause.

cursor.execute(’ "’

lication_id,

Figure 7. SQL Query for Metadata Extraction Using JOIN Clause

Additionally, the tools that were used for this study include Python, utilizing ElementTree to provide functions for
parsing, creating, modifying, and writing XML data, and MiniDom for enhanced readability through XML formatting.
Figure 8 shows it ElementTree to create a root element which is article and creates author-meta and keywords as its
sub-element. Furthermore, Figure 9 shows parsing raw XML string into structured DOM (Document Object Model)
and formats it with proper indentation to improve readability.

article element = ET.Element({“article™)
author_meta element = ET.SubElement(article element, "author-meta™)
keywords_element =

xml_str_pretty =)| ")

Figure 9. Sample of Minidom Module

To ensure the validity of the generated XML, schema validation will be conducted. Figure 10 and Figure 11 depict
the XSD schema for the XML. The schema will outline the structure of the XML, with the article as the root element,

accompanied by author metadata, keywords, issues, and article metadata. The purpose of the schema is to confirm the
accuracy of the XML.

270

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

" elementFormDefault=

* maxOccu unbound

c mmMmMmTMMmMM

t name="ke

typ

ue_numb

Figure 11. Remaining Part of the XSD Schema for Validation

271

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

4.2 Findings

The preliminary design for the automated mapping system has successfully extracted the required metadata and
transformed it into structured XML. The extracted metadata was accurately assigned to their respective XML elements.
For instance, author info such as email, affiliation, country, etc have correctly mapped to the <author> element in the
XML. Figure 12 shows the result of XML mapping. It shows that all of the metadata has been assigned to their
respective entry with a hierarchical format.

lkhafaji@mailinator . com
Stanford University

Al -Khaftaji

1=mmorse@mailinator.com =]
1 Stanford University

Td=s=>[1] ca =
Environmental sustainability and swustainable dewvelopment
Learning Sustainable Design through Service title

Figure 12. Result of XML Mapping

Figure 13 illustrates the validation process of XML against the XSD schema. The input file will be article 1.xml, and
the XSD schema is named schema.xsd. If the validation result is correct, it will output the message indicating that the
XML is valid; conversely, it will indicate that the XML is invalid.

[

Valida
From

xml_ File
xsd_fFile

xmlschema E g) (File=xsd_+File)
xmlparser E g » {schema=xxmlschema)

'_'i
HOOUHNANREWN

Ty
with open{xml_Ffile, "r”, encoding="wutFf

4 e
¥

| b etree._parself xmlparser)
print{”R .

cept etr
print({”

Figure 13. Validation with XSD Schema

The result in Figure 14 indicates that the XML is valid, meaning that it fully follows and complies with the schema's
structure.

C:\WWUsers\yWwiin 18\ Documents\FYPLlL\Wmapping

"C:/Users/lWin 1@/Documents/FYPl/mapping/
Result: XML is walid!

Figure 14. Result of Schema Validation

272

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

Figure 15 shows the result of the parsing check; it shows all of the elements from the XML.

Article:
author-meta:

keywords: ["alan', "mwandenga’®, "university’', "cape’', "town’', "amina', "'mansou
> "empirical’', 'evidence', 'signaling®", "suggests", 'signal’', "future®, "prospec
plications"', 'financial', "economists®, "practical", "diwvidend', "guidance', "'ma
stment", *"financing', "'distribution', "'decisions', 'continuous', *function', 're
ation®]
categoryIds: []
copyrightyYear: 2023
issueld: 1
pages: 71-98
abstract: <p>The signaling theory suggests that dividends signal future prosped
ffer a conclusive evidence on this issue. There are conflicting policy implicatid
uidance to management, existing and potential investors in shareholding. Since cq
of management, the dividend decisions seem to rely on intuitive evaluation.</p>
copyrightHolder: Journal of Public Knowledge
prefix: The
subtitle: A Rewview Of The Literature And Empirical Evidence
title: Signalling Theory Diwvidends
volume: 1
issue_number: 2
yvear: 214
date published: 2e23-e6-1© ©3:12:47
Validation Complete!

Figure 15. Result of Parsing Check

Alternatively, established validation tools such as Xmllint and the JATS4R validator were considered for use in this
study. Xmllint is a tool used to check the validity of XML documents. It will check the structure of XML files
against their schemas. It can also be used to beautify XML and check for errors. Furthermore, JATS4R is a tool used
for JATS XML checking to check the conformity of JATS XML files against the appropriate JATS DTD standard.

Figure 16 displays the results of the validation check for Xmllint, confirming that the XML is valid and adheres to
the XML structure.

<?xml wversion="1.@" 2>
<article>
<author-meta>
<author:>
<email>amwandenga@mailinator.com</email:>
<affiliation>University of Cape Town</aftfiliation>
<country>ZA</country>
<fFamilyMName>Mwandenga<,/familyName>
<giwvenName>Alan</givenName>
</author:>
<author:>
<email>notanemailamansour@mailinator.com</email:>
<country>BB</country>

<fFamilwvMNames>sMansour< / FamilvMName>
Format XML Clear

Result

All good, your XML is valid.

Figure 16. Result of the validation checking for Xmllint

Figure 17 shows the result of the validation checking for JATS4R. It shows an error because the XML file does not
follow the JATS standard, which lacks some elements or attributes such as <journal-meta> and <title-group>.
Another error may be that the placement of attributes is not in the correct structure. For instance, metadata like the
<article-title> should be placed within a <title-group>.

273

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

< > Validator Choose File | article_1.xml There was an error
JATS FOR REUSE

Figure 17. Result of the validation checking for JATS4R

The results have shown the feasibility of mapping metadata from a relational database to Full-Text XML for the OJS
platform. The system can generate accurate and compliant XML by reducing manual work and errors. This could
streamline the academic publishing workflow by maintaining the quality of full-text XML. The high level of quality
and accuracy could be beneficial for publishers with a high volume of articles.

The proposed system could enhance the metadata management in academic publishing by (i) reducing the reliance on
manual work, (ii) improving XML generating efficiency, and (iii) enhancing the accessibility and discoverability of
academic articles, enable it easier indexed and increase the searchability across various platform.

In addition, the development of an automated JATS Converter has significantly influenced scholarly publishing by
streamlining the conversion of relational database metadata into structured Full-Text XML. However, the proposed
JATS Converter is in the conceptual phase, and future research will focus on implementation and ensuring compliance
with JATS standards.

The limitations of this study include the lack of full-text metadata in the relational database. Some full-text metadata,
such as the content of each paragraph and the page count, are not provided in the database. Additionally, not all articles
provide the necessary metadata.

4.3 Evaluation Measure

To ensure the effectiveness of the proposed XML generation. Several evaluation approaches will be considered. This
will include the XML validation test, processing time of generating an XML file, and the usability review from some
potential users.

Firstly, we have measured the time taken to produce XML files for 10 articles. The average processing time per article
was around 3 to 10 seconds. This shows that the XML preparation has significantly expedited while ensuring
compliance and could be performed within the planned timeframe.

Additionally, a verified process has been executed by ensure the completeness of metadata extraction. We verifying
whether all metadata field relational database were succefully captured and structured.

5. CONCLUSION AND FUTURE WORK

This paper presents an automation of mapping relational databases to Full-Text XML, addressing inefficiencies in
scholarly publishing. By leveraging structured mapping techniques and validation mechanisms. This could enhance
the accuracy and efficiency of metadata transformation. Additionally, it could reduce manual effort and human error
by maintaining its quality. However, the lack of complete metadata in the relational database could affect the accuracy
of Full-Text XML. Numerous journals may have missing values or inconsistent metadata fields.

Future work could focus on several key development areas to enhance the overall functionality and reliability of the
system. A PDF converter will be developed to obtain full-text metadata. The aim is to capture essential metadata
elements such as article titles, author names, affiliations, etc. In addition, the converter will also extract the main body
content, including individual sections such as Introduction, literature review, methodology, conclusion, etc. The
extracted metadata will be automatically formatted and structured into the JATS XML standard. Additionally, a
validation mechanism should also be implemented to detect errors before the final XML. Through these
implementations, the XML output’s quality, completeness can be greatly enhanced by reducing the percentage of
submission errors and ensuring compliance with publishing standards. Further developments will primarily focus on
advanced model training techniques to improve the system’s ability by building a recognition model so it can detect
the various document components within PDF files. These components include visual and structural elements such as

274

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

figures, tables, headers, etc. In addition, the system will automatically capture and label each part of the document
with greater precision, ensuring that the content and layout are maintained during the conversion process. These
enhancements will create a more efficient and intelligent system.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for their valuable comments.

FUNDING STATEMENT

The authors received no funding from any party for the research and publication of this article.

AUTHOR CONTRIBUTIONS

Chee-Xiang Ling: Conceptualization, Data Curation, Methodology, Validation, Writing — Original Draft Preparation;
Kok-Why Ng: Project Administration, Writing — Review & Editing;
Heru Agus Santoso: Project Administration, Writing — Review & Editing.

CONFLICT OF INTERESTS

No conflict of interests were disclosed.

ETHICS STATEMENTS

Our publication ethics follow The Committee of Publication Ethics (COPE) guideline. https://publicationethics.org/

REFERENCES

[1] J. Greenberg, M.F. Wu, W. Liu, and F. Liu, “Metadata as Data Intelligence,” Data Intelligence, vol. 5, no. 1, pp. 1-5,
2023, doi: 10.1162/dint_e_00212.

[2] N.A. Sajid et al., “A Novel Metadata Based Multi-Label Document Classification Technique,” Computer Systems
Science and Engineering, vol. 46, no. 2, 2023, doi: 10.32604/csse.2023.033844.

[3] Z. Boukhers, and C. Yang, “Comparison of Feature Learning Methods for Metadata Extraction from PDF Scholarly
Documents,” Jan. 2025, doi: 10.48550/arXiv.2501.05082.

[4] N. Samadi, and S.D. Ravana, “XML CLUSTERING FRAMEWORK BASED ON DOCUMENT CONTENT AND
STRUCTURE IN A HETEROGENEOUS DIGITAL LIBRARY,” Malaysian Journal of Computer Science, vol. 36, no.
2,2023, doi: 10.22452/mjcs.vol36n02.2.

[5] A. Kocher, A. Markaj, and A. Fay, “Toward a Generic Mapping Language for Transformations between RDF and Data
Interchange Formats,” in IEEE International Conference on Emerging Technologies and Factory Automation, ETFA,
2022, doi: 10.1109/ETFA52439.2022.9921513.

[6] M. Ali, and M.A. Khan, “Performance Enhancement of XML Parsing Using Regression and Parallelism,” Computer
Systems Science and Engineering, vol. 48, no. 2, 2024, doi: 10.32604/csse.2023.043010.

[7] S.C. Haw, A. Amin, P. Naveen, and K.W. Ng, “Performance Evaluation of XML Dynamic Labeling Schemes on
Relational Database,” International Journal of Technology, vol. 13, no. 5, 2022, doi: 10.14716/ijtech.v13i5.5871.

275

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

(8]

(9]

[10]

[11]

[15]

[16]

[17]

[22]

O. Iwashokun, and A. Ade-Ibijola, “Parsing of Research Documents into XML Using Formal Grammars,” Applied
Computational Intelligence and Soft Computing, vol. 2024, 2024, doi: 10.1155/2024/6671359.

B. Tabatadze, “Technological Aspects of Open Journal Systems (OJS),” Journal of Technical Science and Technologies,
vol. 8, no. 1, pp. 23-29, Apr. 2024, doi: 10.31578/jtst.v8il.151.

S.M. Haider, and M. Kashif, “Open Journal System,” Annals of Abbasi Shaheed Hospital and Karachi Medical &
Dental College, vol. 24, no. 2, 2019, doi: 10.58397/ashkmdc.v24i2.30.

E. Bastianello, C. Tomlinson, and A. Adamou, “PubLink: Editorial Workflow for Digital Scholarly Publications in the
Humanities,” in Proceedings of the 35th ACM Conference on Hypertext and Social Media, New York, NY, USA: ACM,
Sep. 2024, pp. 318-322, doi: 10.1145/3648188.3677051.

T. Taipalus, “Database management system performance comparisons: A systematic literature review,” Journal of
Systems and Software, vol. 208, pp. 111872, Feb. 2024, doi: 10.1016/j.jss.2023.111872.

L.J. Musap, “Enhancing scientific publishing: automatic conversion to JATS XML,” European Science Editing, vol.
2023, no. 49, 2023, doi: 10.3897/ese.2023.e114977.

AM. Maatuk, T. Abdelaziz, and M. A. Ali, “Migrating relational databases into XML documents,” in Proceedings -
2020 21st International Arab Conference on Information Technology, ACIT 2020, 2020, doi:
10.1109/ACIT50332.2020.9299967.

R. Chen, G. Cai, J. Chen, and Y. Hong, “Integrated method for distributed processing of large XML data,” Cluster
Comput, vol. 27, no. 2, 2024, doi: 10.1007/s10586-023-04010-0.

X. Sun, N. Li, and L. Zhang, “Automatic Generation of Test Documents Based on Knowledge Extraction,” in ACM
International Conference Proceeding Series, 2022, doi: 10.1145/3524304.3524307.

S.C. Haw, L.J. Chew, D.S. Kusumo, P. Naveen, and K.W. Ng, “Mapping of extensible markup language-to-ontology
representation for effective data integration,” IAES International Journal of Artificial Intelligence, vol. 12, no. 1, 2023,
doi: 10.11591/ijai.v12.il.pp432-442.

I.K. Raharjana, B. Zaman, O.I. Husna, R. Ferdiansyah, A.S. Putri, and F.D.K. Sari, “Improving reviewer selection in
Open Journal Systems using a Scopus search application programming interface in the &It;i>Journal of Information
System Engineering and Business Intelligence</i>,” Science Editing, vol. 12, no. 1, pp. 20-27, Feb. 2025, doi:
10.6087/kcse.356.

0. Odu, and A. Ekanger, “How we tried to JATS XML,” Ravnetrykk, no. 39, 2020, doi: 10.7557/15.5517.

H. Garcia-Gonzalez, and J.E. Labra-Gayo, “XMLSchema2ShEx: Converting XML validation to RDF validation,”
Semant Web, vol. 11, no. 2, pp. 235-253, Feb. 2020, doi: 10.3233/SW-180329.

M. Beck, M. Schubotz, V. Stange, N. Meuschke, and B. Gipp, “Recognize, Annotate, and Visualize Parallel Content
Structures in XML Documents,” in Proceedings of the ACM/IEEE Joint Conference on Digital Libraries, 2021, doi:
10.1109/JCDL52503.2021.00078.

Y. Cho, “Open-source code to convert Journal Article Tag Suite Extensible Markup Language (JATS XML) to various
viewers and other XML types for scholarly journal publishing,” Science Editing, vol. 9, no. 2, 2022, doi:
10.6087/kcse.284.

C. Borchert, R. Cozatl, F. Eichler, A. Hoffmann, and M. Putnings, “Automatic XML Extraction from Word and
Formatting of E-Book Formats: Insight into the Open Source Academic Publishing Suite (OS-APS),” Publications, vol.
11, no. 1, 2023, doi: 10.3390/publications11010001.

276

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

BIOGRAPHIES OF AUTHORS

Chee-Xiang Ling is a final-year Data Science student at Multimedia University Cyberjaya. He
is passionate about applying data science techniques and has experience in data preprocessing,
visualization, and modeling. He has worked on various real-world projects and continuously
seeks new challenges and learning opportunities to enhance his skills. He can be reached at
cheexiangling@gmail.com.

Kok-Why Ng is an Associate Professor in the Faculty of Computing and Informatics (FCI) in
Multimedia University (MMU), Malaysia. He did his B.Sc. (Math) in USM, Penang, and his
M.Sc (IT) and Ph.D (IT) in MMU, Malaysia. His research interests are in Recommender
System, 3D Geometric Modeling and Animation. He is also active in some research projects
related to artificial intelligence, deep learning and human blood cells. He can be contacted at
kwng@mmu.edu.my.

Heru Agus Santoso is a faculty member at Dian Nuswantoro University in Semarang,
Indonesia. His research interests primarily include ontology, information retrieval, text mining
and deep learning. He has published several publications in these areas, showcasing
contributions in data and knowledge systems. He can be contacted by
heru.agus.santoso@dsn.dinus.ac.id.

277

