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Abstract— Tumors are a deadly condition often triggered by a range of abnormal modifications and genetic abnormalities. Early 

tumor diagnosis is essential due to the highly concerned nature of the disease. Early detection and treatment of tumors can 

significantly reduce mortality rates. This paper presents a model for tumor segmentation in medical imaging that uses the U-NET 

architecture to increase precision. The model’s encoding and decoding processes have been applied with skip connections to boost 

performance while simplifying model training. Images were cropped around the lower abdominal regions, and all images used in 

the study were then resized to 256*256 pixels for standardization. The proposed model deals with the class imbalance using data 

augmentation and oversampling. The experiments achieved a dice score of 0.853±0.02; F-score of 0.905±0.02; and a sensitivity of 

0.897±0.02, compared with various existing models. As part of the model’s application, the pytorch-lightning library is used to 

successfully identify lung cancer scans, thereby proving to be a precise and efficient method of tumor identification. Accordingly, 

the study emphasizes the accuracy and speed of the applied model as a useful instrument for the earliest detection of tumors. The 

proposed approach helps to achieve more relevant and accurate segmentation and thus provides enhancements in medical images 

analysis if such challenges as an imbalance data set are well handled. 
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1. INTRODUCTION 

The term "cancer" refers to the formation of cells that are not under control and compatible with normal cell function 

[1]. Cancer, the second largest cause of death worldwide, is currently one of the most significant challenges that the 

public health sector is presently confronting. A total of 238,340 people, including 117,550 men and 120,790 women, 

are anticipated to be diagnosed with lung cancer in the year 2023. In addition, it is estimated that 127,070 people died 

because of the ailment. If lung cancer is discovered early, there is a significantly enhanced chance of successful 

therapy. Lung cancer has a devastating effect on millions of people and requires lifetime medical attention [2]. It is of 

utmost importance to facilitate the anticipated prognosis and exactitude of lung cancer therapy through early detection 
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and diagnosis. Lung cancer leads to the highest mortality rates worldwide [3], [4]. Although lung cancer is considered 

the most severe type of a cancer, it is important to note that early detection of such cancer has a higher possibility of 

successful treatment. Additionally, this type of development can trigger metastasis, a phenomenon that involves the 

attachment of the cancerous cells to other tissues and the spread of the cancerous cells beyond the region of the lungs 

[5]. A significant number of criteria, including patient effectiveness, histological cancer type, and the degree of cancer 

malignancy, are the primary elements that determine the therapy and diagnosis. In computed tomography (CT), CT 

images generate perfect detailing of the human body parts, and these images have been employed as a non-invasive 

model for detecting and observing many types of illness. Moreover, CT imaging has modernized traditional medical 

imaging methods, providing accurate elements for generating the internal bodies and aiding in vital clinical decisions 

[6],[7]. The primary objective of the proposed work is to present a model for tumor segmentation in CT medical 

images using U-Net architecture. The paper is organized as follows: Section 2 discusses the related work, and Section 

3 addresses the implementation of the proposed model. The experimental results are discussed and compared with the 

existing models in Section 4 and finally the Section 5 concludes the paper with future enhancement. 

 

2.  LITERATURE REVIEW 

Nearly 80% of individuals diagnosed with lung tumors are not eligible for surgical intervention [8]. The primary 

course of treatment for these patients involves a combination of chemotherapy and radiotherapy; precise tumor 

localization is essential for radiotherapy and the assessing its effectiveness [9]. CT is the primary imaging technique 

utilized for finding, ray planning, and prediction. Typically, specialists manually outline the treatment target on CT 

scan and then upload it to a treatment planning system for radiation dosage calculation [10]. In addition, the 

effectiveness of treatment can typically be assessed by evaluating alterations in tumor size, commonly with one-

dimensional assessment techniques, such as RECIST v1.1. Tumor segmentation is also necessary for contemporary 

popular radiomics research hence, tumor segmentation has a broad spectrum of uses in lung cancer. The process of 

manually outlining the tumor is arduous, time-onerous, biased, and exhibits significant diversity among different 

observers as well as within the same observer. Hence, the implementation of automatic segmentation techniques is 

crucial to alleviate the capacity of radiologists and enhance the objectivity of the segmentation outcomes. 

In recent years, there has been a significant progression in automatic medical image segmentation with the advance 

of fully convolutional neural network architectures (FCNNs) [11]. The U-Net [12] is an example of an encoder-

decoder design that includes an encoder, decoder, and lengthy skip links at every resolution level. The primary 

objective is to merge the encoder’s high-resolution characteristics with the matching decoder's up-sampling 

characteristics to integrate multiscale data. Isensee et al. [13] recently introduced nn-Unet as a modification of U-Net. 

Based on deep learning, this segmentation approach can autonomously adjust parameters, such as preprocessing, 

network topology, and training strategy and also demonstrated exceptional performance in several tasks, surpassing 

current benchmarks. The study relied on spectral data collection via deep learning, which correctly predicted lung 

tumors from the input data and illustrated the ability to combine deep learning and pipelining techniques as an efficient 

approach to boost the computer system’s performance for detecting lung tumors [14]. 

In [15],[16],[17], the mechanism describes the development of bone metastasis, such that the lungs can possibly obtain 

tumors. Toxicities observed in the late stages of the tumor are a manifestation of delayed Toxicity sequelae. The 

osteolytic disease affects around 10-15% of individuals in the cases of lung tumors.  CSF non-tumor cells that enter 

the thoracic spine from the neck/back, may reach the spinal cord and cause both back pain with neurological 

complications [18]. CT imaging with energy/spectral parameters is a multimodal image generation method made by 

spiral and multislice CT. CT has such excellent imaging capability that it can simultaneously detect and display several 

parameters [19],[20]. 

Deep learning is the implementation of Artificial Neural Networks (ANN) that imitate human thinking to process 

information [21],[22]. Artificial Neural Networks (ANN) is a class of nonlinear processing that includes brain capacity 

distribution to devices' memory, parameters, and turning completeness. The Machine Learning algorithms 

demonstrate the procedures and costs that are set continuously [23]. Pulverization is performed through a two-layer 

approach primarily based on receptive field constriction and feature map expansion. 
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3. IMPLEMENTATION OF THE PROPOSED MODEL  

U-Net is a primary segmentation model, and the U-Net architecture is built on the idea of feature pyramid and skip 

connections. In the encoder phase, downsampling the convolutional layers reduce the field of view and gradually 

extract progressive abstraction of the input data. The encoded attributes play a significant role in the contextual 

information to support segmentation. On the other hand, the decoder phase is focused solely on reconstructing the 

initial input shape: taking features that appear during the encoder phase. Finally, the decoder part applies sampling 

operations to raise the dimensions of the feature maps and make them like the input dimensions. This process is 

performed iteratively to optimize the segmentation mask by minimizing the energy cost threshold. When using skip 

connections, it becomes possible to directly pass on information from the encoder to the decoder without erosion of 

hard-to-capture spatial details over different resolutions. For a better flow of information path between encoder and 

decoder, they use skip connections such that the segmentation masks generated using U-Net possess good quality. 

The enhancements introduced through the U-Net design benefit the training process by alleviating doubts about 

information loss and gradient vanishing, thereby leading to better general convergence and higher segmentation 

performance. The proposed model comprises the following steps 1) Pre-processing (Normalization & Slicing), 2) Data 

Augmentation, 3) Implementation of U-Net and 4) segmentation, as shown in Figure 1. 

 

 

Figure 1.  Architecture Diagram of The Model 

 

3.1 Preprocessing 

In the proposed model, the Task06_lung.tar dataset from Medical Segmentation Decathlon 

(http://medicaldecathlon.com/) was used. The dataset contains 15,767 samples. A total of 12613 samples were used 

for training, and 3154 were used for testing. The computational efficiency of preprocessing CT images for the 

identification of lung tumors is improved in the proposed model. The following strategies focus on crucial anatomical 

locations in pre-processing techniques. 
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Normalization: A data pre-processing technique used to convert the aspects of the images to a normal range to enhance 

the execution and accuracy of ML algorithms. The primary purpose of normalization is to eliminate the range of 

probable predispositions and distortions. The images were normalized by dividing them by 3071, which is the typical 

range of values from -1000 to 3071 Hounsfield Unit (HU). This obviates the need to calculate the average and standard 

deviation of images. The implemented normalization is given below as Equation (1). 

𝐶𝑇𝑑𝑎𝑡𝑎 =  𝐶𝑇𝑑𝑎𝑡𝑎[: , ∶ ,30: ]/3071                                                                             (1) 

Slicing: The proposed model works only on 2D datasets. The first 30 slices are 3D, they are removed from the dataset 

and saved in two-dimensional files to accelerate processing. It is performed as loading individual slices is significantly 

quicker than processing entire NIfTI files. The purpose of slicing is to concentrate on analyzing individual slices rather 

than analyzing subjects, comparing 2D analysis to 3D analysis. The slicing of the images is shown in Equation (2). 

𝑛𝑒𝑤𝑙𝑎𝑏𝑒𝑙𝑑𝑎𝑡𝑎 =  𝑛𝑒𝑤𝑙𝑎𝑏𝑒𝑙𝑑𝑎𝑡𝑎[: , ∶, 30: ]                                                                   (2) 

Furthermore, to streamline the learning process and prioritize the assessment of lung tumors, sections of the lower 

abdomen are excised, thereby reducing complexity. Concentrated learning may be promoted by omitting the first thirty 

portions, which extend from the lower belly to the neck. The size of the slices and masks was set to be (256, 256), 

which makes it easier for future research and comparisons. The mask resizing process uses the nearest neighbor 

interpolation approach to maintain the integrity of the data and ensure accurate mask resizing as shown in Equations 

3 and 4. These preprocessing algorithms optimize the computing resources and prioritize crucial anatomical data to 

diagnose lung tumors, individually and collectively effectively.                                                  

                                                 𝑠𝑙𝑖𝑐𝑒 = 𝑐𝑣2. 𝑟𝑒𝑠𝑖𝑧𝑒(𝑠𝑙𝑖𝑐𝑒, (256,256)                                                                 (3)                  

𝑖𝑚𝑎𝑔𝑒𝑚𝑎𝑠𝑘 = 𝑐𝑣2. 𝑟𝑒𝑠𝑖𝑧𝑒(𝑖𝑚𝑎𝑔𝑒𝑚𝑎𝑠𝑘 , (256,256), 𝑖𝑛𝑡𝑝𝑜𝑙 = 𝑐𝑣2. 𝑖𝑛𝑡𝑛𝑒𝑎𝑟)                  (4) 

 

3.2 Data Augmentation 

Data augmentation is an important concept in the field of learning that involves creating synthetic data from a given 

set of data samples. This process is particularly useful when handling the problem of working with an imbalanced 

dataset and enhancing the ability to generalize for various uses. The easy capture phase involves scanning the entire 

domain for all 2D parts and conglomerating a large database to build a comprehensive inventory of all two-primary 

dimensional components across many domains. Then, each slice route is aligned with its corresponding label path to 

ensure that the picture data and annotations are aligned with each other. Next, these slices and labels are incorporated 

into the present system to feed the system with the necessary data for subsequent analysis. The dataset is made more 

diverse, and its variability is enhanced using various procedures, which involve a range of changes including rotation, 

flipping, scaling, and affine transformations, among others. Data augmentation enhances the model's ability to detect 

lung cancers in different environments in terms of appearance and image structure, as shown in Equation (5). 

 

𝑟𝑎𝑛𝑑𝑜𝑚𝑠𝑒𝑒𝑑 = 𝑡𝑜𝑟𝑐ℎ𝑟𝑎𝑛𝑑𝑖𝑛𝑡(0,1000000, (1, ))[0]. item()𝑖𝑚𝑔𝑎𝑢𝑔𝑠𝑒𝑒𝑑(𝑟𝑎𝑛𝑑𝑜𝑚𝑠𝑒𝑒𝑑)                                        (5)    

After the end of the data augmentation process, the changed slices and masks are given to increase their possibilities 

of being incorporated into the training process. Data augmentation ensures that the extended data is readily accessible 

for both model training and evaluation. This will facilitate the iterative improvement and optimization of the algorithm 

used for detecting lung tumors. Systematic implementation of these functionalities is crucial for successfully 

developing and deploying reliable lung cancer detection systems. 

The segmentation model applied to the entire lung tumor detection model is significant when working with PyTorch 

Lightning. Thus, the proposed framework provides an optimized environment to build, educate, and invent models to 

ensure success and expansiveness. When implementing the above, a suitable approach must be used to counter the 

class imbalance that is more often exhibited in detecting lung tumors. 

To overcome this challenge, oversampling approaches are employed that follow equal importance to all slices, wherein 

slices having tumors are given importance to ensure adequate representation from each class. The 

WeightedRandomSampler from PyTorch makes this process easier by assigning the most appropriate weights to the 

samples in the dataset to enhance learning even beyond cases of class imbalance. 
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4. RESULTS AND DISCUSSIONS 

The proposed model, which uses the U-Net architecture and PyTorch Lightning developed for the identification of 

lung tumors, exhibits the highest accuracy and reliability. The neural network processes the cancerous CT images and 

recognizes the correct cancer tumor using intense preprocessing procedures like normalization, cropping, and scaling. 

The model employs over-sampling methods to address class imbalances and then optimizes the utilization of the 

Binary Cross Entropy function as the loss function. The confusion matrix shown in Figure 2 results in pixel format. 

The true positive to false negative ratio was approximately 91.6%, which is a very high accuracy result. Similarly, in 

the case of true-negative to false positive, the ratio is close to 99.9% which shows that it will most likely never show 

the false-negative tumor. Equations (6) to (11) show the calculated values in the confusion matrix. 

 

 
 

Figure 2.   Confusion Matrix 

 

𝑇𝑃 = 𝑖𝑛𝑡((𝑃𝑏 ∗  𝑀𝑏). 𝑠𝑢𝑚(). 𝑖𝑡𝑒𝑚())                                                                   (6) 

𝐹𝑃 = 𝑖𝑛𝑡(((𝑃𝑏 − 𝑀𝑏 > 0). 𝑠𝑢𝑚(). 𝑖𝑡𝑒𝑚())                                                         (7) 

𝐹𝑁 = 𝑖𝑛𝑡((𝑀𝑏 − 𝑃𝑏 > 0). 𝑠𝑢𝑚(). 𝑖𝑡𝑒𝑚())                                                          (8) 

𝑇𝑁 = 𝑖𝑛𝑡(((1 −  𝑃𝑏) ∗ (1 − 𝑀𝑏)). 𝑠𝑢𝑚(). 𝑖𝑡𝑒𝑚())                                              (9) 

where, 

𝑃𝑏 = (𝑝𝑟𝑒𝑑 > 0.5). 𝑓𝑙𝑜𝑎𝑡()                                                                                (10) 

𝑀𝑏 = (𝑚𝑎𝑠𝑘 > 0.5). 𝑓𝑙𝑜𝑎𝑡()                                                                              (11) 

 

Here, Tp is the True positive, FP is the False positive, FN is the False Negative, TN is the True Negative, Pb is 

pred_binary, and Mb is Mask_binary. Figure 3(a) on the left shows the initial CT scan with a pixel intensity of 512×512 

and Figure 3(b) on the right shows the preprocessed image after it has been cropped and normalized to 256×256 pixels. 

This preprocessing simplifies the dataset to only core areas so that the U-NET model solves the tumor detection 

problem more effectively and efficiently. 

The Dice score findings prove that the proposed model is very competitive. The module aptitude of our solution was 

0.853±0.02, which indicates a high degree of reliability in terms of correctly segmenting lung tumors in CT scans. 

The formula used for the dice score is shown in Equation (12). 

dice = (2 * counter) / denum                                                                            (12) 

 



145 

 

 

(a)   (b) 

Figure 3.  (a) Original CT,  (b) Preprocessed 

Because it is a segmentation model, the algorithm demonstrated a high level of accuracy, achieving a rate of 

99.8%±0.02% as it is calculated based on the number of frames the tumor is detected not the complete CT scan image, 

as shown in Figure 4. The system’s high accuracy rate demonstrates its effectiveness in detecting minor abnormalities 

in medical images, which improves diagnostic accuracy. The proposed model's unique feature is that it has a specificity 

of .99±0.02 and a sensitivity of 0.897±0.02 as shown in Figure 5. This demonstrates that the proposed model can 

capture true positives and real negatives and minimize expected false negatives. This revealed the reliability by 

distinguishing points of interest and delimiting the objects of interest in the specified dataset.  The U-net based cell 

carcinoma segmentation' model, however, demonstrates a slightly lower specificity of 0.970 but together with a higher 

sensitivity of 0.972 seems to possess a remarkable capacity to detect true positives that are less likely to be 

misclassified than negatives. At the same time, there is a higher chance of occasional false positives. This shows that 

the model has a good degree of precision and efficiency in picking those instances of interest that are of importance 

and at the same time, balancing the cases mainly composed of negative and positive ones. 

 
 

Figure 4. Epoch-wise Accuracy Variation 
 
 

 

              Figure 5.  Epoch-wise Sensitivity Variation 
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It becomes a reliable tool for correct categorizing positive and negative cases. The proposed model stands out in this 

field for its high accuracy rate and beyond recall. Therefore, this sample can be applied to workplaces that require the 

balanced identification of false positives and genuine positives. After measuring the F-score and accuracy of our 

proposed model which displays 0.905±0.02 F-score and 0.91±0.02 precision as shown in Figures 6 and 7. 

 
Figure 6.  Epoch-wise F-Score Variation  

             

 

                             Figure 7.  Epoch-wise Precision Variation 

 

These statistics confirm the effectiveness of the model for data categorization together with low false positive and 

negative results. From Figure 6, there is an evident increase in the F-score level as the training epochs increases which 

shows that the model composed an effective learning paradigm based on the given training data. This gradual increase 

in performance proves the fact that the training process of the model is very stable and reliable. Altogether, these 

results support the proposed model and state that it provides high accuracy and recall values to yield precise and 

accurate results of the medical imaging segmentation tasks. The precision of the proposed model is calculated at ±0.91 

and the ±0.02 signifies that the proposed model can select true positive efficiency with minimum false positive cases. 

Figure 7 is also a good representation having an indication that there is a positive correlation between the number of 

training epochs and the precision. This enhancement is influenced by the understanding that the model adapts over 

time in the sense that it gains the capacity to capture details or new characteristics into the data required to make better 

decisions. The gradually increasing level of precision demonstrates the effectiveness of training and proves the 

efficiency of created models in solving complex tasks like tumor recognition in the radiological images.  

4.1 Comparing U-NET with Other Models 

The criteria for measuring the efficiency of the tumor segmentation models were the Dice score, F-Score, Sensitivity 

and Convergence. The Dice Score compares the predicted tumor regions against the actual or ground truth regions 

and provides insight into segmentation quality. The F-Score combines Matthew Butterfly's precision with the E-

Score's recall, demonstrating how accurate the model is in recognizing false positives and false negatives. Sensitivity 

measures the accuracy of the model in correctly identifying true positives, a sign of good tumor segmentation. Finally, 

we used the loss function to compute convergence across the training epochs, which shows when the model starts to 

converge and provides optimal performance. These metrics in combination offer the best way to assess model 

performance in tumor diagnosis. Table 1 compares the performance parameter values. 
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Table 1. Comparison of the Performance Parameters 

Model Dice Score F-Score Sensitivity Convergence (Loss after 

10 epochs) 

U-NET 0.853 ± 0.02 0.905 ± 0.02 0.897 ± 0.02 0.25 (BCE) 

FCN 0.82 ± 0.03 0.88 ± 0.03 0.85 ± 0.03 0.35 

SegNet 0.80 ± 0.03 0.86 ± 0.02 0.83 ± 0.03 0.38 

DeepLabV3 0.84 ± 0.02 0.89 ± 0.02 0.88 ± 0.02 0.27 

 

4.1.1 Discussion 

Dice Score Comparison 

The U-NET model was given a Dice Score of 0.853, thereby showing that the proposed model is equally as efficient 

as DeepLabV3 as given the Dice Score of 0.84 for predicting the tumor regions with high conformity. FCN is slightly 

behind a Dice Score of 0.82 and SegNet having a Dice Score of 0.80, which suggests that U-NET and DeepLabV3 

can maintain a stronger spatial relation. This is because skip connections and deeper architectures were utilized to 

improve their performance on the segmentation of features such as tumors. 

F-Score Comparison 

Comparing the F-Score of the U-NET model with that of DeepLabV3, it was 0.905 for U-NET, we can see that U-

NET gives nearly the high accuracy as DeepLabV3 and has a brilliant ability to influence precision and recall giving 

an optimal decision for segmentation of tumor regions without leading to over or under-estimation. FCN has an F-

Score of 0.88 and SegNet has an F-Score of 0.86 lower than U-Net implying that these models might have high false 

positives or false negatives and hence lower tumor detection reliability. 

Sensitivity Comparison 

DeepLabV3 has a sensitivity of 0.88, whereas U-NET has a sensitivity of 0.897; this suggests that U-NET does better 

than DeepLab for distinguishing true positives and outlining real tumor areas. On the other hand, FCN (sensitivity 

0.85) sensitivity is less than the proposed network, and SegNet (sensitivity 0.83) is also less sensitive meaning that 

FCN and SegNet are more likely to overlook true tumor regions and therefore not as effective in detecting all the areas 

of the tumor. 

Convergence (Loss) Comparison 

U-NET model with a final loss of 0.25 using BCE Loss converges faster than SegNet which has a loss of 0.38, FCN 

with a loss of 0.35. By using BCE Loss instead of Dice Loss, the optimization of the pixel-wise prediction is faster, 

which optimizes the U-NET model's convergence.  

Considering this result, U-NET is efficient in tumor segmentation tasks as shown in Figure 8. U-NET had a slightly 

higher average Dice Score and Sensitivity score than the DeepLabV3.  DeepLabV3 has less computational time and 

complexity because of the small layer size. The implementation of skip connections also guarantees the retention of 

spatial features while at the same time keeping the model more restrained; hence, thus, it be used to serve various 

applications even where computational power is limited. 

However, comparatively easy models, such as FCN and SegNet are less effective, but still not able to compete with 

U-NET and DeepLabV3, especially in the case of the segmentation of more intricate tumors and the problem of class 

imbalance. Their structures are relatively plain; thus, there are no skip connections or convolutions, which are crucial 

for properly segmenting the tumor area if the set contains many samples with a significant difference between the 

tumor area and the rest of the organ. This means that the Dice scores of FCN and SegNet achieve are reduced, as are 

Sensitivity and the F-score. Therefore, U-NET offers a reasonable compromise between accuracy and training time 

and could be used in many medical imaging tasks. Although it is relatively heavier, it ultimately provides the highest 

overall performance; hence, has been preferred for all those tasks where precision is a key to success as well as where 
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enormous power of computation is not a constraint. These comparisons illustrate the potential compromises that must 

be made when choosing a segmentation model depending on the value being emphasized, speed, or accuracy. 

 

 

Figure 8.  Performance Comparison of Tumor Segmentation Model 

 

5. CONCLUSION AND FUTURE ENHANCEMENT 

Another breakthrough in the medical imaging field is the application of U-Net architectures for detecting lung tumors. 

By implementing normalization, cropping, and resizing with PyTorch Lightning can achieve accurate segmentation 

of tumors from CT-scanned modalities. A high Dice similarity score of 0.853±0.02 is shown proving that the proposed 

model can be useful for the early detection and treatment planning of cancer. Exploring enhanced data augmentation 

techniques can enhance the model learning capabilities of different imaging environments. Superimposing two or 

more imaging data modalities, such as CT with MR could be beneficial in tumor detection algorithms improvement 

due to variations in the type and sensitivity of the imaging data. Moreover, presenting a simple alteration or extension 

of the U-net architecture or adding new state-of-the-art deep learning methods can offer a new horizon toward 

improving the efficiency and precision of the segmentation model. Finally, validation studies must involve as many 

patients and clinical settings as possible to understand the operational usability of the created algorithms. This should 

help in their adoption and implementation across all healthcare practicums. 
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