
Journal of Informatics and Web Engineering

https://doi.org/10.33093/jiwe.2025.4.3.16

© Universiti Telekom Sdn Bhd.

 Published by MMU Press. URL: https://journals.mmupress.com/jiwe

Journal of Informatics and

Web Engineering

Vol. 4 No. 3 (October 2025) eISSN: 2821-370X

Mapping Relational Database to Full-Text XML

for Open Journal System Cross-Platform Article

Distribution
Chee-Xiang Ling1*, Kok-Why Ng2, Heru Agus Santoso3

1,2Faculty of Computing and Informatics, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Malaysia
3Department of Informatics Engineering, Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang, Indonesia

*corresponding author: (cheexiangling@gmail.com; ORCiD: 0009-0004-7548-1061)

Abstract - In academic publications, the automation of full-text eXtensible Markup Language (XML) is increasingly essential, as

generating full-text XML for article distribution is a complex and time-consuming process that requires metadata extraction from

a relational database and transformation into hierarchical structures such as Journal Article Tag Suite (JATS). The lack of

automation in this transformation process may cause inconsistencies and inaccuracies and may cause errors due to human error.

The primary aim is to develop an automation system for transforming metadata from a relational database to full-text XML by

reducing errors and speeding the process of generating full-text XML. This is crucial since the demand for automation has been

increasing year by year. Furthermore, the motivation behind this research is the growing adoption of the Open Journal System

(OJS), one of the popular platforms for managing scholarly journals. It supports a relational database to store the metadata and

article information. Therefore, developing an automated system is essential for transforming this structured metadata to full-text

XML. To address this issue, various techniques for mapping will be explored to enable the transformation of relational database

structures into full-text XML formats. The proposed method involves metadata extraction, mapping logic, and various validation

mechanisms to ensure the XML is structured and the accuracy of it. The preliminary result indicates that the metadata has been

successfully mapped from a relational database to XML. However, the JATS-specific tagging has not yet been implemented and

will be addressed in future work. This research is significant to the publication community, as it brings convenience by reducing

some manual work and ensuring metadata standardization.

Keywords—Relational Database, XML, Open Journal System, Full-text XML, Metadata Mapping

Received: 21 February 2025; Accepted: 25 May 2025; Published: 16 October 2025

This is an open access article under the CC BY-NC-ND 4.0 license.

1. INTRODUCTION

In the digital age, the management and organization of online articles have evolved rapidly in recent years due to the

increasing availability of digital content and the increasing demand for structured storage metadata [1], [2]. An article

contains various metadata. For instance, author name, article title, issues, and so on [2]. Metadata plays a crucial role

in indexing scientific documents and improving accessibility to enhance searchability in alignment with FAIR

https://doi.org/10.33093/jiwe.2025.4.3.16
https://doi.org/10.33093/jiwe.2025.4.3.16
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe
https://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

260

principles (Findability, Accessibility, Interoperability, and Reusability) [1], [3]. Additionally, tagging for journal

articles is also required so it will be structured [4]. Therefore, Full-Text XML has been widely used since it is beneficial

with uniquely identifiable tags in a tree-like structure [5], [6], [7] .This could ensure that it is readable while

maintaining a structured format [8]. Additionally, there are several XML-based standards/schemas which provide a

structured format such as JATS, Text Encoding Initiative (TEI), and ePub (eBook format in XML).

One of the most widely used platforms for managing peer-reviewed academic journals is the OJS. OJS serves as a

platform for storing and managing various types of data related to academic journal publishing, and it is an essential

tool for editors, authors, and reviewers. Therefore, scholarly journals are most likely stored in a relational database,

and OJS is no exception [9], [10], [11]. However, generating Full-Text XML from relational databases is challenging,

as it requires various metadata and full-text content while restructuring it into a hierarchical XML format [12]. This

process will be time-consuming and complex, making manual conversion impossible for large-scale publications [3],

[13], [14]. Thus, automation has been recommended to simplify the process and improve scalability for publications

that handle huge numbers of articles to provide user convenience in generating Full-Text XML [5], [15], [16].

Therefore, this paper aims to develop automation that could map the data from relational databases to formulate the

Full-Text XML.

This paper explores various mapping techniques of mapping relational databases to Full-Text XML. However, to

ensure automation can handle nested XML structures and scalability [17], some challenges must be faced. One

significant challenge is to ensure the metadata is mapped to XML tags correctly and accurately while fully

understanding the database structure. Additionally, inefficiencies, inaccuracies, and potential loss of academic reach

may arise for journal publishers [18]. Therefore, to achieve a stable and scalable solution.

The contributions of this paper are:

• Developed a tool to convert the content of a relational database from OJS to structured Full-Text XML, thus

minimizing the errors caused by manual processing.

• Enhanced XML generation and compliance through adherence to industry standards, accessibility and

discoverability of the article were improved.

• Tested the tool on its accuracy, efficiency, and compliance, which showed an increase in data integrity and

the speed of the processing system.

2. RELATED WORKS

[19] aimed to use open-source tools to make a conversion from Microsoft Word submission to XML format because

of the wide advantages that could be found through JATS since it is accessible, and increased standard indexing format.

The method was divided into four stages, which were submission, conversion (using the tool meTypeset), editing

(using the Texture editor,) and presentation (evaluating plugin JATS Parser Plugin). Figure 1 shows the workflow for

JATS XML in Septentrio.

Figure 1. Workflow for JATS XML in Septentrio [19]

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

261

Metrics such as compatibility with Microsoft Word and the ability to retain textual and non-textual elements while

converting Microsoft Word files into XML were evaluated. Furthermore, they found that not all tools could work

effectively; for example docxToJats did not support all major features of Microsoft Word, and the plugin did not

support non-textual elements.

[20] proposed a collection of mapping that can convert from XML Schema Definition (XSD) to Shape Expression

(ShEx), a prototype implementation for a subset of the proposed mappings. Methodologically, XSD elements such as

datatypes, complex types, and attributes were mapped to similar ShEx structures via predicates and constraints, and a

parser was used to analyze XSD and iteratively convert its components to ShEx Compact Format (ShExc). Once the

conversion was done, metrics were used to verify the equivalence of validation results between XSD for XML data

and ShEx for RDF data. The advantages that were found included bridging the XML RDF gap, performing an easier

way to semantic web standards, and reducing manual work with automated tools. However, a limitation that occurred

was that not all XSD constructions could be fully reversed in ShEx, causing partial semantic loss. In addition, there

was a lack of mapping for Schematron and Relax NG.

[21] proposed a four-phase approach to recognize, annotate, and visualize parallel content structures in XML

documents. This helped to identify the similarities and differences between XML documents. The phases were as

follows:

• Decomposition - To split the XML documents into plain text, images, and mathematical expressions.

• Find common elements in the documents and identify changed positions - By applying algorithms to

detect similarities or differences in text, images, and so on. Preserved the structure and context from the

original documents by relating the changes to the original XML/HTML tags.

• Split common elements into minimal, non-overlapping elements - To avoid conflict between the pre-

existing XML tags and formatting, identified the common elements and divided them into minimal, non-

overlapping components.

• Recombine match groups and insert highlight tags - This phrase involved recombining the previously

identified match groups and inserting highlight tags by referencing the type of content.

The evaluation metrics highlighted the capability of these four workable phrases. The limitation that occurred during

the process of removing XML tags was that the plain text may lose proper spacing between words.

[22] discussed using an open-source code to convert JATS XML into various output formats such as XHTML,

PubReader, PDF, and so on. It also converted JATS XML to Cross-ref XML, PubMed XML, and DOAJ XML. This

approach enabled the flexibility for users to retrieve different formats for their needs. XSLT stylesheets were used to

transform the XML into formats visible on the web. In addition, HTML and XSLT were used to convert XML into a

more readable format for small screens. Furthermore, it transformed XML into an eBook format with components

optimized for various devices and generated PDFs using XSL-FO (Formatting Objects). The dataset was made

available at https://doi.org/10.7910/DVN/S1BHP0. By adopting open-source methods, the publishing process and

various digital services became much easier to manage, allowing small publishers to implement efficient workflows

without requiring technical expertise. However, the staff shortage was limited by the lack of professionals, such as

professional editors, managing editors, and IT engineers, especially in Korea, and the lack of JATS professionals.

[23] proposed an automation system named OS-APS. It was an automation tool that extracted the underlying XML

from Word manuscripts and offered choices for export and optimization in formats such as PDF, HTML, and EPUB.

In addition, some publishing platforms such as OJS, Open Monograph Press (OMP), and DSpace were considered

capable of implementing this system. Methodologically, they conducted interviews and surveys to gather a structured

overview and broaden insights for performing the software requirements analysis. The tools that they leveraged

included Pandoc, Docker, and Paged.js for the development and testing workflow. The “Hallesches Jahrbuch fur

Geowissenschaften” (the Yearbook of Geosciences in Halle) and the ULB-SA’s series “Schriften zum Bibliotheks-

und Buchereiwesen in Sachsen-Anhalt” (series on librarianship studies in Saxony-Anhalt) were used as input materials

to enhance and generate new layouts through the use of the OS-APS suite. As a result, OS-APS recognized the XML

structure and extracted elements from the manuscripts. For example, column titles, page breaks, tables, etc, were

successfully extracted.

[13] constructed an automated conversion system that converted Microsoft Word format to JATS XML, which was

applied to non-XML experts. In their proposed methodology, they used Pandoc.org as the main tool to convert full-

text Microsoft Word into JATS XML. The second tool was AnyStyle, which was used to identify references and parse

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

262

them into separate XML elements. The JATS XML files were automatically created after the article in Microsoft

Word format was uploaded and transformed into HTML once the JATS XML file was created. They used the dataset

from the HRCAK database which consisted of 530 Croatian scientific journals and 287000 full-text open-access

articles. The adoption rate achieved 17 journals within the first month of release and an improvement was made to

Anystyle by applying machine learning to perform better in handling language-specific challenges. Furthermore, the

advantages of this conversion system were that it could be accessible to the non-XML expert and that no expensive

tools were required. Within this tool, the cost, time, and complexity were reduced since generating a JATS without

automation was quite tedious. The limitation was that the feature was currently only available in HRCAK journals,

although there were plans to expand in the future.

[8] proposed an automated tool named Research_XML (RX) to parse academic documents into XML format. They

used a formal approach involving Context-Free Grammars (CFGs) and Regular Expressions to extract syntactic and

semantic structures, which were then encoded into an XML tree like structure. This method involved three core steps:

slicing, tokenizing, and parsing, ensuring that the documents were transformed into an XML tree. The purpose of

slicing was to extract the lines of words from the document, tokenizing referred to converting the text slices into

predefined tokens and parsing constructed an Abstract Syntax Tree that was serialized into XML. Besides that, they

implemented CFG-based rules to map sections of the documents, such as title pages and chapters, into an XML

representation. This research was applied to around 50 academic research proposals averaging 160 pages each, totaling

8004 pages across all 50 documents, from disciplines such as information systems. These datasets were sourced from

institutional repositories of universities across South Africa, Ghana, Nigeria, and India. Regarding the evaluation

metrics, the success rate of the RX tool reached 91% accuracy for varied document structures and was evaluated using

a confusion matrix. The RX tool demonstrated several advantages, including preserving the structure and semantics

of the input document, providing detailed evaluation and metrics, and lastly, efficiently recognizing title and

preliminary pages while limitations included poor performance in identifying the title page section, parsing tables,

and figures.

[11] proposed a workflow named PubLink, which was suitable for digital humanities publications. It aimed to

overcome traditional formats by simplifying the transition from traditional formats to JATS XML format. The

workflow included steps such as using SciFlow for drafting, which integrated with Zotero for bibliography

management. Drafts were transformed into JATS files by applying XSLT and Python scripts, correcting the

bibliography data, and filling in missing fields by replacing the content of the BibTex file, integrated with OJS

platform though XML files and using QuickSubmit for the uploading process. Articles were formatted in InDesign

for visually rich PDF outputs and exported as HTML when possible. Finally, Publink was developed to automate

various processes, including the submission of files to OJS, metadata entry, and so on. They used bibliographic

databases such as WorldCat and Kubikat to validate and enhance the metadata. The workflow’s efficiency was

evaluated based on its ability to save time by using Native XML instead of QuickSubmit since it is quite tedious and

time-consuming. Error reduction was assessed through the workflow's design to minimize errors in metadata entry

and bibliography management using tools like Zotero and external bibliographic databases, evidenced by the

statement". The advantages that can be found are other institutes can easily adapt this workflow, it was open source,

cost effective, and helped control budgets. Besides that, the limitations included the need for manual correction of the

JATS XML output from SciFlow and the lack of complete revision control in SciFlow.

Table 1 summarizes the work described above, emphasizing key aspects and findings of the research.

3. METHODOLOGY

3.1 Study Design

The study aims to develop an automated system for mapping relational databases from OJS to Full-Text XML. The

study will follow a workflow that includes data extraction which extracts metadata from the relational database and

maps it to generate a Full-Text XML. Additionally, define the mapping rules to ensure compliance with Full-Text

XML standards. Lastly, XML schema validation will be performed by verifying that the generated XML adheres to

the required schema. Besides that, for the system architecture, metadata from the relational database will be the input,

the mapping process will be the process and the output will be the full-text XML.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

263

Table 1. Key Aspects and Findings of the Research

References Findings Evaluation Metrics Datasets

[19] The authors aimed to use

open-source tools to make a

conversion from Microsoft

Word submission to XML

format since many advantages

existed in JATS.

Metrics were evaluated, such as

compatibility with Microsoft

Word and the ability to retain

textual and non-textual elements

while converting Microsoft

Word files into XML.

N/A

[20] The authors proposed a

collection of mapping that

could convert from XSD to

ShEx, along with a prototype

implementation for a subset of

the proposed mappings.

Metrics were to verify the

equivalence of validation results

between XSD for XML data and

ShEx for RDF data.

N/A

[21] The authors proposed a four-

phase approach to recognize,

annotate, and visualize parallel

content structures in XML

documents.

The evaluation metrics

highlighted the capability of

these four workable phrases.

N/A

[22] The authors proposed using

open-source code to convert

JATS XML to various output

formats such as XHTML,

PubReader, PDF, etc.

N/A Dataset could be found

though this link:

https://doi.org/10.7910/DV

N/S1BHP0.

[23] The authors proposed an

automation paper named OS-

APS. It was an automation

tool that could extract the

underlying XML from Word

manuscripts and offer choices

for export and optimization in

various formats such as PDF,

HTML, and EPUB.

OS-APS could recognize the

XML structure and elements

from the manuscript. For

example, column titles, page

breaks, tables, etc were

successfully extracted.

The input materials were

The “Hallesches Jahrbuch

fur Geowissenschaften”

(the Yearbook of

Geosciences in Halle) and

the ULB-SA’s own series

“Schriften zum

Bibliotheks- und

Buchereiwesen in Sachsen-

Anhalt” (series on

librarianship studies in

Saxony-Anhalt).

[13] The authors constructed an

automated conversion system

that converted Microsoft Word

format to JATS XML.

The adoption rate was achieved

by 17 journals within the first

month of release, performing

better by using machine learning

to handle language-specific

challenges.

Dataset from the HRCAK

database consisted of 530

Croatian scientific journals

and 287000 full-text open-

access articles.

[8] The authors proposed an

automated tool named RX for

parsing Zcademic documents

into XML format.

The success rate of the RX tool

reached 91% accuracy for varied

document structures and was

evaluated using the confusion

matrix.

Used around 50 academic

research proposals which

were 160 pages on average

and a total of 8004 pages

for all 50 documents from

disciplines like information

systems. These datasets

were sourced from

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

264

institutional repositories of

Universities across South

Africa, Ghana, Nigeria, and

India.

[11] The authors proposed a

workflow named PubLink

which was suitable for digital

humanities publications.

The workflow efficiency was

evaluated by its ability to save

time by using Native XML

instead of QuickSubmit since it

was quite tedious and time-

consuming. Error reduction was

assessed through the workflow's

design to minimize errors in

metadata entry and bibliography

management using tools using

tools like Zotero and external

bibliographic databases,

evidenced by the statement".

Using Bibliographic

databases which were from

WorldCat and Kubika.

3.2 Data Collection

The study utilizes datasets from OJS version 3.4.0-0, available on GitHub and uploaded by the Public Knowledge

Project. This dataset comprises 124 tables and 845 columns, thoroughly representing article and publication data

within OJS. It includes information on journals, editorial workflows, peer reviews, authors, and more. It includes

various stages of manuscript submission, peer review processes, OJS’s user information, etc. Furthermore, the dataset

contains historical records from 2014 until 2023 with most recent modifications made on June 10, 2023. Overall, this

dataset is highly structured and serves as a good resource for developing automation to extract this metadata.

Furthermore, the key entities in this dataset include:

• authors: Stores the information of authors such as author id, email, etc.

• author_settings: Stores additional metadata of authors such as affiliation, family name, country, etc.

• publications: Represents individual publications, linked to submissions and authors tables.

• publication_settings: Stores additional metadata of publications.

• Issues: Stores details about journal issues which include volume, number, and publication date.

• submission_search_keyword_list, submission_search_object_keywords, submission_search_objects:

Includes keywords and their relationships to facilitate search functionalities.

 Figure 2 shows a partial view of the relational schema which will be implemented.

3.3. Data Preprocessing

3.3.1 Data Retrieval

This step retrieves the necessary data by selecting only the specific fields required for XML mapping. An SQL query

will be utilized to join data from the tables, which include publications, authors, author_settings, publication _settings,

issues, and submission_search keyword_list.

3.3.2 Data Cleaning

a) Handling duplicated data: Ensure that no duplicate articles are processed multiple times. Figure 3 illustrates

how to prevent duplicate keywords from appearing.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

265

Figure 2. Partial View of the Relational Schema Diagram

Figure 3. Prevent Duplicate Keywords from Appearing

b) Handling missing or null values: It will ignore the null values and not formulate its tag/entry. Figure 4

illustrates how to avoid missing values from corrupting the structured output.

Figure 4. Avoid Missing Values from Corrupting the Structured Output

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

266

3.4. Implementation Details

The proposed study will extract metadata from relational database and maps it to a hierarchical XML element. Figure

5 shows the processes of mapping.

Figure 5. Flowchart of the Mapping Process

The process consists of the following steps:

Steps:

a) Establishing a connection with OJS relational database using MySQL.

b) Create a root element of different types of metadata.

c) Retrieving structured data from the database. For instance, author’s name, author’s affiliation, article title,

etc.

d) To check does the entry exists in XML or not, if exists, then retrieve the existing entry and nest the elements

into it. Additionally, if an entry is not found in the XML, create a new entry for it.

e) Mapping the data to XML elements by assigning structured data to the appropriate XML tags.

f) Sava the XML file as output.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

267

3.5 Pseudocode

Algorithm 1 depicts the pseudocode for the mapping from relational database to full-text XML.

Algorithm 1

INPUT: MySQL database with multiple relational tables

OUTPUT: XML file

1: BEGIN

2: INITIALIZE the HOST, USER, PASSWORD, DATABASE

3: FUNCTION fetch_data(HOST, USER, PASSWORD, DATABASE)

4: CONNECT to MySQL database using HOST, USER, PASSWORD, DATABASE

5: INITIALIZE cursor

6: EXECUTE SQL query to extract data:

7: (publication_id, author_id, author_settings, author email

8: publication settings, issue details, and keywords) FROM JOINING TABLES

9: (publications, authors, author_settings, publication_settings,

10: issues,submission_search_keyword_list)

11: INITIALIZE submission_data as an empty dictionary

12: FOR EACH row in query results DO

13: EXTRACT publication_id, author_id, author_setting_name,

14: author_setting_value,

15: author_email, pub_setting_name, pub_setting_value, volume,

16: number, year, date_published, keyword_text

17: IF publication_id NOT in submission_data THEN

18: CREATE <article> root element

19: CREATE <author-meta> element inside <article>

20: CREATE <keyword> element inside <article>

21: ADD publication_id to submission_data with:

22: (article_element, author-meta element, authors dictionary,

23: publication, settings dictionary, issues dictionary, keyword

24: element, keyword_set (to store unique keywords)

25: END IF

26: SET article_info as submission_data[publication_id]

27: IF author_id NOT in article_info["authors"] THEN

28: CREATE <author> element inside <author-meta>

29: ADD author_id to article_info["authors"] with: author element,

30: added_fields set

31: END IF

32: SET author_element as article_info["authors"][author_id]["element"]

33: SET author_fields as article_info["authors"][author_id]["added_fields"]

34: IF author_email exists AND "email" NOT in author_fields:

35: CREATE <email> element inside <author>

36: SET text of <email> as author_email

37: ADD "email" to author_fields

38: END IF

39: IF author_setting_name AND author_setting_value exist AND NOT in

40: author_fields:

41: CREATE <author_setting_name> element inside <author>

42: SET text of element as author_setting_value

43: ADD author_setting_name to author_fields

44: END IF

45: IF pub_setting_name AND pub_setting_value exist AND

46: pub_setting_name NOT 36: in article_info["publication_settings"]:

47: ADD pub_setting_name with pub_setting_value to

48: article_info["publication_settings"]

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

268

49: END IF

50: IF volume, number, year, OR date_published exist:

51: STORE these values in article_info["issues"]

52: END IF

53: IF keyword_text exists AND NOT in article_info["keyword_set"]:

54: CREATE <keyword> element inside <keyword-meta>

55: SET text of <keyword> as keyword_text

56: ADD keyword_text to keyword_set

57: END IF

58: END FOR

59: FOR each publication_id in submission_data:

60: FOR each publication setting:

61: CREATE element with setting_name inside <article>

62: SET text of element as setting_value

63: END FOR

64: IF issue details exist:

65: CREATE <volume>, <issue_number>, <year>, and

66: <date_published> elements

67: SET text of each element from issue details

68: END IF

69: CONVERT XML tree to string with indentation

70: WRITE formatted XML string to file "article_pub_id.xml"

71: END FOR

72: END OF FUNCTION

73: CALL fetch_data(HOST, USER, PASSWORD, DATABASE)

74: END

The program start with initialize the database connection (Lines 1-2). Then create a function and pass the database

MySQL connection credentials as the parameter (Line 3). Using these parameters to establishes a connection to

MySQL and create a cursor object to execute SQL queries (Lines 4-5). Furthermore, execute a SQL query to fetch the

metadata like publication, author, and keyword details from multiple tables using JOIN and LEFT JOIN clauses (Lines

6-10). An empty dictionary will be created to store XML data (Line 11) and it will loop through each row from the

fetched data (Line 12), unpacking each row’s values into useful variables (Lines 13-16). If the publication_id appeared

for the first time from the list, create an article root element, create author-meta and keyword XML element, and place

it under the root element (Lines 17-24). These elements will be stored in submission_data under the publication ID

(Line 26).

Besides that, the program will check the if author_id appeared for the first time, if yes, create an author element under

author-meta (Lines 27-30) while avoiding any duplicated authors (Lines 32-33). If the author’s email is available and

has not yet been added, add it to XML (Lines 34-37). The author information is then dynamically added (Lines 39-

43). Additionally, store publication settings in the dictionary (Lines 45-48), including the volume, number, year, and

data_published into the dictionary if they exist (Lines 50-51). If the keyword_text exists and has not appeared in the

article_info, add it in (Lines 53-56). Subsequently, publication settings (Lines 59-62) and issues details (Lines 64-68)

are converted into XML elements if available. Lastly, convert the collected data into XML (Lines 69-70) and (Line

73) is the calling the fetch_data function by passing the parameter into it.

3.6 Mapping Rules

Step 1: Ontology Development

• Explore the OJS database, define an ontology that identify the key tables and the relationship within them.

For instance, authors (author information), publications (article paper) and submission_search_keyword_list

(keywords of articles).

Step 2: Extract Data from the Relational Database

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

269

• Extract the schema structure from the OJS database and identify the relevant tables. For instance, authors and

the author_settings tables, there is a relationship between them.

• Apply Structured query language (SQL) queries to extract the needed data from relational database.

Step 3: Define XML Structure and Mapping Rules

• Determine the key elements that are needed to form an XML. For example, author’s name, article title,

keywords of the article, etc.

• Define the root element with nested elements by representing related information.

• Plan meaningful tags. For example, it should be in tag.

• Keep all records in a consistent format. For instance, Figure 6 shows that every author follows the same

structure.

Figure 6. Example of XML Structure

Step 4: Semantic Matching

• Handle missing value by removing the column. For instance, the author does not have affiliation, then not

need to include the affiliation tag instead of placing N/A.

Step 5: Data Transformation and Integration

• Convert the relational database entries to XML format.

• Use Python libraries such as xml.etree.ElementTree, SQL queries and etc.

Step 6: Evaluation

• Ensure the XML output is structured correctly. Validate against XSD.

• Refine the mapping rules if any problem caused though validation.

Step 7: Continuous Maintenance

• Update the mapping rules time by time to accommodate schema changes.

• Automate other journal articles.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

270

4. RESULTS AND DISCUSSIONS

4.1 Data Analysis

The metadata was extracted from the OJS relational database by using SQL queries. The join command has been used

to combine data from two or more tables in the database. Figure 7 shows the query used to retrieve the metadata by

applying the join command clause.

Figure 7. SQL Query for Metadata Extraction Using JOIN Clause

Additionally, the tools that were used for this study include Python, utilizing ElementTree to provide functions for

parsing, creating, modifying, and writing XML data, and MiniDom for enhanced readability through XML formatting.

Figure 8 shows it ElementTree to create a root element which is article and creates author-meta and keywords as its

sub-element. Furthermore, Figure 9 shows parsing raw XML string into structured DOM (Document Object Model)

and formats it with proper indentation to improve readability.

Figure 8. Sample of ElementTree Module

Figure 9. Sample of Minidom Module

To ensure the validity of the generated XML, schema validation will be conducted. Figure 10 and Figure 11 depict

the XSD schema for the XML. The schema will outline the structure of the XML, with the article as the root element,

accompanied by author metadata, keywords, issues, and article metadata. The purpose of the schema is to confirm the

accuracy of the XML.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

271

Figure 10. First Part of the XSD Schema for Validation

Figure 11. Remaining Part of the XSD Schema for Validation

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

272

4.2 Findings

The preliminary design for the automated mapping system has successfully extracted the required metadata and

transformed it into structured XML. The extracted metadata was accurately assigned to their respective XML elements.

For instance, author info such as email, affiliation, country, etc have correctly mapped to the <author> element in the

XML. Figure 12 shows the result of XML mapping. It shows that all of the metadata has been assigned to their

respective entry with a hierarchical format.

Figure 12. Result of XML Mapping

Figure 13 illustrates the validation process of XML against the XSD schema. The input file will be article_1.xml, and

the XSD schema is named schema.xsd. If the validation result is correct, it will output the message indicating that the

XML is valid; conversely, it will indicate that the XML is invalid.

Figure 13. Validation with XSD Schema

The result in Figure 14 indicates that the XML is valid, meaning that it fully follows and complies with the schema's

structure.

Figure 14. Result of Schema Validation

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

273

Figure 15 shows the result of the parsing check; it shows all of the elements from the XML.

Figure 15. Result of Parsing Check

Alternatively, established validation tools such as Xmllint and the JATS4R validator were considered for use in this

study. Xmllint is a tool used to check the validity of XML documents. It will check the structure of XML files

against their schemas. It can also be used to beautify XML and check for errors. Furthermore, JATS4R is a tool used

for JATS XML checking to check the conformity of JATS XML files against the appropriate JATS DTD standard.

Figure 16 displays the results of the validation check for Xmllint, confirming that the XML is valid and adheres to

the XML structure.

Figure 16. Result of the validation checking for Xmllint

Figure 17 shows the result of the validation checking for JATS4R. It shows an error because the XML file does not

follow the JATS standard, which lacks some elements or attributes such as <journal-meta> and <title-group>.

Another error may be that the placement of attributes is not in the correct structure. For instance, metadata like the

<article-title> should be placed within a <title-group>.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

274

Figure 17. Result of the validation checking for JATS4R

The results have shown the feasibility of mapping metadata from a relational database to Full-Text XML for the OJS

platform. The system can generate accurate and compliant XML by reducing manual work and errors. This could

streamline the academic publishing workflow by maintaining the quality of full-text XML. The high level of quality

and accuracy could be beneficial for publishers with a high volume of articles.

The proposed system could enhance the metadata management in academic publishing by (i) reducing the reliance on

manual work, (ii) improving XML generating efficiency, and (iii) enhancing the accessibility and discoverability of

academic articles, enable it easier indexed and increase the searchability across various platform.

In addition, the development of an automated JATS Converter has significantly influenced scholarly publishing by

streamlining the conversion of relational database metadata into structured Full-Text XML. However, the proposed

JATS Converter is in the conceptual phase, and future research will focus on implementation and ensuring compliance

with JATS standards.

The limitations of this study include the lack of full-text metadata in the relational database. Some full-text metadata,

such as the content of each paragraph and the page count, are not provided in the database. Additionally, not all articles

provide the necessary metadata.

4.3 Evaluation Measure

To ensure the effectiveness of the proposed XML generation. Several evaluation approaches will be considered. This

will include the XML validation test, processing time of generating an XML file, and the usability review from some

potential users.

Firstly, we have measured the time taken to produce XML files for 10 articles. The average processing time per article

was around 3 to 10 seconds. This shows that the XML preparation has significantly expedited while ensuring

compliance and could be performed within the planned timeframe.

Additionally, a verified process has been executed by ensure the completeness of metadata extraction. We verifying

whether all metadata field relational database were succefully captured and structured.

5. CONCLUSION AND FUTURE WORK

This paper presents an automation of mapping relational databases to Full-Text XML, addressing inefficiencies in

scholarly publishing. By leveraging structured mapping techniques and validation mechanisms. This could enhance

the accuracy and efficiency of metadata transformation. Additionally, it could reduce manual effort and human error

by maintaining its quality. However, the lack of complete metadata in the relational database could affect the accuracy

of Full-Text XML. Numerous journals may have missing values or inconsistent metadata fields.

Future work could focus on several key development areas to enhance the overall functionality and reliability of the

system. A PDF converter will be developed to obtain full-text metadata. The aim is to capture essential metadata

elements such as article titles, author names, affiliations, etc. In addition, the converter will also extract the main body

content, including individual sections such as Introduction, literature review, methodology, conclusion, etc. The

extracted metadata will be automatically formatted and structured into the JATS XML standard. Additionally, a

validation mechanism should also be implemented to detect errors before the final XML. Through these

implementations, the XML output’s quality, completeness can be greatly enhanced by reducing the percentage of

submission errors and ensuring compliance with publishing standards. Further developments will primarily focus on

advanced model training techniques to improve the system’s ability by building a recognition model so it can detect

the various document components within PDF files. These components include visual and structural elements such as

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

275

figures, tables, headers, etc. In addition, the system will automatically capture and label each part of the document

with greater precision, ensuring that the content and layout are maintained during the conversion process. These

enhancements will create a more efficient and intelligent system.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for their valuable comments.

FUNDING STATEMENT

The authors received no funding from any party for the research and publication of this article.

AUTHOR CONTRIBUTIONS

Chee-Xiang Ling: Conceptualization, Data Curation, Methodology, Validation, Writing – Original Draft Preparation;

Kok-Why Ng: Project Administration, Writing – Review & Editing;

Heru Agus Santoso: Project Administration, Writing – Review & Editing.

CONFLICT OF INTERESTS

No conflict of interests were disclosed.

ETHICS STATEMENTS

Our publication ethics follow The Committee of Publication Ethics (COPE) guideline. https://publicationethics.org/

REFERENCES

[1] J. Greenberg, M.F. Wu, W. Liu, and F. Liu, “Metadata as Data Intelligence,” Data Intelligence, vol. 5, no. 1, pp. 1-5,

2023, doi: 10.1162/dint_e_00212.

[2] N.A. Sajid et al., “A Novel Metadata Based Multi-Label Document Classification Technique,” Computer Systems

Science and Engineering, vol. 46, no. 2, 2023, doi: 10.32604/csse.2023.033844.

[3] Z. Boukhers, and C. Yang, “Comparison of Feature Learning Methods for Metadata Extraction from PDF Scholarly

Documents,” Jan. 2025, doi: 10.48550/arXiv.2501.05082.

[4] N. Samadi, and S.D. Ravana, “XML CLUSTERING FRAMEWORK BASED ON DOCUMENT CONTENT AND

STRUCTURE IN A HETEROGENEOUS DIGITAL LIBRARY,” Malaysian Journal of Computer Science, vol. 36, no.

2, 2023, doi: 10.22452/mjcs.vol36no2.2.

[5] A. Kocher, A. Markaj, and A. Fay, “Toward a Generic Mapping Language for Transformations between RDF and Data

Interchange Formats,” in IEEE International Conference on Emerging Technologies and Factory Automation, ETFA,

2022, doi: 10.1109/ETFA52439.2022.9921513.

[6] M. Ali, and M.A. Khan, “Performance Enhancement of XML Parsing Using Regression and Parallelism,” Computer

Systems Science and Engineering, vol. 48, no. 2, 2024, doi: 10.32604/csse.2023.043010.

[7] S.C. Haw, A. Amin, P. Naveen, and K.W. Ng, “Performance Evaluation of XML Dynamic Labeling Schemes on

Relational Database,” International Journal of Technology, vol. 13, no. 5, 2022, doi: 10.14716/ijtech.v13i5.5871.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

276

[8] O. Iwashokun, and A. Ade-Ibijola, “Parsing of Research Documents into XML Using Formal Grammars,” Applied

Computational Intelligence and Soft Computing, vol. 2024, 2024, doi: 10.1155/2024/6671359.

[9] B. Tabatadze, “Technological Aspects of Open Journal Systems (OJS),” Journal of Technical Science and Technologies,

vol. 8, no. 1, pp. 23–29, Apr. 2024, doi: 10.31578/jtst.v8i1.151.

[10] S.M. Haider, and M. Kashif, “Open Journal System,” Annals of Abbasi Shaheed Hospital and Karachi Medical &

Dental College, vol. 24, no. 2, 2019, doi: 10.58397/ashkmdc.v24i2.30.

[11] E. Bastianello, C. Tomlinson, and A. Adamou, “PubLink: Editorial Workflow for Digital Scholarly Publications in the

Humanities,” in Proceedings of the 35th ACM Conference on Hypertext and Social Media, New York, NY, USA: ACM,

Sep. 2024, pp. 318–322, doi: 10.1145/3648188.3677051.

[12] T. Taipalus, “Database management system performance comparisons: A systematic literature review,” Journal of

Systems and Software, vol. 208, pp. 111872, Feb. 2024, doi: 10.1016/j.jss.2023.111872.

[13] L.J. Musap, “Enhancing scientific publishing: automatic conversion to JATS XML,” European Science Editing, vol.

2023, no. 49, 2023, doi: 10.3897/ese.2023.e114977.

[14] A.M. Maatuk, T. Abdelaziz, and M. A. Ali, “Migrating relational databases into XML documents,” in Proceedings -

2020 21st International Arab Conference on Information Technology, ACIT 2020, 2020, doi:

10.1109/ACIT50332.2020.9299967.

[15] R. Chen, G. Cai, J. Chen, and Y. Hong, “Integrated method for distributed processing of large XML data,” Cluster

Comput, vol. 27, no. 2, 2024, doi: 10.1007/s10586-023-04010-0.

[16] X. Sun, N. Li, and L. Zhang, “Automatic Generation of Test Documents Based on Knowledge Extraction,” in ACM

International Conference Proceeding Series, 2022, doi: 10.1145/3524304.3524307.

[17] S.C. Haw, L.J. Chew, D.S. Kusumo, P. Naveen, and K.W. Ng, “Mapping of extensible markup language-to-ontology

representation for effective data integration,” IAES International Journal of Artificial Intelligence, vol. 12, no. 1, 2023,

doi: 10.11591/ijai.v12.i1.pp432-442.

[18] I.K. Raharjana, B. Zaman, O.I. Husna, R. Ferdiansyah, A.S. Putri, and F.D.K. Sari, “Improving reviewer selection in

Open Journal Systems using a Scopus search application programming interface in the <i>Journal of Information

System Engineering and Business Intelligence</i>,” Science Editing, vol. 12, no. 1, pp. 20–27, Feb. 2025, doi:

10.6087/kcse.356.

[19] O. Odu, and A. Ekanger, “How we tried to JATS XML,” Ravnetrykk, no. 39, 2020, doi: 10.7557/15.5517.

[20] H. Garcia-Gonzalez, and J.E. Labra-Gayo, “XMLSchema2ShEx: Converting XML validation to RDF validation,”

Semant Web, vol. 11, no. 2, pp. 235–253, Feb. 2020, doi: 10.3233/SW-180329.

[21] M. Beck, M. Schubotz, V. Stange, N. Meuschke, and B. Gipp, “Recognize, Annotate, and Visualize Parallel Content

Structures in XML Documents,” in Proceedings of the ACM/IEEE Joint Conference on Digital Libraries, 2021, doi:

10.1109/JCDL52503.2021.00078.

[22] Y. Cho, “Open-source code to convert Journal Article Tag Suite Extensible Markup Language (JATS XML) to various

viewers and other XML types for scholarly journal publishing,” Science Editing, vol. 9, no. 2, 2022, doi:

10.6087/kcse.284.

[23] C. Borchert, R. Cozatl, F. Eichler, A. Hoffmann, and M. Putnings, “Automatic XML Extraction from Word and

Formatting of E-Book Formats: Insight into the Open Source Academic Publishing Suite (OS-APS),” Publications, vol.

11, no. 1, 2023, doi: 10.3390/publications11010001.

Journal of Informatics and Web Engineering Vol. 4 No. 3 (October 2025)

277

BIOGRAPHIES OF AUTHORS

Chee-Xiang Ling is a final-year Data Science student at Multimedia University Cyberjaya. He

is passionate about applying data science techniques and has experience in data preprocessing,

visualization, and modeling. He has worked on various real-world projects and continuously

seeks new challenges and learning opportunities to enhance his skills. He can be reached at

cheexiangling@gmail.com.

Kok-Why Ng is an Associate Professor in the Faculty of Computing and Informatics (FCI) in

Multimedia University (MMU), Malaysia. He did his B.Sc. (Math) in USM, Penang, and his

M.Sc (IT) and Ph.D (IT) in MMU, Malaysia. His research interests are in Recommender

System, 3D Geometric Modeling and Animation. He is also active in some research projects

related to artificial intelligence, deep learning and human blood cells. He can be contacted at

kwng@mmu.edu.my.

Heru Agus Santoso is a faculty member at Dian Nuswantoro University in Semarang,

Indonesia. His research interests primarily include ontology, information retrieval, text mining

and deep learning. He has published several publications in these areas, showcasing

contributions in data and knowledge systems. He can be contacted by

heru.agus.santoso@dsn.dinus.ac.id.

