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Abstract  - Stunting prevalence in Indonesia persists as a significant challenge, necessitating concerted efforts from all stakeholders. 

We developed a robot for stunting analysis using a deep learning algorithm. It aligns with the Sustainable Development Goal (SDG) 

agenda, specifically targeting SDG 3, which focuses on ensuring good health and well-being for all.  Long Short-Term Memory 

(LSTM) is a type of Recurrent Neural Network (RNN) developed to address the issue of vanishing gradient in RNNs. In general, 

either LSTM can be used in analysis. This study aims to classify stunting based on age and height using LSTM. The LSTM model 

was trained with 50 epochs using datasets collected from the health office and robots. The evaluation results show a training 

accuracy of 96.65% and training validation of 96.61%, with precision, recall, and f1-score varying in relevance to the f1-score and 

support value. This research illustrates the potential for using data classification methods in stunting diagnosis. However, it is 

necessary to adjust parameters and augment the training dataset to enhance model performance. With good convergence at epoch 

50, these results show the model's ability to classify stunting based on age and height. However, further validation and testing on 

larger datasets is needed to thoroughly test the reliability and generalization of the model. This research can contribute to the 

development of deep learning regarding robots as a means of testing stunting. This research provides initial evidence of the potential 

of stunting classification methods using robots. However, parameter adjustments and increasing the amount of training data need 

to be done to improve the overall model performance. 

Keywords—Long short-term memory, LSTM, Stunting, Robot, Deep learning, Classification  

 

Received: 3 May 2024; Accepted: 4 June 2024; Published: 16 October 2024 

This is an open access article under the CC BY-NC-ND 4.0 license. 

 

1. INTRODUCTION  

The toddler stage is a critical phase in a child's growth and development journey, as it lays the foundation for their 

cognitive abilities to blossom in alignment with their age-related milestones. Nutritional deficiencies during this 

pivotal period can severely impede a toddler's growth trajectory, leading to frequent illness and, if left unaddressed, 

potential mortality[1]. Addressing malnutrition remains a top priority for the government, with particular emphasis  
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on combating stunting—a condition characterized by growth impairment, where a child's height fails to align with 

their age due to prolonged inadequate nutritional intake. Stunting prevalence in Indonesia persists as a significant 

challenge necessitating concerted efforts from all stakeholders. Recognizing its gravity, the Indonesian government 

has designated stunting management as a national priority program, mandating comprehensive strategies to curb its 

escalating incidence [2]. The bad impact of stunting is a decrease in academic achievement, increasing the risk of 

obesity, being more susceptible to non-communicable diseases, and increasing the risk of degenerative diseases (which 

is a process of gradual reduction in nerve cell function for no known reason). There are two negative impacts that 

stunting can have, namely short term and long term. In the short term, it affects brain development, where if nutrition 

is not appropriate, brain development is reduced, on the other hand, motor brain development is delayed, In the long 

term, the adverse effects that may occur include impaired cognitive abilities and learning achievements, weakened 

immunity making one more susceptible to illnesses, and an increased risk of developing diabetes, obesity, 

cardiovascular diseases, cancer, stroke, and disabilities in later life [3]. 

According to the Ministry of Health in Indonesia, the latest findings from the Indonesian Nutritional Status Survey 

(SSGI) indicate a positive trend: the prevalence of stunting declined from 24.4% to 21.6% in 2022 [4]. While this is 

encouraging progress, it's important to note that the World Health Organization (WHO) recommends a stunting 

prevalence of less than 20%. In Semarang, one of Indonesia's cities, the stunting prevalence stood at 21.3% in 2021 

[5]. Researchers have highlighted that stunting is most prevalent among toddlers from low socio-economic 

backgrounds [6]. Additionally, parental education levels play a significant role in shaping parental knowledge about 

nutrition and childcare practices. Inappropriate parenting patterns can elevate the risk of stunting among children[7]. 

The development of robots for stunting detection has been gaining significant attention. An anthropometric system 

equipped with multisensory detection was developed to enable non-contact measurement. This system utilizes a 

variety of sensors, including load, distance, and temperature sensors. Specifically, load cells and infrared sensors are 

employed to measure body mass, height, and head circumference [8]. Additionally, an Arduino microcontroller-based 

system utilizes ultrasonic and load cell sensors to measure the length and weight of children. The data gathered from 

these sensors are processed by a microcontroller for early stunting detection [9]. However, a fully integrated robotic 

system with multisensory capabilities for early stunting detection has yet to be developed. 

Aligning with SDG program, our recent development, Lintang (meaning ‘star’ in Javanese) robot, represents a 

significant contribution in the realm of toddler education within Semarang city as can be seen in Figure 1. Accessible 

through https://robotlintang.id/, Lintang serves as an innovative tool aimed at enlightening parents on the critical 

importance of fostering a healthy and hygienic environment for their toddlers. Under the ownership of the Semarang 

City Government, Central Java, Indonesia, Lintang is poised to become an integral resource for disseminating 

information and education about stunting, a prevalent concern among children in the region. There are three main 

advantages of the robot, namely: early detection of stunting, child-friendly design, and cost-effective solution. Lintang 

stands as a versatile device capable of accurately measuring the weight and height of toddlers up to children under 5 

years old, in strict accordance with the regulations outlined in Indonesia's stunting prevention program. Leveraging 

the ESP32 Microcontroller, which facilitates internet connectivity, and a connected load cell, Lintang can seamlessly 

transmit measurement data to a secure private database server. This data serves as a foundational resource for 

analyzing the possibility of stunting in children, enabling proactive intervention and support. Moreover, the integration 

of Robot Lintang's measurement results with the data of children registered as patients at the Semarang City Health 

Office, managed through the website information system https://sim.sayanganak.semarangkota.go.id/, ensures the 

creation of comprehensive medical records.  

 

 

 

 

 

 

Figure 1. Lintang, Equipped With IoT And AI For Early Stunting Detection And Text-to-Speech Integration 
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2. LITERATURE REVIEW  

In the field of stunting identification using machine learning and deep learning techniques, several methods have been 

investigated. For example, the Random Forest method attains an accuracy of 79%, whereas the Artificial Neural 

Network method achieves an accuracy of 72% [10],[11]. Despite these promising results, the landscape of stunting 

classification methods encompasses a myriad of alternatives, necessitating the pursuit of a reliable approach that 

optimizes accuracy and reduces data dimensionality, especially when dealing with extensive feature sets[12]. Deep 

learning methodologies emerge as compelling candidates for stunting classification due to their demonstrated efficacy 

in achieving high performance and accuracy levels. Notably, LSTM method has garnered attention for its adeptness 

in handling sequential data, a characteristic particularly advantageous for stunting analysis [13]. Unlike traditional 

algorithms, LSTM is highly effective at capturing long-term dependencies in sequential data, thus enhancing the 

interpretability of stunting trends [14],[15]. Motivated by these considerations, this study employs the LSTM method 

for stunting classification, leveraging its capabilities to integrate and analyze sequential stunting data. In light of the 

foregoing discussion, this research undertakes the classification of stunting utilizing the LSTM method, drawing upon 

integrated stunting data. This approach is particularly pertinent given the nature of stunting data, wherein variables 

such as body weight are not merely measured at a single instance but are instead analyzed sequentially to discern 

developmental trends. By harnessing the power of LSTM and sequential data analysis. This research aims to provide 

new perspectives on categorization and understanding of stunting phenomena. 

 

3. RESEARCH METHODOLOGY  

The methodology outlined in this research is an attempt to develop a robot designed to detect stunting early 

through the use of deep learning techniques. This framework integrates dataset from healthcare institution, i.e., 

Dinkes data, and IoT to tackle this pressing issue. It comprises seven interconnected components, including the 

acquisition of health institution data and the utilization of IoT technology for real-time data collection. By 

merging health institution data with IoT-generated data, the framework enables comprehensive analyses of 

stunting risk factors. Preprocessing, augmentation, and balancing of the dataset are essential steps to ensure data 

quality and model robustness. Splitting the dataset into training and validation sets facilitates model development 

and evaluation. The utilization of LSTM networks, renowned for their capacity to model time-based relationships, 

is central to the framework's methodology. The stunting detection model undergoes thorough testing to gauge 

its effectiveness and accuracy. Through comprehensive evaluation metrics and validation procedures, the 

framework seeks to ensure the reliability and utility of the developed system.  

Figure 2 shows the research methodology. This study only discusses the evaluation stage and will not proceed 

to the deployment stage. 

 

 

Figure 2. Research Methodology Focusing On The Evaluation Stage 
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The research integrates two distinct datasets: one sourced from healthcare institutions, specifically Dinkes data, 

and another obtained from IoT sensors embedded within the robot. This amalgamation of data sources enriches 

the research dataset, providing a comprehensive foundation for stunting analysis. Upon merging the datasets, a 

rigorous preprocessing phase ensues. This involves thorough data cleaning procedures to eliminate 

inconsistencies and errors, ensuring that the combined dataset is coherent and readily interpretable. Such 

meticulous preprocessing enhances the efficacy of subsequent data analyses.  

Following data cleaning, the augmented dataset undergoes a process of augmentation and balancing. This step 

aims to enhance the dataset's richness and diversity while addressing any potential biases or imbalances inherent 

in the original data sources. By augmenting and balancing the dataset, the research endeavors to improve the 

robustness and generalizability of the subsequent models. Subsequently, the augmented and balanced dataset is 

partitioned into distinct subsets for training and validation purposes. This partitioning facilitates effective model 

development and evaluation, ensuring that the developed models are both trained on sufficient data and validated 

on independent samples. The core of the methodology revolves around the utilization of LSTM networks. These 

specialized recurrent neural networks excel at modeling the temporal dependencies within sequential data, 

rendering them particularly well-suited for analyzing time-series data such as that encountered in stunting 

research. By employing LSTM algorithms, the research aims to extract meaningful insights from the combined 

dataset, effectively converting raw data into actionable information.  

Finally, the developed models undergo comprehensive evaluation using rigorous modeling evaluation 

techniques. This evaluation process is designed to assess the performance and efficacy of the stunting detection 

models, with a particular emphasis on minimizing error rates and maximizing predictive accuracy. Through 

meticulous evaluation metrics and validation procedures, the research endeavors to ensure the reliability and 

utility of the developed stunting detection system. 

3.1. LSTM Algorithm 

The LSTM algorithm constitutes a notable advancement within the domain of recurrent neural networks (RNNs). 

Designed to mitigate the challenges associated with long-term dependency problems, such as the vanishing 

gradient issue, LSTM offers a capability to capture and retain information over extended sequences. This unique 

feature sets it apart from traditional methods, making it particularly well-suited for tasks requiring the processing 

of lengthy temporal data. At the heart of the LSTM architecture lies its ability to maintain long-term memory 

through specialized memory cells. Comprising an input layer, hidden layer, and output layer, LSTM structures 

itself to effectively process sequential data over extended durations. Visualizing the LSTM architecture 

elucidates its intricate processing mechanism. Each LSTM cell generates two output results: the actual output 

transmitted to subsequent cells, and the formation of the output cell. Within this architecture, neural network 

layers containing parameters and biases are represented by boxes, while elemental operations such as vector 

element addition or multiplication are denoted by  circles. The interconnection of matrices or vectors is visually 

depicted by joined lines, illustrating information flow, while diverging lines signify distinct pathways for data 

processing [16]. By encapsulating these fundamental principles, the LSTM architecture empowers researchers 

and practitioners to tackle complex temporal data analysis tasks with unprecedented efficacy and precision, 

thereby advancing the frontiers of machine learning and artificial intelligence [17]. Figure 3 depicts the 

architecture of LSTM method.   

The main components of LSTM are as follow.  

3.1.1. Forget Gate  

The pivotal stage in LSTM processing involves discerning the pertinent information to retain within the cell state 

and identifying data that warrants discarding. This critical decision-making process is facilitated by a sigmoid 

layer referred to as the "Forget Gate Layer." Operating within a range of 0 to 1, the forget gate assigns values to 

determine the significance of incoming information. A value of 1 signifies that the data is deemed crucial and 

should be preserved within the cell state, whereas a value of 0 indicates that the information is deemed non-

essential and consequently purged from memory. This meticulous gating mechanism enables LSTM networks 
to selectively retain salient information while discarding extraneous data, thereby enhancing their ability to 

capture and preserve essential temporal dependencies effectively. 
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Figure 3. The Architecture Of LSTM Method 

 

Forget Gate 𝑓𝑡 = σ(𝑊𝑓 .[ ℎ𝑡−1,𝑋𝑡 ] + 𝑏𝑓)                                                                (1) 

Where: 

𝑓𝑡  : Forget Gate 

σ  : Sigmoid activation function 

𝑊𝑓  : Weight of forget gate 

ℎ𝑡−1  : hidden State in time step 

𝑋𝑡  : Data input 

 

3.1.2 Input Gate  

The subsequent phase in LSTM processing involves determining the assimilation of new information from the 

input (𝑋𝑡) into the cell state, thereby facilitating the updating of the cell state. This pivotal task is orchestrated 

by the input gate, which encompasses two primary operations. Initially, a sigmoid layer, denoted as the "Input 

Gate Layer," is employed to compute the value of 𝑖𝑡, thereby determining the relevance of incoming data for 

updating. Subsequently, the tanh layer contributes to the process by generating a new candidate value for the 

cell state (𝐶𝑡), further refining the information assimilation process. This intricate interplay between the input 

gate's constituent layers enables LSTM networks to selectively incorporate pertinent new information into the 

cell state, thereby ensuring the continual refinement and enhancement of model performance. 

Input Gate 𝑖𝑡 = σ(𝑊𝑖 .[ ℎ𝑡−1, 𝑋𝑡 ] + 𝑏𝑖)                                                              (2) 

Where  

σ  : activation function 

Wi  : input gate weight i 

ht-1  : Hidden state on timestep before   

bi  : input gate bias 

 

The subsequent stage involves the determination of which fresh input information (𝑋𝑡) will be assimilated into 

the cell state, thus facilitating its update. This pivotal operation is orchestrated by the input gate, comprising two 

primary operations. Firstly, a sigmoid layer, referred to as the "input gate layer," computes the value of 𝑖𝑡, thereby 

discerning the relevance of incoming data for updating. Subsequently, the tanh layer contributes to this process 

by generating a new candidate value for the cell state (𝐶𝑡). This dual-operation mechanism within the input gate 

ensures the selective integration of pertinent new information into the cell state, thereby perpetuating the 

refinement and optimization of LSTM model performance. 
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3.1.3 Update Cell State  

During the cell state update phase, the previous cell state undergoes transformation to yield the current cell state. 

This critical stage serves to discern newly relevant information while expunging extraneous data. The 

formulation of this update process stems from the integration of inputs from both the gate and forget gate 

mechanisms. By amalgamating these inputs, the LSTM model achieves a refined cell state representation, 

thereby enhancing its capacity to capture and retain salient temporal dependencies while discarding irrelevant 

information. 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡                                                                           (3) 

Where 

Ft : foregate gate 

Ct-1 : cell state on time before 

It  : input gate 

Ct : cell state 

 
3.1.4 Output Gate  

The computation of the current cell state (𝐶𝑡) involves several key steps. Firstly, the prior cell state (𝐶𝑡−1), in 

conjuction with the current input (𝑥𝑡) and the previous hidden state (ℎ𝑡−1), is utilized to generate an intermediate 

value. This value is then subjected to parameter multiplication, akin to previous stages, but exclusively focused 

on the output gate. Subsequently, the resulting product undergoes transformation through a sigmoid function to 

constrain the output gate value (𝑂𝑡) within the range of 0 to 1. Following this, the current cell state (𝐶𝑡) is 

modulated using hyperbolic tangent activation (tanh) to confine its value between -1 and 1. Finally, the output 

gate value (𝑂𝑡) serves as a weighting factor, dictating the contribution of the transformed cell state to the 

calculation of the current hidden state (ℎ𝑡). This meticulously orchestrated process ensures the precise 

modulation of information flow within the LSTM architecture, thereby facilitating effective learning and 

prediction tasks. 

𝑂𝑡 = σ (𝑊𝑜 ∗ [ O ℎ𝑡−1, 𝑋𝑡 ] + 𝑏𝑜 )                                                                (4) 

Where: 

Ot  : output gate 

Bo  : bias output 

 

3.2 Integration Of Classification To Application 

In the current study, we focus on the development of web application, which is pivotal in modern software 

ecosystems. It is a Website Application developed using the Laravel framework, leveraging the PHP 

programming language in its latest version 8.0. Laravel was chosen due to its user-friendly nature and the 

inclusion of its own Eloquent Model, streamlining database processes. The developed application encompasses 

essential components including a landing page, serving as the initial point of interaction for users, dashboards 

providing a comprehensive overview of measurement results obtained from the associated device, and detailed 

pages offering in-depth analysis of data pertaining to infants or children under 5 years old. This multi-faceted 

approach ensures that users have access to pertinent information and functionalities essential for effective 

monitoring and analysis within the specified domain. 

As depicted in Figure 4, consider the scenario where two distinct types of users access the application via their 

Personal Computers (PCs), each connected to the internet to retrieve data from the database. Upon retrieval, the 

data is displayed within the application interface and undergoes acceptance to enable subsequent analysis within 

the system. Simultaneously, the database continually receives data from devices tasked with measuring infants 

or children under 5 years old, ensuring a consistent influx of information for analysis. While the application must 

cater to diverse user needs, it doesn't necessitate the implementation of separate systems. The system's process 
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flow can be succinctly outlined through three sequential processes and a decision point. Upon user access, 

individuals can review records and measurement history encompassing variables such as weight, height, and 

Gross Motor Skills. Subsequently, these variables are parsed into the parameters required for the subsequent 

analysis process. Upon the user's request for analysis, the data is processed through this analysis module, yielding 

results that are then presented within the application interface. This process encapsulates the third step in the 

system's process flow, as illustrated in the flowchart diagra depicted in Figure 2. 

 

 

 

(a)                                                             (b) 

Figure 4. (a) Web Application’s Usage Scenario, (b) Chart 

 

3.3 Application Program Interface (API) And Request Method 

In accordance with the preceding flowchart, the application interacts with the database via a request mechanism 

facilitated by an Application Programming Interface (API). These methods, often referred to as HTTP verbs, 

include GET, POST, UPDATE, and DELETE. Of these methods, the GET method is commonly utilized within 

the API context. It serves dual purposes: retrieving measurement data from the database and transmitting 

measurement data from the measurement device. The data transmitted by the device typically encompasses four 

attributes: Device ID, Height, Weight, and Measurement Position. Subsequently, this data is requisitioned by the 

application to facilitate stunting analysis and is persistently stored within the corresponding infant or child 

records. A comprehensive depiction of the API's operational flow can be observed in Figure 5, illustrating the 

seamless transfer of data between the application and the database through the intermediary of the API. This 

orchestrated exchange ensures the efficient retrieval, processing, and storage of critical measurement data, 

thereby facilitating the analysis and monitoring of stunting indicators within the specified domain. 

 

4. RESULTS AND DISCUSSIONS  

4.1 Dataset 

The toddler data used was 9738 based on calculation of Z-Score TB/U. The dataset will be partitioned into training 

and testing subsets. The training subset will comprise 70% of the total data, while the testing subset will constitute the 

remaining 30%. The stunting dataset encompasses four attributes: gender, age, height, and weight, along with the 

stunting classification as shown in Table 1. 
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Figure 5. API Request Flowchart Diagram Methods 

 

Table 1. Toddler Sample Data 

No Jenis_Kelamin Umur Tb Bb Stunting 

1 L 43 92.0 12.15 ya 

2 P 37 84.0 10.45 tidak 

3 L 58 95.7 13.85 ya 

4 L 18 74.0 8.00 tidak 

5 L 17 78.3 8.45 tidak 

 

Where attribute: 

Jenis_kelamin (gender): contains categorical data that has values Male(L) and Female(P)  

Umur (Age): numerical data that shows the age of toddler based on month 

Tb (Height):  numerical data that shows body height in centimeter 

Bb (weight): numerical data that shows body weight in kilogram  

Stunting: the categorical value of the status of stunting  

 

4.2 Modeling and Testing 

Model evaluation is crucial in identifying the most effective architectural parameters. Prior to testing, preprocessed 

data undergoes a pivotal step known as data split, where it is partitioned into distinct subsets. This separation yields 

two subsets: training data and validation data, with a conventional ratio of 80% for training and 20% for validation. 

In this study, parameter experimentation focused on varying the number of neurons within the LSTM layer. 

Specifically, the test involved evaluating the performance of the LSTM layer with 64 neurons across 50 epochs. The 

outcomes of these tests are illustrated in Figures 6 (a) and (b), providing insights into the model's performance under 

different configurations. This rigorous testing regime enables researchers to identify the most suitable model 

architecture, ultimately facilitating the development of robust and effective stunting detection systems. 

Figure 6 (a) illustrates the accuracy values obtained from both the training and validation datasets. In the training data, 

a commendable accuracy of 96.65% was achieved, exhibiting a consistent stability throughout the 50 epochs. 

Conversely, the validation data showcased a slightly lower accuracy of 96.61%, albeit with a notable improvement 

observed towards the 50th epoch. 
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(a)                                                                                   (b) 

Figure 6. The Accuracy And Loss Of The Approach 

Turning to Figure 6 (b) , the loss values for both the training and validation datasets are depicted. The training data 

yielded a minimal loss value of 0.0873, while the validation data exhibited a slightly higher loss value of 0.0972. 

Notably, the training data showcased a steady decline in loss values over the epochs, indicative of effective learning. 

Conversely, the validation data displayed a slight increase in loss values around the 10th epoch; however, this trend 

was subsequently reversed, with a notable decrease observed post the 12th epoch. These findings underscore the 

robustness of the model training process, with both accuracy and loss metrics indicating favorable outcomes. The 

minor fluctuations observed in the validation data suggest potential areas for further refinement; however, overall, the 

results signify the efficacy of the developed stunting detection model. Table 2 presents precision, recall and F1-Score 

of the approach. 

 

Table 2. Precision, Recall And F1-Score Performance 

Precision Recall F1-Score 

0.97 0.86 0.91 

 

5. CONCLUSION 

The classification evaluation employing LSTM, trained over 50 epochs, yielded a commendable accuracy rate of 

96.61%. This noteworthy result underscores the model's proficiency in correctly classifying instances, signifying its 

efficacy in stunting analysis. While this accuracy level is promising, there remains ample opportunity for enhancing 

model performance through meticulous parameter adjustments and augmenting the volume of training data. Such 

refinements hold the potential to further elevate the model's predictive accuracy and robustness, thereby enhancing its 

utility in real-world applications. Furthermore, an insightful analysis of the accuracy trends across epochs reveals 

compelling insights into the model's convergence behavior. Notably, at epoch 50, the model demonstrates signs of 

convergence, indicative of its adeptness in learning and generalizing from the training data. This convergence 

milestone serves as a testament to the model's efficacy in mastering the underlying patterns inherent in the dataset, 

thereby bolstering its classification capabilities. Moving forward, continued efforts to optimize model parameters and 

augment training data hold the promise of further enhancing the model's performance and resilience. Through iterative 

refinement and validation, the developed LSTM-based classification model stands poised to make meaningful 

contributions to the early detection and intervention of stunting, ultimately improving healthcare outcomes for 

vulnerable populations. 
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