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Abstract - Parkinson's Disease (PD) is a progressive neurological disorder. It affects movement and can significantly impact quality 

of life. Early and accurate diagnosis is crucial for effective management and intervention. Traditional diagnostic methods can be 

time-consuming and less effective in the early stages of the disease. This study aims to develop an automated approach for 

identifying PD using time-frequency image analysis of electroencephalogram (EEG) signals. The goal is to enhance diagnostic 

accuracy and efficiency, facilitating early detection. EEG signals, often contaminated with artifacts such as eye blinks and muscle 

movements etc., were first cleaned. Time-frequency images were then plotted from the cleaned signals, and Event-Related Spectral 

Perturbation (ERSP) plots were extracted. A customized deep learning model was employed to classify the ERSP plots, 

distinguishing PD patients from healthy controls. The deep learning model achieved an accuracy of 94.64% in separating PD 

patients from healthy controls. The approach demonstrated robustness against common EEG artifacts, ensuring reliable PD 

detection. The model's architecture was specifically designed to handle the complexities of EEG data, making it a powerful tool 

for PD classifications. This study highlights the potential of integrating deep learning with EEG analysis to explore PD diagnosis. 

The proposed method is faster and more accurate than traditional approaches, enabling early detection and timely intervention. By 

reducing the time required for analysis and enhancing diagnostic accuracy, this approach can significantly improve patient 

outcomes and support better management of Parkinson's Disease. 
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1. INTRODUCTION  

Parkinson's disease (PD) is a progressive neurodegenerative disorder. Millions of people are affected by this condition 

[1]. There are two types of symptoms of this disease. Motor symptoms are bradykinesia, rigidity, resting tremor. Non-

motor symptoms are anxiety and depression [2]. This condition significantly impairs quality of life. The nervous 

system affected by this condition first. Then slowly parts of the body controlled by these nerves gets affected. The 

most common symptoms result from the loss of neurons in an area near the base of the brain. It is called the substantia 

nigra [3]. Early and accurate treatment is critical for effective management and treatment. Researchers have identified 

https://doi.org/10.33093/jiwe.2025.4.1.13
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe
https://journals.mmupress.com/jiwe
https://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Informatics and Web Engineering               Vol. 4 No. 1 (February 2025) 

169 
 

signs of Parkinson's disease in the brain. The changes will start 15 to 20 years before the symptoms appear [4]. Pre-

clinical identification of PD is not easy, patients with very early PD may not meet the clinical diagnosis criteria [5]. 

Currently, early identification of PD is done using Genetic Testing, biomarkers like alpha-synuclein detection in the 

brain, imaging techniques i.e. PET Scans [6]. Usually, these diagnostic techniques are very expensive and time 

consuming whereas electroencephalography (EEG) is cheap and easily available in normal clinical setting. 

In this study, we have used a deep learning framework using time frequency component images generated from EEG 

signals from PD patients and matching controls. To conduct this study, the dataset has been obtained from University 

of Iowa (UI) in USA. This dataset consists of EEG recordings from 33 individuals with PD and 33 healthy control 

subjects. EEG works by capturing the brain's electrical activity, specifically from the pyramidal neurons in the cerebral 

cortex [7]. This method is non-invasive, doesn’t require any surgical procedures. Its high temporal resolution can 

capture brain activity changes very quickly. It also has high reproducibility. Thus, it consistently produces reliable 

results even when external conditions change. This makes EEG useful for clinical use and research, especially in 

diagnosing PD. The EEG recording is broken down into time and frequency parts and represented it into images. 

These images represent complex patterns and time changes that linked to PD-related brain activity. We used these 

images as inputs for a deep learning neural network (DL). 

A deep learning (DL) model is introduced to conduct this study. DL can detect complex EEG signals patterns. The 

complete architecture is explained in the methodology section. The architecture of the DL model is designed such way 

that it can extract the abstract features from the input images. It will enable the model to learn the complex differences 

between PD patients and healthy control’s EEG recordings. The first few layers of the DL model will focus on 

extracting edges and textures. The later layers will learn more complex, high-level features that are relevant for PD 

classification. Our aim is to classify PD patients from EEG signals accurately by tuning the correct parameters of the 

model. Our goal is to use component time frequency image as input in the DL framework which can identify PD in 

the early stage even before the symptoms appear. 

 

2. LITERATURE REVIEW 

2.1 Parkinson’s Disease 

PD is a neurological movement disorder. It becomes more critical over the time. People may begin to notice the 

problems with movement when the nerve cells or neurons in certain parts of the brain weaken, damaged or die. The 

common symptoms are tremor, slowed movement (known as bradykinesia), rigid muscles, impaired posture and 

balance, loss of automatic movements and in some cases speech and writing changes. While symptoms progress over 

the time, people may have difficulty walking, talking or completing simple tasks. The most two of the common causes 

of PD are genetic changes and exposure to specific toxins or ecological elements [8]. The first neural changes start 

from the loss of neurons in an area near the base of the brain and it is called the substantia nigra [9].  

There are several tools available to help diagnose PD. One of them is imaging techniques like Single-photon emission 

computed tomography (SPECT). Another one is Cardiac 123I-metaiodobenzylguanidine (123I-MIBG) which can 

reveal changes in the brain related to PD. It can reveal how the brain’s dopamine-producing neurons are affected [10]. 

Existing methods to diagnose PD such as Blood and Imaging Tests, Dopamine Transporter (DAT) Scan, Tests for 

Alpha-Synuclein Proteins, and Medication Trials. These methods are helpful but have some limitations. Firstly, these 

methods may oversimplify complicated decisions and possible to miss important details in some cases. Secondly, an 

accurate diagnosis is expensive most of the times and these methods may not be flexible enough because of following 

the pre-determined steps without considering each patient’s specific needs [11]. 

The alpha synuclein biomarker has emerged as a significant diagnostic tool for PD. This protein, normally found in 

the nervous system, becomes abnormal in PD patients. Cluster of misfolded alpha synuclein that accumulates in 

neurons and it contributes to the disease’s progression [12]. Early identification of these abnormalities can allow for 

better management and targeted therapies. EEG has emerged as a promising tool for assessing PD. Many researchers 

have explored EEG microstates in PD patients. Most of the cases which represent distinct patterns of neuronal activity 

during the rest. These microstates have the potentials to be used as markers for PD [13]. For example, less occurrences 

of Map1 (a prototype microstate) might suggest PD, with or without dementia [14]. Also, a recent study showed that 

EEG markers are strongly linked to the MDS-UPDRS score, a scale for measuring PD symptoms [15]. 
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This study focuses on using EEG signals and represent it as a time frequency image and CNN to create an accurate 

model for PD classification. EEG gives a non-invasive way to capture the complex changes to study the brain activity 

related to PD. CNNs are well-known for finding complex patterns in high-dimensional data. It makes them useful for 

analyzing the brain activity. The aim of this study is to help improve early diagnosis and monitoring of PD by 

combining time frequency and CNN. This study builds on past studies by solving the problems of older PD 

classification methods by exploring on how CNNs can find important features in EEG data.  

 

2.2 EEG Signal and Time Frequency Analysis  

EEG works by placing small sensors on the scalp of the head. These sensors are able to detect tiny electrical signals 

made by neurons when they are active. The signals can be represented in a larger way and displayed on a screen to 

give a live view of brain activity. EEG signals come from the combined activity of many neurons working together 

[16]. There are 5 different brain waves which are delta, theta, alpha, beta, and gamma. They are linked to different 

brain functions and states. For example, delta waves are available in during deep sleep, beta waves are linked to being 

awake and focused. Analyzing the features of these EEG frequency bands is very important. It can provide important 

information for diagnosing brain problems like epilepsy, sleep issues, and other brain-related medical conditions. 

Previous study has shown that the gamma band (30-100 Hz) proved to be the best features useful for early PD diagnosis 

and treatment [17]. 

EEG is proved to be very useful for finding and tracking brain disorders. In epilepsy, EEG can be used to find abnormal 

brain activity that causes seizures [18]. For Alzheimer's disease, EEG shows the change of the brain wave that is linked 

to memory loss [19]. PD also has unique EEG patterns. A recent study shows that PD patients often show changes in 

the beta and alpha bands especially the increased beta activity in the front and middle parts of the brain which is 

common [20]. Alpha wave strength and frequency are often lower and it can show the changes in brain alertness and 

thinking abilities using EEG. These EEG features are very important to understand PD's brain mechanisms and 

improve its diagnosis and treatment. 

EEG signals analysis is complicated because of two main reasons. The first one is the low signal-to-noise ratio, and 

the other one is the random nature of EEG. These signals are mostly mixed with noise, artifacts, muscle movements, 

and eye blinks. These noises can cover the real brain activity. Preprocessing is very important before analyzing the 

data. However, there are no specific methods to clean the signal. It makes the process a bit risky. This is because 

during cleaning, there is a possibility to remove important parts of the signal. It may affect the final results. The 

random nature of EEG signals adds another layer of complication. Automated methods are available which study the 

nonlinear dynamics. It can provide the useful information, but it will take a lot of time and computing power. There 

are different ways to analyze EEG signals. One of them is called Event-Related Potentials (ERPs) representation. 

Another popular method is called Fourier-based power analyses. These methods can help understand psychological 

processes. ERPs study focuses on how the brain responds to events or stimuli over time [22]. Fourier-based power 

analysis represents at how different parts of the EEG signal's frequencies explain the brain activity [23]. Both methods 

are useful in learning how the brain works. However, these methods do not fully use the important information in 

EEG signals. ERPs are based on the brain’s response to an event that happens at the same time across many tests 

which means ERPs only analyze the activity that matches the events’ timing. It also ignores brain activity that does 

not perform the similar. There is a possibility that it can miss the useful information from signals that are not perfectly 

aligned during tests [24]. Fourier-based power analysis only focuses on the signal’s frequency, not considering how 

brain activity changes over time [25]. These methods are unable to capture the complexity of EEG data. This may lead 

to miss the important information unrelated to specific events or fixed frequencies.  

Time-frequency analysis is an important method to represent the signal over time. It represents how the frequency of 

EEG signals changes over time. Time-frequency methods allow analysis of both time and frequency at the same time 

[26], which Fourier analysis cannot perform. It shows the spectral features that changes during certain events or 

conditions. For example, when studying event-related EEG oscillations, researchers separate EEG signals into 

magnitude and phase information for each frequency [27]. This method shows the changes over time (in milliseconds) 

which related to task events [28]. Some of the common methods are the Short-Time Fourier Transform (STFT), which 

breaks the signal into overlapping sections and does Fourier analysis on each section [29]. Another one is the Wavelet 

Transform (WT). It uses scalable functions to study different frequency components at various times [30]. There is 

also the Wigner-Ville Distribution. It provides a detailed time-frequency picture but can suffer from interference terms 
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[31]. These methods give important insights into brain activity's dynamic nature and help researchers study things like 

event-related potentials and brain rhythms. 

Time-frequency representations (TFRs) give a better view of EEG data by capturing both time and frequency 

information. It allows the researcher to study on how brain signals change over time. It provides the useful insights 

into brain activity's dynamics. Time-frequency analysis helps find changes in brain rhythms. For example, the beta 

band is higher in PD patients [32] compare to healthy controls. This activity is observed in the brain's front and middle 

areas [33] and has a higher strength and frequency compared to healthy people. Recent study shows that PD patients 

may have lower alpha wave strength and frequency [34]. This suggests the changes in brain alertness and thinking 

ability. By analyzing the time-frequency feature, researchers can differentiate PD patients apart from healthy 

individuals. It can also contribute to understand the disease’s brain mechanisms and improving its diagnosis and care. 

Though time-frequency representations can help to understand the abnormalities better, it also has challenges. It 

requires high computational resources, especially with big datasets and advanced methods like the Wigner-Ville 

Distribution. EEG signals are naturally contaminated with artifacts. The choice of the cleaning method can affect how 

well it handles noise. It is important to pick the right method for the research goal to get the best results. Factors like 

the time and frequency, computing efficiency, and noise resistance can be very useful to guide the choice of time-

frequency analysis method. Time-frequency analysis is very important in our study for CNN-based classification. By 

capturing both time and frequency information, it can identify the small changes in brain activity linked to PD. This 

feature can improve the accuracy and strength of our classification model. In this study, we have employed the 

wavelet-based method to create the time-frequency image with the aim to capture EEG signal parts that may provide 

better features for classifying PD. 

 

2.3 Deep Learning  

Deep learning uses neural networks with many layers to process complex data. It is able to learn patterns and features 

from complex data. Deep learning models can work with large and complicated datasets. It can automatically find 

features in the data. It is very useful for image recognition, NLP, and speech recognition. It can identify the patterns 

directly from raw data without the need for excessive amount of code. It can identify complex patterns and 

relationships that human might miss. Deep learning has contributed greatly in the areas of computer vision, healthcare, 

and finance. There are many different types of deep learning models. Some of the popular ones are Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory Networks (LSTMs), 

Generative Adversarial Networks (GANs), and others. 

CNNs are one type of deep learning model. It is very useful for grid-like data as images. CNNs are consist of layers 

like convolutional layers, pooling layers, and fully connected layers. Convolutional layers capture the features from 

the input image. Pooling layers reduce the size of feature maps. Fully connected layers combine the features to make 

the final prediction [35]. CNNs are very good at finding patterns and recognizing features, which makes them great 

for analyzing images, such as diagnosing medical images or segmenting them. 

Binary classification is a type of supervised learning where the aim is to predict one of two possible outcomes for a 

given input. For Parkinson's Disease (PD), binary classification helps to distinguish PD patients from healthy 

individuals. CNNs are commonly used for binary classification tasks involving image data. The architecture employs 

convolutional layers to extract features, pooling layers to reduce dimensionality, and a fully connected layer with an 

activation function to generate class probabilities [36]. Softmax activation is a standard technique for multi-class 

classification problems. It assigns a probability to each class [37]. However, for binary classification, the sigmoid 

activation function is typically used [38]. The sigmoid function is a nonlinear activation function that outputs values 

in the unit interval. Choosing the appropriate loss function and optimization technique is crucial for effective training 

and achieving high classification accuracy. Binary cross-entropy loss is a standard loss function for binary 

classification tasks. It quantifies the discrepancy between predicted probabilities and ground truth labels. By 

minimizing this loss, the model is trained to produce accurate predictions. Optimization algorithms like stochastic 

gradient descent (SGD) and its variants (e.g., Adam, RMSprop) are employed to update the model's parameters 

iteratively. These algorithms adjust the weights and biases of the CNN to minimize the loss function, thereby 

enhancing classification performance. Some of the popular deep learning model for binary classification are Logistic 

Regression, RNN and LSTM, Fully Connected Neural Networks (FCNNs), Support Vector Machines (SVMs), 

Autoencoders etc [39]. But CNN outperformed among all other deep learning models when it comes to image 

classification [40].  
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CNNs have proven effective for EEG signal classification by feeding time-frequency images as if they were traditional 

images. This approach allows CNNs to automatically learn discriminative features from the spatiotemporal patterns 

in EEG data. However, EEG-based CNN classification faces unique challenges. EEG signals exhibit significant 

variability across subjects and even within the same subject across different sessions [41]. This variation can make it 

hard for CNNs to work well with new data. Strong feature extraction methods are needed to solve this issue and ensure 

the classification is accurate. By carefully choosing the suitable preprocessing pipeline and feature selection steps, 

CNNs can provide the best classification accuracy which can be helpful to understand the brain activity and the 

neurological disorders. 

CNNs are useful for classifying PD because it can find small patterns and features in time-frequency EEG images. 

These features consist of the signs of PD. It is hard to identify using traditional machine learning methods. CNNs able 

to learn the complex features directly from EEG data [42] which leads to better classification accuracy and reliability. 

Training CNNs for binary classification has some problems. The common problem is called overfitting. It happens 

when the model remembers the training data instead of learning general patterns. It performs poorly on new data 

especially when the dataset is small. Some methods can be very useful to avoid overfitting. The popular methods are 

data augmentation, transfer learning, and regularization. Data augmentation can make the dataset larger. It will apply 

changes like rotation, scaling, adding noise, and time warping which increases the variety in the data. It helps the 

model generalize better. Transfer learning uses the pre-trained models from large datasets. An example of this is 

ImageNet. It makes training faster and improves results. Regularization methods are also useful in deep learning. 

Methods like dropout and L1/L2 regularization help reduce overfitting. Dropout turns off some neurons randomly 

during training which will cause stopping them from relying on each other. L1/L2 regularization adds a sanction to 

the loss function. It will encourage smaller or more selective weights to limit overfitting. CNNs can work well for PD 

classification by applying these methods. It will offer a strong method for better diagnosis and early treatment. 

CNNs were chosen because they are very good at finding complex features in image data. This makes them suitable 

for binary classification tasks like time-frequency EEG images. CNNs are suitable for this task because they can 

automatically learn multi-level representations from input data. They find subtle patterns and features that could 

indicate Parkinson's Disease (PD). By using CNNs, we aim to create a highly accurate and reliable model to help 

diagnose and manage PD early. To improve classification even more, we are trying out new CNN designs and 

improvements. We are also adding attention mechanisms to our CNN design. This focuses on the most important parts 

of the time-frequency images, which might improve both accuracy and understanding of the results. By using these 

advanced methods, we believe our CNN-based solution will make an important contribution to PD classification.   

 

2.3 Related Works  

Many studies have looked at how time-frequency analysis and deep learning can help detect PD early using EEG 

signals. Ruilin Zhang, Jian Jia, and Rui Zhang proposed the Tunable Q-factor Wavelet Transform with Deep Residual 

Shrinkage Network (TQWT-DRSN) and the Wavelet Packet Transform with Deep Residual Shrinkage Network 

(WPT-DRSN) to classify different clinical sleep EEG data. These included PD, REM sleep disorder, PD with REM 

sleep disorder, and a control group [43]. These models work well for diagnosing PD because they can capture the 

complex patterns and time-related changes in EEG signals. The TQWT-DRSN and WPT-DRSN models successfully 

extracted useful features from the EEG data. This led to better results compared to other methods. These models 

reached high accuracies of 99.92%, 97.81%, and 92.59% for 2-class, 3-class, and 4-class classification tasks, 

respectively. Oh and Hagiwara used a CNN to diagnose PD from EEG signals and achieved an accuracy of 88.25% 

[44]. Shaban and Amara created a 20-layer CNN applied to the wavelet domain of resting-state EEG, achieving very 

high accuracy [45]. Siuly and her team introduced a Wavelet Scattering Transform (WST)-based AlexNet CNN model 

to diagnose PD from EEG data and reached an accuracy of 99.84% [46]. Yang and Huang used support vector 

machines (SVM) and CNNs for classifying PD with resting-state EEG, showing excellent accuracy [47]. Xu used a 

pooling-based deep recurrent neural network (PDRNN) to detect PD from EEG signals, achieving an accuracy of 

91.81% [48]. These studies together show how time-frequency analysis and deep learning can help identify PD early, 

offering useful ideas for future research and medical use. 

Our method for classifying PD using time-frequency analysis stands out from current approaches because it is simple 

and effective. By using component time-frequency analysis to create time-frequency plots, we rely on a well-known 

technique. This method can capture the detailed temporal and spectral features of EEG data. In addition, carefully 

cleaning and preprocessing the data ensures the results are accurate and reliable. We use a straightforward CNN design 
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with several convolutional, pooling, and dropout layers. This creates a strong and easy-to-understand model. This 

straightforward design facilitates implementation and understanding, while still achieving competitive performance. 

In contrast to more complex models that may introduce additional computational overhead and challenges in 

interpretability, my approach offers a practical and efficient solution for early PD detection.  

 

3. RESEARCH METHODOLOGY  

3.1 Dataset  

This EEG signal data has been collected by Narayanan Lab from University of Iowa [49]. It is a publicly available 

dataset. The dataset consists of EEG recordings from 33 PD patients and 33 healthy control participants. These EEG 

signals were acquired during resting-state conditions where participants were not actively performing any specific 

tasks. Resting-state EEG captures spontaneous brain activity and provides insights into neural connectivity patterns. 

Each EEG recording utilizes 63 electrodes to capture brain activity. The data is sampled at a rate of 500Hz. In total, 

there are 1,758 epochs, with each epoch containing 1,500 frames of data. These epochs span from -1000ms to 1998ms, 

covering a significant period around the event of interest. Across all recordings, there are 10,132 distinct events, 

providing a rich dataset for analysis. 

3.1 Approach 

This study has been conducted into 2 sections. First one is the EEG signals processing to generate the time frequency 

image and the second one is building the deep learning neural network framework. 

3.1.1 EEG Signal Processing Methodology 

Figure 1 demonstrates the methodology diagram of the first part of this research which is the EEG signal processing. 

A toolbox from Matlab (version R2022b) called EEGLAB (version v2022.1) is used to analyze the signals.  

 

 

Figure 1. EEG Signal Methodology 

 

The main challenge of this section is to preprocess and clean the data carefully so that the important information from 

signal will not be eliminated. The initial move is to load the EEG data in EEGLAB. The EEG signal data format is 

'.eeg'. It is Nihon Kohden brainvision EEG data. This data is imported in EEGLAB as EDF/EDF+/GDF files. After 

importing the data, the preprocessing and cleaning part starts with extracting the epoch. As previously mentioned in 
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the dataset information that the total number of electrodes are 63 which means there are 63 channels. But the channel 

location information was missing from the data and had to be manually provided. The next step is to filter the data. 

Using basic FIR filter method from EEGLAB, the low passband is set to 0.5Hz and the high passband is set to 50Hz. 

This filtering has been done because the selected frequencies will improve the overall signal-to-noise ratio (SNR). 

Also, the higher frequency band will take an enormous amount of time to complete next step which is ICA. ICA stands 

for Independent Component Analysis. It will remove artifacts embedded in the signal (example muscle movement, 

eye blinks or eye movements etc.) without removing the affected data portions. It is one of the most important steps 

in EEG signal processing. It is also a time-consuming process. Following the completion of ICA, two types of images 

can be visualized which is the channel data and the component data. This research focuses on component activity. 

ICA will separate all the activity into different components that has been captured during the recording. These 

components heavily rely on the number of channels/electrodes. If the number of electrodes is 128, the process will 

generate 128 components. In this research, our data recorded with 63 electrodes, meaning 63 components has been 

generated.    

Figure 2 is an example of a time frequency component image. It demonstrates the first time-frequency component 

image that is generated from the EEG recording of Subject 1 PD patients. Figure 2 shows how the power or amplitude 

of a component's activity changes over time and across different frequency bands. Two plots are visible in Figure 2, 

the first plot is ERSP (event-related spectral perturbation) and the second plot is ITC (inter-trial coherence). We are 

only interested in the ERSP plots. For this reason, ITC plots has been removed. These images will be used for deep 

learning purposes. So, the axes and the indicators along with the whitespace of the image will not be needed. For this 

reason, the only important part of the image will be cropped out.   

 

Figure 2. Time Frequency Component Image  

 

Figure 3 shows the final output of the image. This image size is 500 x 400 pixels. The total number of subjects are 74 

(PD 37 + Control 37). From each Subject, 63 time-frequency component images will be generated. For the deep 

learning classification, the total number of images will be 4662 (Total subjects 74 x 63 time-frequency component 

images).   
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Figure 3. Preprocessed TF Component Image 

 

3.1.2 Deep Learning Methodology  

Jupyter Notebook is used to conduct this section. The specifications of the computer that is used for this study is as 

follows – Windows 10 Pro 64-bit operating system, Intel(R) Core (TM) i5-8400 CPU @ 2.80GHz 2.81 GHz, 32 GB 

RAM, RTX 2080ti GPU. A customized CNN model is used to conduct this study with PyTorch framework. The image 

preprocessing is done using OpenCV. Figure 4 demonstrates the diagram of the second part of this study which is the 

steps of deep learning methodology.  

 

 

Figure 4. DL Methodology  
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The deep learning methodology begins by importing key libraries such as NumPy, OpenCV, scikit-learn, and PyTorch 

within a Jupyter Notebook kernel. These libraries facilitate the various steps of data handling, image processing, and 

model training. 

The workflow starts by loading time-frequency images generated from EEG signals, which are categorized into two 

classes: PD and Control. These images are stored in two separate folders and are then loaded using OpenCV. 

In the next step, data preprocessing is carried out. First, the images from both classes are combined into one dataset. 

This step is necessary for the binary classification task. The combined dataset is shuffled to make it random. This 

prevents the model from learning patterns related to the order of the data. After that, the dataset is split into features 

(X) and labels (y). Here, X represents the image data, and y represents the class labels. Both images and labels are 

converted into NumPy arrays to make processing faster and easier. The pixel values of the images are scaled between 

0 and 1. This normalization helps avoid numerical problems during training. The dataset is then divided into training, 

validation, and testing subsets. With a total of 4662 time-frequency images, 60% (2797 images) is used for training, 

28% (1304 images) for validation, and 12% (560 images) for testing. This division ensures the model is trained and 

tested properly, reducing the chance of overfitting. 

Next, DataLoader objects are created for the training and validation datasets. The training DataLoader shuffles the 

data in every epoch. This ensures that training batches are diverse. The validation DataLoader, however, keeps the 

original order to give consistent evaluation results. DataLoader objects make batch processing during training and 

evaluation faster and more efficient. 

The CNN architecture is then built. Details of the architecture are discussed later in the study. Hyperparameter tuning 

is important here. The batch size is set to 32 to prevent memory issues. The number of epochs is set to 20, meaning 

the model will go through the training dataset 20 times. The learning rate is set to 0.001. This value helps the model 

learn gradually without overshooting the optimal weights. The input images are resized to 500x400 pixels to match 

the size expected by the model. 

The training and validation process uses PyTorch and GPU acceleration, which greatly reduces the time needed for 

training. After training is complete, the model’s performance is tested on the test data. Metrics such as test accuracy, 

precision, recall, F1-score, confusion matrix, ROC curve, and precision-recall curve are calculated to evaluate the 

model. These results are fully analyzed in the Results and Discussions section.  

 

3.1.3 Customized CNN Architecture  

A customized CNN model is used in this study. This CNN structure is ideal for binary classification because it balances 

complexity and regularization. Several convolutional layers are used to capture complex features from the input 

images. Max pooling layers reduce spatial dimensions, which helps keep important features and reduces the 

computational load. Dropout layers are placed to prevent overfitting by randomly turning off neurons during training. 

The fully connected layers convert the extracted features into a binary output using a sigmoid activation function.   

Figure 5 shows the customized CNN architecture. This architecture begins with two convolutional layers with 32 

filters, a kernel size of 5, and padding of 2. This followed by a max-pooling layer which reduces the spatial dimensions 

by half. A dropout layer with a rate of 0.5 is added after pooling. It will be essential to prevent overfitting. The model 

then has three more convolutional layers with 64 filters and a kernel size of 3. The next one is another max-pooling 

layer and a dropout layer with a rate of 0.25. After flattening the output from the last convolutional layer, the model 

passes the data through a fully connected layer with 64 units. Then another fully connected layer with 1 unit which 

will produce a single output. A dropout layer with a rate of 0.1 is applied. Lastly, a sigmoid activation function is used 

for binary classification.  

This CNN architecture is a well suited for binary classification in identifying PD from EEG signals. It balances 

complexity and regularization and ensure that the model captures detailed time-frequency features without overfitting. 

The multiple convolutional layers with increasing filter sizes allow the network to detect both fine and broad features. 

It is essential for identifying subtle patterns in EEG data. Max-pooling layers reduce spatial dimensions, keeping key 

information as well as lowering computational load, making the model scalable and suitable for real-world use. 

Dropout layers are introduced at key points to keep the model robust with a smaller dataset. Fully connected layers 

and sigmoid activation ensure the extracted features are mapped to a binary output for accurate classification. This 
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model will able to capture enough feature complexity while avoiding issues like overfitting. This problem can happen 

with deeper architectures (such as a 7-layer network). This architecture is well-suited for the binary classification task.   

 

 

Figure 5. Proposed CNN Architecture 

 

4. RESULTS AND DISCUSSIONS  

The results of using Convolutional Neural Networks on EEG time-frequency images for PD classification provides a 

strong performance. The test accuracy is 94.64% and the test loss is 0.0203. This model performs well in 

differentiating between PD and healthy control subjects. The precision score is 0.9439. It proves that the model 

correctly identifies Parkinson's cases with few false positives. The recall score is 0.9505 resulting the model captures 

most of the actual Parkinson's cases. The F1-Score is 0.9472. The result demonstrates that the model balances precision 

and recall well, with strong overall performance.    

Figure 6 shows the confusion matrix, which breaks down the model's performance in classifying data into two 

categories which are PD and healthy controls. 

 

Figure 6. Confusion Matrix of The Studied Method 
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The matrix demonstrates that the model correctly identified 261 instances with 16 misclassified as positive (class 1) 

where total of 277 true negative cases (class 0). 269 instances correctly identified out of 283 true positive cases which 

is class 1 in the matrix. 14 incorrectly classified as negative in class 0. The low number of misclassifications determines 

the model's reliability in distinguishing between PD and healthy controls, with a low tendency toward false positives. 

This performance here matches the reported metrics which confirms the model's effectiveness in the classification 

task.     

Figure 7 represents the precision and recall curve of the proposed architecture. It provides a detailed analysis of the 

model's performance with imbalanced classes. The curve shows that the model achieves high precision across a wide 

range of recall values. This means that it maintains a low false positive rate while correctly identifying more true 

positives. The precision starts near at 1.0. It slightly decreases as recall increases. Then drops sharply toward the end 

of the curve. It suggests that the model performs well with precision above 0.9 until recall becomes very high. Then 

the precision falls quickly. The average precision (AP) score of 0.97 also supports the model's strong performance. It 

shows the ability to accurately classify the positive class with minimal trade-off between precision and recall. This 

high AP score proves that the model is robust and reliable in distinguishing between the two classes, making it ideal 

for the classification task.   

 

Figure 7. Precision and Recall Curve of the Studied Method  

 

Figure 8 represents the Receiver Operating Characteristic (ROC) curve of the model's performance. The curve plots 

the true positive rate (sensitivity) against the false positive rate at a different threshold setting. The ROC curve is close 

to the top left corner. This means the model achieves a high true positive rate while keeping the false positive rate low. 

This indicates that the model is very useful for differentiating between the PD and healthy controls. The area under 

the ROC curve (AUC) is 0.98, which is very close to 1.0, showing the model's excellent performance. An AUC of 

0.98 means there is a 98% chance the model will correctly identify a positive instance and a negative one. The model's 

ability to maintain a high true positive rate with only a small increase in the false positive rate shows its robustness 

and reliability. This result shows that the model is well-calibrated and very good at making accurate predictions for 

this task.   

In comparison to other studies, our model demonstrates competitive performance in classifying PD using EEG data. 

Achieving a test accuracy of 94.64%, a precision score of 0.9439, and a recall score of 0.9505, my model shows robust 

classification capability. However, some studies report even higher accuracy. For example, [43]'s use of a deep 

residual shrinkage network (DRSN) achieved a remarkable 99.92% accuracy in a two-class classification task using 

EEG sleep data, outperforming our model. Similarly, [46]’s approach, using a Wavelet Scattering Transform (WST) 

with AlexNet, reached 99.84% accuracy. Although our model does not reach these levels of accuracy, its F1-score of 

0.9472 and AUC of 0.98 suggest strong overall performance in balancing precision and recall. Compared to [45], 

whose CNN-based model achieved 88.25% accuracy, our model performs notably better, underscoring its reliability 

in this task. Some studies, like Shaban and Amara’s [45] 20-layer CNN, report high accuracy but lack detailed 
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precision and recall metrics, making a full comparison difficult. While our model performs well, especially in terms 

of precision, its slightly lower accuracy compared to others may highlight the importance of further dataset expansion 

or alternative feature extraction methods to achieve optimal results. On the other hand, the proposed CNN model 

offers several advantages for PD classification. Its five-layer architecture allows for automatic identification of PD 

using EEG signals without the need for manual feature extraction, selection, and classification. This eliminates the 

subjectivity and potential biases associated with traditional feature engineering methods. Moreover, the model 

demonstrates good performance even with a limited number of normal and PD subjects, highlighting its robustness. 

However, the primary disadvantage of this approach is the limited number of subjects used in its development. A 

larger dataset would be necessary to further validate the model's generalizability and clinical applicability.   

 

 

Figure 8. ROC Curve of The Studied Method  

 

5. CONCLUSION 

The primary objective of this study was to develop a robust and accurate deep learning framework for the early 

identification of PD using EEG signals. By extracting time-frequency features from EEG recordings and training a 

customized CNN model, we achieved an accuracy of 94.64% in differentiating PD patients from healthy controls. 

This demonstrates the potential of our approach for clinical application, offering a non-invasive screening tool for PD. 

Future work could explore the integration of other modalities, such as magnetic resonance imaging (MRI) or positron 

emission tomography (PET), to enhance the diagnostic accuracy and provide a more comprehensive assessment of 

PD. Also, longitudinal studies could be conducted to evaluate the performance of our model of early identifications 

of PD and assess its ability to track disease progression. We acknowledge the Narayanan lab for sharing the data 

publicly.  
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