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Abstract – In education, detecting students graduating on time is difficult due to high data complexity. Researchers have 

employed various approaches in identifying on-time graduation with Machine Learning, but it remains a challenging task due to 

the class imbalance in the dataset. This study has aimed to (i) compare various class imbalance treatment methods with different 

sampling ratios, (ii) propose an ensemble class imbalance treatment method in mitigating the problem of class imbalance, and (iii) 

develop and evaluate predictive models in identifying the likelihood of students graduating on time during their studies in 

university. The dataset is collected from 4007 graduates of a university from year 2021 and 2022 with 41 variables. After feature 

selection, various class imbalance treatment methods were compared with different sampling ratios ranging from 50% to 90%. 

Moreover, Ensemble-SMOTE is proposed to aggregate the dataset generated by Synthetic Minority Oversampling Technique 

variants in mitigating the problem of class imbalance effectively. The dataset generated by class imbalance treatment methods 

were used as the input of the predictive models in detecting on-time graduation. The predictive models were evaluated based on 

accuracy, precision, recall, F0.5-score, F1-score, F2-score, Area under the Curve, and Area Under the Precision-Recall Curve. 

Based on the findings, Logistic Regression with Ensemble-SMOTE outperformed other predictive models, and class imbalance 

treatment methods by achieving the highest average accuracy (87.24), recall (92.50%), F1-score (91.30%), and F2-score (92.02%) 

from 6th until 10th trimester. To assess the effectiveness of class imbalance treatment methods, Friedman test is performed to 

determine on significant difference between the models after applying Shapiro-Wilk test in normality test. Consequently, 

Ensemble-SMOTE is ranked as the top-performers by achieving the lowest value in the average rank based on the performance 

metrics. Additional research could incorporate and examine more complicated approaches in mitigating class imbalance when the 

dataset is highly imbalanced.  
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I. INTRODUCTION  

Students who graduate on time (GOT) are those who completed their studies timely within the time frame specified 

by the university [1, 2]. Its significance extends beyond individual achievement, serving as a metric for evaluating 

institutional quality and performance [1, 3]. However, the journey towards GOT is often beset by challenges when 

the academic success is multifaceted [4], with students grappling to maintain academic momentum and overcome 

obstacles that may impede timely completion. These challenges manifest in various forms, including the 

accumulation of failed courses over semesters [3, 5]. While certain measures such as adjusting passing thresholds or 

attendance tracking might seem to bolster graduation rates, concerns linger regarding their impact on the overall 

quality of graduates [6]. Hence, the ability to identify students at risk of delayed graduation becomes imperative, 

facilitating proactive interventions to support them and uphold the quality of graduates [7, 8]. 
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In response to the need for targeted support, researchers have increasingly turned to Machine Learning (ML) 

integration to identify at-risk students during their university tenure. Nonetheless, detecting GOT proves intricate 

due to the intricate nature of educational data, characterized by high dimensionality and class imbalance. The latter 

poses a significant hurdle, stemming from uneven distributions of graduation rates across student cohorts. Whether 

due to varying speeds of progress or other factors [3, 9], this imbalance complicates accurate identification of at-risk 

students and hampers the implementation of tailored interventions. Without effective strategies to address class 

imbalance, educational institutions risk inefficiencies in resource allocation, potentially yielding suboptimal 

outcomes for both students and institutions alike. Thus, rectifying class imbalance becomes paramount to enhancing 

the efficacy of timely graduation interventions. 

Researchers have thus explored diverse class imbalance treatment methods to tackle this issue, aiming to extract 

insights from skewed data distributions. While class imbalance treatment with data-level methods is commonly 

employed, scant attention has been paid to investigating the impact of different sampling ratios in mitigating class 

imbalance. Moreover, the potential benefits of aggregating oversampling, undersampling, or hybrid methods 

through ensemble techniques remain largely unexplored.  

To address these challenges, the objectives of this study were: 

1. To compare various class imbalance treatment methods with different sampling ratios in mitigating the 

problem of class imbalance. 

2. To propose an ensemble class imbalance treatment method in mitigating the problem of class imbalance. 

3. To develop and evaluate predictive models in identifying the likelihood of students graduating on time during 

their studies in university.  

 

II. NUMBER OF MINORITY CLASS IN CLASS IMBALANCE 

Table 1. Number of Minority Class in Dataset used by Researchers in Mitigating Class Imbalance 

Author Less than 10% Less than 20% Less than 30% Less than 40% Less than 50% 

[10]      

[11]      

[12]      

[13]      

[14]      

[15]      

[16]      

[17]      

[18]      

[19]      

[20]      

[21]      

[22]      

[23]      

[24]      

[25]      

[26]      

[27]      

[28]      

[29]      

[30]      

[31]      
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Table 1 illustrates the prevalence of minority classes within datasets utilized by researchers to tackle the challenge of 

class imbalance in identifying GOT. This imbalance arises when the dominance of the majority class eclipses the 

presence of minority classes, resulting in biased predictive models that yield unpredictable outcomes [12, 15, 16, 27, 

28, 30]. Addressing the representation of minority classes becomes imperative within this imbalance paradigm. 

In binary scenarios, researchers meticulously define the thresholds for high class imbalance, typically when the 

minority class constitutes less than 8% of the dataset [17, 20, 21, 23, 25] while acknowledging imbalance when the 

minority class falls below 35% [18, 31]. For example, in a recent study, a random split allocated 85% of the dataset 

to training data, revealing a distribution of 53.38% for on-time graduations and 46.62% for late graduations [11]. 

The delineation between moderate and extreme class imbalance is finely drawn, with percentages such as 24.82% 

indicating moderate imbalance and 12.41% signifying extreme imbalance [10]. Furthermore, class imbalance 

treatments become imperative, as evidenced by efforts to address the scenario where 30.27% of students did not 

graduate on time in a dataset from the Academic Administration Bureau of Universitas Advent Indonesia (UNAI) 

[14]. Al-Shabandar et al. [16] addressed the class imbalance when the Harvard and Open University Learning 

Analytics Dataset (OULAD) dataset collected contains 78% failing students and 22% students succeeding. 

Importantly, challenges arise when the distribution of the minority class falls below 10% of the dataset [22, 27], 

exacerbating the influence of the majority class. These observations underscore the critical importance of tailored 

interventions to rebalance datasets and mitigate the adverse effects of class imbalance. 

Conversely, in multi-class scenarios, researchers confront a different set of challenges surrounding class imbalance. 

Instances where only a fraction of training data, such as 9.92%, 11.41%, or 26.49%, represents the minority class 

highlight the complexity of addressing imbalance in a multi-class context, as observed in studies focusing on student 

performance at MARA Technological University (UiTM) [12]. Moreover, highly imbalanced datasets, where only 9% 

and 6% of samples belong to the Excellent class in datasets from Iran and Portugal respectively, underscore the need 

for nuanced approaches to handle disparities across multiple classes [13]. Furthermore, the identification of multi-

class imbalance, as noted by Said et al. [15], where approximately 7% of the dataset represents minority classes such 

as students who did not graduate on time, emphasizes the ongoing challenge of equitable representation across 

diverse class categories. Thus, the exploration of class imbalance in multi-class scenarios necessitates tailored 

methodologies and interventions to ensure fair and accurate predictive modeling. 

The exploration of class imbalance within datasets utilized for detecting GOT reveals a nuanced landscape where 

minority classes often face underrepresentation. Researchers navigate various degrees of imbalance, ranging from 

moderate to extreme, and grapple with the challenges posed by highly skewed distributions. By addressing these 

disparities and implementing appropriate class imbalance treatments, such as data preprocessing techniques and 

model adjustments, researchers endeavor to mitigate bias and enhance the robustness of predictive models. Moving 

forward, a concerted effort to acknowledge and rectify class imbalances will be essential in ensuring the reliability 

and fairness of predictive analytics in the domain of GOT detection. 

 

III. CLASS IMBALANCE TREATMENT TECHNIQUES IN MITIGATING CLASS IMBALANCE  

Table 2. Class Imbalance Treatment Techniques used by Researchers in Mitigating Class Imbalance of Graduate on Time 
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[10]              

[12]              
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[13]              

[14]              

[15]              

[16]              

[17]              

[18]              

[19]              

[20]              

[21]              

[23]              

[24]              

[25]              

[26]              

[27]              

[28]              

[29]              

[30]              

[31]              

[32]              

[33]              

[34]              

 

Once class imbalance is identified, various techniques are implemented to mitigate this issue, with a notable 

approach being data-level techniques, as depicted in Table 2. These techniques aim to balance the data before model 

development, thereby improving model performance [17]. Among these techniques, class imbalance treatment was 

commonly utilized, including oversampling [10, 12 - 21, 23 - 34], undersampling [10, 13, 17, 21, 23, 24, 27, 28], 

and hybrid techniques [13, 17, 21, 23, 24, 27, 28, 30, 34].  

Among the widely used oversampling techniques, Synthetic Minority Oversampling Techniques (SMOTE) stands 

out for its effectiveness in mitigating class imbalance in the context of GOT. Researchers implementing SMOTE 

have successfully overcome class imbalance and improved prediction accuracy by 1 – 2% accuracy across the entire 

dataset [14]. However, in highly imbalanced scenarios with less than 5% minority class, SMOTE may not achieve 

substantial improvements in balancing True Positive Rate (TPR) and True Negative Rate (TNR) compared to hybrid 

methods [17]. Nevertheless, SMOTE has shown promising results in terms of Area Under the Curve (AUC), with 

predictive models achieving the highest AUC of 69% compared to other class imbalance techniques when dealing 

with minority class instances as low as 4.7% [23]. Additionally, predictive models enhanced with SMOTE have 

demonstrated the highest average F1-score of 76.20% after implementing feature selection with Pearson correlation 

[25]. Moreover, in their study, researchers observed an improvement in average recall from 75.20% to 88.20% by 

increasing the number of minority class instances through SMOTE. However, the performance may degrade when 

the classification becomes more challenging due to increased noise in the minority class and overlapping regions 

between majority and minority classes [25].  

To address the challenges introduced by oversampling methods, particularly SMOTE, hybrid methods combining 

oversampling and undersampling of class distribution have been proposed. Among these, SMOTE and Tomek Links 

(SMOTE-Tomek) [11, 34], and SMOTE and Edited Nearest Neighbors (SMOTE-ENN) [17, 21] have demonstrated 

superior performance in dealing with high class imbalance. In the study of Mduma [17], SMOTE-ENN 

outperformed other class imbalance treatment methods by eliminating misclassified samples using its nearest 

neighbors after applying SMOTE. Comparative analysis across different sampling ratios, ranging from 10% to 

100%, revealed the superiority of SMOTE-ENN, achieving the highest Geometric Mean (G-Mean) of 92.70% with a 

standard deviation of 0.005 in multi-class scenarios when the sampling ratio was 100% [21]. These findings 

highlighted the effectiveness of hybrid methods in addressing class imbalance and improving the performance of 

predictive models in challenging scenarios.  

A notable gap in existing studies on mitigating class imbalance problems to the limited exploration and comparison 

of different sampling ratios. While various class imbalance treatment methods have been implemented to address 
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class imbalance, there is a lack of comprehensive studies that systematically compare the effectiveness of different 

sampling ratios across diverse class imbalance treatment methods. Understanding how different sampling ratios 

impact the performance and generalizability of predictive models is essential to select the most suitable approach in 

handling class imbalance. Additionally, there is a dearth of studies that investigate the aggregation of different class 

imbalance treatments. While individual techniques such as oversampling, undersampling, and hybrid methods have 

been extensively studied, little attention has been given to the potential benefits and challenges of combining these 

techniques in an integrated data-level framework. Investigating the synergistic effects of aggregating multiple class 

imbalance treatments could provide valuable insights into optimizing predictive model performance and enhancing 

the robustness of class imbalance mitigation strategies.  

 

IV. MACHINE LEARNING TECHNIQUES IN DETECTING GRADUATE ON TIME 

Table 3. Machine Learning Techniques used by Researchers in Detecting Graduate on Time 

Author 
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[10]           

[11]           

[12]           

[13]           

[15]           

[16]           

[17]           

[18]           

[19]           

[20]           

[21]           

[22]           

[23]           

[25]           

[26]           

[27]           

[28]           

[29]           

[30]           

[31]           

[32]           

[33]           

[34]           

 

To detect the students who graduate on time, researchers have developed various ML techniques after the class 

imbalance treatment as illustrated in Table 3. In addressing the challenges of detecting GOT and the class imbalance, 

ML techniques such as Random Forest (RF) have gained prominence. Researchers recommended RF due to its 

efficient implementation with ensemble of randomized Decision Trees (DT) and its capability to mitigate overfitting 

post class imbalance treatment [11, 17, 19]. For instance, in a study considering SMOTE-applied clustered training 

datasets created by latent class analysis (LCA) based on student information, RF emerged as the top performer, 

showcasing improvements ranging from 6% to 10% across all classes compared to individually trained models [19]. 

Other than that, the researchers achieved 91.75% accuracy, 92.52% precision, 94.74% recall, and 96.58% F1-score 
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after applying SMOTE-Tomek [11]. However, the researchers reported the superiority of Logistic Regression (LR) 

over RF in terms of G-Mean and F1-score over RF in correctly classifying student dropouts and minimizing 

misclassifications [17]. 

The superior performance of LR is widely acknowledged in detecting GOT. Researchers have demonstrated the use 

of ensemble models in which three top-performers, LR were integrated with the bootstrap aggregation, achieving the 

highest accuracy of 95.45%, as well as the highest precision and recall with balanced dataset generated by SMOTE 

[18]. In the study by Buniyamin et al. [12], LR and Support Vector Machine (SVM) showcased better performance 

than K-Nearest Neighbors (KNN) when class imbalance treatment method, Borderline SMOTE was used. 

Nevertheless, SVM outperformed LR by achieving higher AUC (69%) when SMOTE is applied to oversample the 

minority class in the dataset [23]. These findings highlight the varied effectiveness of different class imbalance 

treatment methods depending on the characteristics and predictive models, as emphasized by Buniyamin et al. [12]. 

To address this challenge, researchers recommend exploring alternative class treatment methods and ensemble 

methods such as Extreme Gradient Boosting (XGBoost) to enhance the performance on the imbalanced datasets. 

The exploration of ensemble models delves into boosting algorithms like XGBoost and Categorical Boosting 

(CatBoost), which have demonstrated enhanced performance in predicting on-time graduation amidst class 

imbalance challenges. XGBoost, for instance, stands out for its ability to significantly improve various performance 

metrics such as accuracy, recall, F1-score, and AUC. This improvement stems from XGBoost's adeptness at 

leveraging misclassified data during training to iteratively generate additional Decision Trees, thereby refining the 

model's predictive capabilities [28]. Additionally, researchers have observed notable advancements by combining 

XGBoost with SMOTE and CatBoost with RandomOverSamplerSMOTEENN through risk priority rules [30]. By 

leveraging these two boosting algorithms, the researchers have achieved notable improvements in the precision and 

recall of predictions, particularly in identifying students at risk of dropping out. These findings underscore the 

potential of ensemble approaches, particularly boosting algorithms like XGBoost and CatBoost, in mitigating the 

challenges posed by class imbalance and improving the accuracy and reliability of predictive models in educational 

settings. 

Despite the implementation of ML techniques for detecting on-time graduation within imbalanced datasets, 

challenges persist due to the intricate and varied nature of educational data. Researchers stress the complexity 

inherent in educational datasets, encompassing factors ranging from academic performance to socio-economic 

backgrounds and individual circumstances. Moreover, the dynamic nature of educational environments, including 

changes in curriculum, teaching methodologies, and student demographics, further complicates accurate prediction 

of graduation outcomes. Researchers also emphasize the inherent difficulties in effectively implementing ML 

techniques within educational contexts, noting that the effectiveness of ML algorithms can vary significantly based 

on data characteristics such as dataset size, class distribution imbalance, and the presence of noise or outliers [12, 35, 

36]. Thus, identifying optimal ML techniques and tailored class imbalance treatment strategies for specific datasets 

remains a significant challenge in achieving effective detection of on-time graduation. 

 

V. METHODS 

This section explains the methods used to (i) compare various class imbalance treatment methods in mitigating the 

problem of class imbalance with different sampling ratios, (ii) propose an ensemble class imbalance treatment 

method in mitigating the problem of class imbalance, and (iii) develop and evaluate predictive models in identifying 

the likelihood of students graduating on time during their studies in university. The approaches used in this work are 

illustrated in Figure 1. Following the completion of data preprocessing and feature selection, various class imbalance 

treatment methods are developed and compared with different sampling ratios. Furthermore, an ensemble algorithm 

aggregating the SMOTE variants is implemented to detect GOT effectively in context of class imbalance. The 

dataset generated by the class imbalance treatment methods are used as the input for the predictive models with the 

important variables identified. The predictive models are evaluated based on performance metrics. To further 

explain the optimal class imbalance treatment method, statistical test is performed. The lowest value in average rank 

is awarded to the top-performing class imbalance treatment methods for mitigating class imbalance in detecting 

GOT. 
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Figure. 1 Flowchart of Methods 
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A. Data Source 

Table 4. Features in Dataset Collected 

Data Feature 

Student Profile • Home state 

• Home district 

• Race 

• Gender 

• Disability 

• Marital status 

• Date of birth 

Registration Details • Campus 

• Program description 

• Faculty domain 

• Faculty description 

• Admit term begin date 

• Admit term 

• Expected graduate term  

• Expected end of study date 

Grades of Sijil Pelajaran Malaysia • Malay Language 

• English Language 

• Mathematics 

• History 

• Additional Mathematics 

• Physics 

• Chemistry 

• Biology 

• Moral Education 

• Chinese Language 

• Principles of Accounting 

• Science 

Grades of English Test • Malaysian University English Test (MUET) 

• Test of English as a Foreign Language Exam (TOEFL) 

International English Language Testing System (IELTS) 

GPA of Trimester GPA of each trimester from 1st trimester until 11th trimester 

 

Before students further their studies to universities, Sijil Pelajaran Malaysia (SPM) or Malaysian Certificate of 

Education is one of the commonly taken public examination in Malaysia [37]. This examination contains certain 

mandatory subjects such as Malay Language, English Language, Moral Education, History, Mathematics, and 

Science. This study draws its data from graduates of a university from year 2021 and 2022, comprising a 

comprehensive dataset that encompasses student profiles, registration details, and the grades in the SPM and English 

Test as well as the GPA of each trimester from 1st trimester until 11th trimester, as outlined in Table 4. The dataset 

encapsulates information from 4007 Malaysian students, covering 41 variables, excluding the crucial GOT indicator. 

In this work, GOT indicator is used as the target variable namely Yes, and No. Within this dataset, 73.55% of 

students successfully graduated on time, while 26.45% of students did not meet the stipulated time frame for 

completion. 

B. Data Preprocessing 

Table 5. Distribution of Missing Values in Training Data 

Feature Number of Missing Records Percentage of Missing Records (%) 

TOFEL 3577 99.20 

IELTS 3529 97.86 
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Science 2754 76.37 

Principles of Accounting 2742 76.04 

GPA of 11th trimester 2569 71.24 

Chinese Language 2496 69.22 

Biology 2430 67.39 

GPA of 10th trimester 2363 65.53 

Moral Education 2304 63.89 

Chemistry 2132 59.12 

Physics 2125 58.93 

GPA of 9th trimester 1950 54.08 

Additional Mathematics 1734 48.09 

GPA of 8th trimester 1347 37.35 

History 1268 35.16 

Mathematics 1264 35.05 

GPA of 7th trimester 1184 32.83 

GPA of 6th trimester 1084 30.06 

GPA of 5th trimester 811 22.49 

GPA of 3rd trimester 762 21.13 

GPA of 1st trimester 661 18.33 

GPA of 2nd trimester 629 17.44 

GPA of 4th trimester 625 17.33 

 

Before applying feature selection methods, the dataset undergoes a rigorous preprocessing phase to ensure its 

cleanliness and quality. This phase involves removing constant features and addressing missing values to provide a 

solid foundation for subsequent analyses. Following the removal of constant features and extraction of the year of 

birth, the dataset is divided into 90% training data and 10% testing data to facilitate model training and evaluation. 

Table 5 provides insight into the extent of missing values present in each feature within the training data. Features 

with more than 75% missing values, such as TOEFL, IELTS, Science, and Principles of Accounting, are deemed 

unsuitable for analysis and are consequently excluded from the dataset. Conversely, features with less than 76% 

missing values undergo an imputation process to salvage valuable data. For categorical features, missing values are 

replaced with no_data, while non-categorical features undergo imputation using two methods: median and KNN. 

The choice of imputation method for non-categorical features is based on achieving an imputed distribution closest 

to the original distribution's average difference between the mean and standard deviation. This meticulous approach 

ensures that missing values are handled effectively, preserving the integrity of the dataset and enabling robust 

analysis and modelling. 

Table 6. Value Encoded for Grades of MUET and SPM 

Feature Original Value Value Encoded 

MUET 

Band 6 6 

Band 5 5 

Band 4 4 

Band 3 3 

Band 2 2 

Band 1 1 

Irrelevant 0 

SPM 

A 4 

B 3 

C 2 

D 1 

Irrelevant 0 

Following missing value imputation, the dataset undergoes encoding to prepare it for feature selection methods. 

Within the dataset, binary values Yes and No are encoded as 1 and 0, respectively. Additionally, for SPM and 
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English Test grades, values are encoded based on their ordinal values as delineated in Table 6. Subsequently, the 

encoded data undergoes further scaling using the Standard Scaler. This process is vital as it aims to eliminate the 

mean, scale to unit variance, and standardize the features. Such scaling is imperative to mitigate potential issues with 

feature selection and predictive models, particularly when certain features exhibit higher variance compared to 

others. By standardizing the scale of features, a uniform representation is maintained, ensuring that variables with 

disproportionately high variances do not exert undue influence. This optimization enhances the efficacy of both 

feature selection and predictive modeling techniques, thus contributing to improved model performance and 

interpretability. 

C. Feature Selection 

To streamline data dimensionality and enhance model efficiency, Boruta is employed in conjunction with Random 

Forest, leveraging balanced class weight and a maximum depth of 5. Boruta aids in identifying significant features, 

which are subsequently utilized as input variables for predictive modeling. This rigorous approach ensures the 

selection of influential in-university variables, thereby facilitating accurate prediction of students likely to achieve 

timely graduation. By focusing on key features identified by Boruta, predictive models are equipped to provide 

insightful assessments, thereby optimizing interventions and support strategies for at-risk students. 

D. Class Imbalance Treatment 

Algorithm 1 Ensemble-SMOTE 

Input: 

• Real data, 𝑅 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛)} where 𝑦𝑖 ∈ [0, 1, … , 𝑘] and 𝑘 = number of classes 

• Sampling ratio, 𝑟 

Output: Data generated by Ensemble-SMOTE, 𝐹 

Algorithm:  

1. 𝑦𝑚𝑖𝑛 ← minority class 

2. 𝐵 ← {SMOTE, SMOTE-N, SMOTE-ENN, SMOTE-Tomek} with 𝑟 

3. 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 ← ⌊
𝑟∙𝑛𝑚𝑎𝑥− 𝑛𝑚𝑖𝑛

𝑛𝐵
⌋ 

4. 𝐹 ← copy of 𝑅 

5. for each 𝐵𝑖 ∈ 𝐵 do 

6.     𝑅𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ← dataset generated by 𝐵𝑖  with 𝑅 

7.     𝑓 ← 𝑅 ∪ 𝑅𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑  

8.     𝑓 ← drop all duplicated records of 𝑓  

9.     𝑓 ← first 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 of 𝑦𝑚𝑖𝑛 in 𝑓 

10.     𝐹 ← 𝐹 ∪ 𝑓  

11. end for 

12. 𝐹 ← drop duplicates of 𝐹 except for the first occurrence 

13. return 𝐹 

 

The training dataset is composed of 73.66% of students who graduated on time and 26.34% who did not. However, 

such imbalanced class distributions raise concerns about potential bias towards the majority class in predictive 

models, risking misclassification of minority classes. In response, this study employs various class imbalance 

treatment techniques, including NearMiss, SMOTE, SMOTE and Nominal (SMOTE-N), SMOTE-ENN, and 

SMOTE-Tomek. Consequently, the training data undergoes resampling for each technique, starting from an initial 

sampling ratio of 50% up to 90%, with subsequent scaling using Standard Scaler. Each model is then evaluated 

using the resampled training data, incorporating the significant features identified by the feature selection method. 

Additionally, an ensemble algorithm, Ensemble-SMOTE is implemented to explore the effectiveness of combining 

existing SMOTE variants (SMOTE, SMOTE-N, SMOTE-ENN, and SMOTE-Tomek) depicted in Algorithm 1. This 

algorithm aggregates datasets generated by these techniques, with sampling ratio, 𝑟 and training data, 𝑅 comprising 

input variables, 𝑥𝑖 and target variables, 𝑦𝑖 . Let 𝐵 represent the set of different variants of SMOTE for the ensemble 

algorithm to resample the dataset with sampling ratio, 𝑟. To ensure equal resampling across each 𝐵𝑖  with 𝑟, 𝑝𝑜𝑟𝑡𝑖𝑜𝑛 

is determined by dividing the number of aggregated techniques, 𝑛𝐵 with the remaining number of minority class 

instances, 𝑛𝑚𝑖𝑛 (Algorithm 1, line 3). The floor of this division yields the largest integer less than or equal to the 
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𝑝𝑜𝑟𝑡𝑖𝑜𝑛, ensuring each 𝐵𝑖  contributes equally while reducing noise from other techniques. For each 𝐵𝑖 , a resampled 

dataset, 𝑅𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑  is generated using 𝑅 and 𝑟 (Algorithm 1, line 6). Instances other than 𝑅 (𝑓) are extracted by 

eliminating duplicate instances from both 𝑅 and 𝑅𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑  (Algorithm 1, line 8). After appending 𝑓 to a copy of 𝑅, 

the ensemble algorithm returns the dataset, dropping duplicate instances except for the first occurrence. 

In this work, to simplify and enhance the performance of the Ensemble-SMOTE, a 50% sampling ratio, 𝑟  is 

employed. This aims to mitigate excessive noise generation from each 𝐵𝑖 , which could otherwise increase bias and 

misclassification in predictive models. The dataset generated by each class imbalance treatment method is used as 

the input for the predictive models with the important features identified after standardization using Standard Scaler. 

E. Model Construction 

Table 7. Hyperparameter Values Search 

Model Hyperparameter Hyperparameter Description Search Value 

Logistic Regression C 

Controls the inverse of the 

regularization strength, preventing 

overfitting. 

0.0001, 0.01, 1, 10, 100 

Linear Discriminant 

Analysis 
solver 

Specifies the algorithm to use in 

the optimization problem. 
svd, lsqr, eigen 

Gaussian Naïve 

Bayes 
var_smoothing 

Adds a specified value to the 

diagonal of the covariance matrix 

of attributes. 

1.0, 0.1, 0.01, 0.001, 0.0001, 1 x 

10−9 

K-Nearest Neighbors n_estimators Specifies the number of neighbors. 3, 5, 7, 9, 11 

Support Vector 

Machine 
C 

Controls the tradeoff between 

smooth decision boundaries and 

classifying training points 

correctly. 

0.001, 0.1, 1 

Decision Tree max_depth 
Limits the number of nodes in the 

tree, preventing overfitting. 
None, 3, 5, 7 

Random Forest 

max_depth 
Specifies the maximum depth of 

the individual trees. 
None, 3, 5, 7 

n_estimators Specifies the number of trees. 100, 200 

min_samples_leaf 

Controls the minimum size of 

samples required to split a node 

further. 

1, 2, 3, 4 

Gradient Boosting max_depth 
Specifies the maximum depth of 

the individual estimators. 
3, 5, 7 

Adaptive Boosting 

learning_rate 
Shrinks the contribution of each 

base learner. 
0.001, 0.1, 1 

n_estimators 
Specifies the number of base 

learners. 
50, 100, 200 

Extreme Gradient 

Boosting 

max_depth 
Specifies the maximum depth of a 

tree. 
None, 3, 5, 7, 9, 11 

min_child_weight 
Specifies the minimum sum of 

instance weight needed in a child. 
None, 1, 2, 3 

colsample_bytree 

Specifies the subsample ratio of 

columns when constructing each 

tree. 

None, 0.5, 0.6, 0.7, 0.8 

Light Gradient 

Boosting Machine 

max_depth 
Specifies the maximum depth of 

the tree. 
-1, 3, 5, 7 

n_estimators 
Specifies the number of 

estimators. 
100, 200 

min_child_weight 
Specifies the minimum sum of 

instance weight needed in a child. 
0.001, 0.1, 1 

Categorical Boosting depth Specifies the maximum tree depth. 3, 5, 6, 7 
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min_data_in_leaf 
Specifies the minimum number of 

data points in a leaf. 
1, 5, 10 

 

To detect whether a student graduating on time, predictive models are constructed such as Logistic Regression (LR), 

Linear Discriminant Analysis (LDA), Gaussian Naïve Bayes (GNB), K-Nearest Neighbors (KNN), Support Vector 

Machine (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), Adaptive Boosting 

(AdaBoost), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), and Categorical 

Boosting (CatBoost). To further improve the model performance, hyperparameter tuning is performed by using 

GridSearchCV with the hyperparameter values to be searched as indicated in Table 7. 

F. Model Evaluation 

Table 8. Performance Metric 

Metric Formula Description 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Evaluates the number of correct 

predictions from a model. 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Evaluates the percentage of positive 

predicted cases that are positive. 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Measures the total number of the positive 

cases that are captured by the positive 

predictions. 

F0.5-score 1.25 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

0.25 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Represents the weighted mean of precision 

and recall, assigning more weights to 

precision than recall. 

F1-score 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Represents the harmonic mean of precision 

and recall. 

F2-score 5 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

4 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Represents the weighted mean of precision 

and recall, assigning more weights to recall 

than precision. 

Geometric Mean √𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Evaluates a model’s ability to accurately 

detect instances from both classes. 

 

After constructing the predictive models, the performance is evaluated based on several metrics outlined in Table 7. 

These metrics include accuracy, precision, recall, F0.5-score, F1-score, F2-score, Geometric Mean (G-Mean). 

Additionally, the Area under the Curve (AUC) is computed to assess the trade-off between correctly predicted 

positive classes and incorrectly predicted negative classes. Area under the Precision-Recall Curve (PR-AUC) is 

computed to assess the model ability in balancing between precision and recall in the class imbalance context. In the 

context of evaluation metrics, four crucial measurements are utilized: True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN). TP represents the total number of positive classes correctly identified, while 

TN indicates the accurate identification of negative classes. Conversely, if the model incorrectly predicts the 

negative class as positive, it results in FP. FN denotes the total instances where positive classes are mistakenly 

predicted as negative. These metrics offer a comprehensive understanding of the models’ performance, providing 

insights into their ability to correctly identify both positive and negative classes, thus informing the overall efficacy 

of the predictive models.  

G. Statistical Test 

The effectiveness of class imbalance treatment methods in mitigating class imbalance in GOT is assessed through 

tests of statistical significance. To begin, the Shapiro-Wilk test is conducted to ascertain the normal distribution of 

model performance with class imbalance treatment methods before proceeding with further statistical tests. 
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𝐻0 : The model performances with class imbalance treatment methods are normally distributed. 

𝐻𝑎 : The model performances with class imbalance treatment methods are not normally distributed. 

The hypothesis of Shapiro-Wilk test is formed as above, including null hypothesis, 𝐻0 and alternative hypothesis, 

𝐻𝑎 . If the p-value of the Shapiro-Wilk test is less than the significant level (𝑎 = 0.05), then 𝐻0  is rejected, 

suggesting that the model performances with class imbalance treatment methods are not normally distributed. 

Subsequently, to compare and assess effectiveness, the Friedman test is employed if the model performances are 

non-normally distributed; otherwise, Analysis of Variance (ANOVA) is utilized. 

𝐻0 : There is no significant difference between the model performances with class imbalance treatment methods. 

𝐻𝑎 : There is significant difference between the model performances with class imbalance treatment methods. 

In the comparison of model performances, the hypotheses (𝐻0 and 𝐻𝑎) are formulated as above for either ANOVA 

or the Friedman test. If the p-value of the test is less than 𝑎, 𝐻0 is rejected, indicating that the class imbalance 

treatment methods employed yield significant differences in model performances. Leveraging performance metrics, 

the relative efficacy of class imbalance treatment methods in addressing imbalanced data issues can be evaluated 

and assigned ranks. Consequently, the most effective class imbalance treatment method is determined by the highest 

average rank across the performance metrics. 

VI. FINDINGS 

A. Model Performance with Class Imbalance Treatment Methods 

 

(a) 
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(b) 

 

(c) 

 

(d) 



Journal of Informatics and Web Engineering                       Vol. 3 No. 2 (June 2024) 

243 
 

 

(e) 

 

(f) 

 

(g) 



Journal of Informatics and Web Engineering                       Vol. 3 No. 2 (June 2024) 

244 
 

 

(h) 

 

(i) 

Figure. 2 Highest Model Performance for each Class Imbalance Treatment Methods based on (a) accuracy, (b) precision, (c) recall, (d) F0.5-score, 
(e) F1-score, (f) F2-score, (g) G-Mean, (h) AUC, and (i) PR-AUC. 

Figure 2 indicates the highest model performance for each class imbalance treatment methods based on the 

performance metrics after class imbalance treatment, hyperparameter tuning and feature selection. Notably, 

NearMiss exhibited exceptional precision rates of 100% across all trimesters when the sampling ratio ranged from 

50% to 90%. Precision refers to the ratio of true positive predictions to the total number of positive predictions made 

by the predictive models. Achieving 100% precision indicates that all instances predicted as positive were indeed 

true positives. However, despite achieving prefect precision, the predictive models utilizing NearMiss suffered in 

terms of recall when compared to other class imbalance treatment methods. Recall, also known as sensitivity, 

measures the ratio of true positive predictions to the total number of actual positive instances in the dataset. A lower 

recall suggests that the model fails to correctly identify a significant portion of positive instances, leading to missed 

opportunities of correct predictions. Consequently, the lower recall resulted in diminished overall performance 

across various metrics such as accuracy, recall, F0.5-score, F1-score, F2-score, G-Mean, AUC, and PR-AUC. These 

metrics collectively evaluate different aspects of model performance, including its ability to balance between 

precision and recall, its robustness to class imbalances, and its overall predictive power. Thus, despite NearMiss's 

high precision rates, its lower recall adversely affected the overall performance of the predictive models in terms of 

these evaluation metrics. 

Based on G-Mean, LGBM with SMOTE-N achieved more than 85.90% when the sampling ratio of 50% is used. G-

Mean is used to assess the performance of binary classification models, particularly in imbalanced datasets. It 
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considers both the recall and specificity of the model, providing a balanced evaluation of its performance. In this 

context, achieving a G-Mean score exceeding 85.90% suggests that the combination of LGBM with SMOTE-N, 

when using a sampling ratio of 50%, effectively balances between recall and specificity, resulting in strong overall 

performance in classification tasks. This indicates that the model is adept at correctly identifying both positive and 

negative instances, even in the presence of class imbalances.  

Other than that, CatBoost with NearMiss, SMOTE-N, and SMOTE-ENN achieved the highest AUC (94.80% - 

99.60%) and PR-AUC (97.90% - 99.80%) across all trimesters. AUC is used to evaluate the performance of binary 

classification models, representing the area under the Receiver Operating Characteristic (ROC) curve. A higher 

AUC value indicates better discrimination between positive and negative classes. Similarly, PR-AUC measures the 

area under the Precision-Recall curve, providing insight into the model's ability to identify positive instances while 

minimizing false positives. In this context, CatBoost, in conjunction with NearMiss, SMOTE-N, and SMOTE-ENN, 

effectively balances between precision and recall, achieving high accuracy in identifying positive instances while 

maintaining low false positive rates. 

Despite the formidable challenges posed by class imbalance within the GOT dataset, LR coupled with Ensemble-

SMOTE emerges as a standout performer, showcasing unparalleled effectiveness in addressing these issues. Across 

a pivotal period spanning the 6th to the 10th trimesters, LR with Ensemble-SMOTE consistently excels, boasting the 

highest levels of accuracy, recall, F1-score, and F2-score among all class imbalance treatment methodologies. This 

remarkable achievement signifies LR with Ensemble-SMOTE as a formidable solution for mitigating the inherent 

biases present in the GOT dataset. Its ability to maintain accuracy levels ranging from 85.30% to 88.30% 

underscores its robustness in correctly identifying both positive and negative instances, even amidst significant class 

imbalances. Moreover, with recall rates reaching impressive heights of 90.40% to 93.80%, LR with Ensemble-

SMOTE demonstrates a keen aptitude for capturing a substantial portion of the actual positive instances, minimizing 

the risk of overlooking critical data points. 

The F1-score and F2-score, metrics that encapsulate the harmonic mean of precision and recall, further emphasize 

the reliability and effectiveness of LR with Ensemble-SMOTE. Scoring between 89.90% and 92.10% for the F1-

score, and between 90.20% and 93.10% for the F2-score, LR with Ensemble-SMOTE showcases its ability to strike 

a balance between precision and recall, crucial for achieving high-performance classification in imbalanced datasets. 

In essence, LR with Ensemble-SMOTE stands as a beacon of excellence in the realm of class imbalance treatment 

methods within the GOT dataset, offering unparalleled accuracy, recall, and balance between precision and recall. 

Its consistent and superior performance from the 6th to the 10th trimesters underscores its pivotal role in enhancing 

the reliability and effectiveness of predictive modelling efforts within the domain of GOT analysis. 

B. Statistical Analysis of Model Performance with Class Imbalance Treatment Methods 

A statistical examination was conducted to assess potential variations in performance among predictive models 

utilizing different class imbalance treatment methods, focusing on metrics such as accuracy, precision, recall, F0.5-

score, F1-score, F2-score, AUC, and PR-AUC. The Shapiro-Wilk test was employed to ascertain the normal 

distribution of performance metrics, guiding the selection of the appropriate statistical test. Should the performance 

metrics exhibit normal distribution, ANOVA would be applied; however, if non-normality is observed, the Friedman 

test would be utilized. 

Table 9. Shapiro-Wilk test 

 Accuracy Precision Recall 
F0.5-

score 
F1-score F2-score G-Mean AUC 

PR-

AUC 

Statistics 0.9465 0.808 0.9187 0.8487 0.8799 0.9054 0.959 0.9239 0.9304 

p-value 
1.31 x 

10−33 
0 

1.40 x 

10−39 
0 

1.40 x 

10−45 

7.43 x 

10−42 

4.27 x 

10−30 

1.32 x 

10−38 

2.67 x 

10−37 

Reject 

𝐻0 
Yes 

 

Table 9 reveals that when the p-value of the Shapiro-Wilk test falls below 0.05, the null hypothesis is rejected. 

Consequently, ANOVA is deemed inappropriate, and the Friedman test is chosen as the alternative method. Table 

10 presents the outcomes of the Friedman test, wherein rejection of the null hypothesis occurs when the p-value is 
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less than 0.05. This outcome indicates a significant disparity in model performances among different class 

imbalance treatment methods, implying that these methods may have distinct impacts on the overall performance of 

predictive models. 

Table 10. Friedman test 

 
Accurac

y 

Precisio

n 
Recall 

F0.5-

score 
F1-score F2-score G-Mean AUC 

PR-

AUC 

Statistic

s 

2627.12

5 

3032.90

7 

2900.07

8 

2199.66

7 

2731.77

6 

2863.03

8 

2111.79

4 

3004.65

8 

2992.44

6 

p-value 0 

Reject 

𝐻0 
Yes 

 

Table 11. Average Performance Rank 

Class 

Imbalance 

Method 

Accuracy Precision Recall 
F0.5-

score 

F1-

score 

F2-

score 

G-

Mean 
AUC 

PR-

AUC 

Mean 

Rank 

NearMiss  

(r = 0.5) 
7.46 22.29 6.49 9.91 7.05 6.59 10.97 15.10 15.60 11.27 

NearMiss  

(r = 0.6) 
13.02 16.80 12.82 12.96 12.93 12.81 13.46 15.53 16.22 14.06 

NearMiss  

(r = 0.7) 
16.42 10.98 17.03 15.22 16.73 17.01 14.92 14.78 15.37 15.38 

NearMiss  

(r = 0.8) 
20.01 9.04 20.45 18.14 20.31 20.44 17.16 14.18 15.02 17.19 

NearMiss  

(r = 0.9) 
23.01 7.84 23.59 20.82 23.39 23.55 19.49 15.44 15.86 19.22 

SMOTE  

(r = 0.5) 
6.71 16.25 6.67 8.81 6.49 6.56 10.44 9.39 9.12 8.94 

SMOTE  

(r = 0.6) 
9.36 13.33 10.22 9.31 9.64 10.07 10.18 9.93 10.20 10.25 

SMOTE  

(r = 0.7) 
15.86 12.07 16.36 15.02 16.07 16.33 14.81 15.84 16.22 15.40 

SMOTE  

(r = 0.8) 
18.37 8.65 18.84 16.51 18.61 18.84 15.17 15.17 15.26 16.16 

SMOTE  

(r = 0.9) 
20.67 7.74 21.08 18.57 20.93 21.03 16.72 16.08 15.98 17.64 

SMOTE-N  

(r = 0.5) 
4.56 20.59 4.02 7.32 4.19 4.01 8.60 8.95 8.73 7.89 

SMOTE-N  

(r = 0.6) 
6.47 16.26 6.91 7.02 6.42 6.87 8.09 7.99 7.74 8.20 

SMOTE-N  

(r = 0.7) 
9.42 14.28 10.12 8.48 9.60 10.09 8.61 10.16 10.21 10.11 

SMOTE-N  

(r = 0.8) 
11.79 12.17 12.22 10.17 12.04 12.19 9.39 10.74 10.44 11.24 

SMOTE-N  

(r = 0.9) 
14.58 9.33 14.94 12.53 14.85 14.90 11.09 11.92 10.79 12.77 

SMOTE-

ENN  

(r = 0.5) 

7.23 24.59 3.64 12.30 5.94 4.06 14.06 15.44 15.36 11.40 

SMOTE-

ENN  

(r = 0.6) 

12.26 18.15 10.65 14.89 11.48 10.84 15.97 13.78 13.71 13.53 

SMOTE- 15.02 14.23 14.86 15.23 15.06 14.97 15.53 14.72 14.77 14.93 
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ENN  

(r = 0.7) 

SMOTE-

ENN  

(r = 0.8) 

19.69 9.05 19.92 18.30 19.84 19.89 17.47 18.31 18.22 17.85 

SMOTE-

ENN  

(r = 0.9) 

22.94 6.91 23.39 21.11 23.19 23.38 19.45 18.07 18.34 19.64 

SMOTE-

Tomek  

(r = 0.5) 

7.18 16.35 6.93 9.43 6.98 6.89 11.05 9.81 9.24 9.32 

SMOTE-

Tomek  

(r = 0.6) 

10.07 13.61 10.55 10.18 10.14 10.44 11.29 10.56 10.24 10.79 

SMOTE-

Tomek  

(r = 0.7) 

16.26 10.96 16.56 15.53 16.42 16.57 15.15 16.23 16.16 15.54 

SMOTE-

Tomek  

(r = 0.8) 

18.94 9.01 19.33 17.37 19.16 19.28 15.95 17.15 17.06 17.03 

SMOTE-

Tomek  

(r = 0.9) 

21.23 7.73 21.69 18.90 21.54 21.65 17.22 17.52 17.06 18.28 

Ensemble-

SMOTE 
2.46 22.78 1.71 6.95 1.99 1.72 8.75 8.22 8.09 6.96 

 

Table 11 indicates the average performance ranking of each class imbalance treatment method based on accuracy, 

precision, recall, F0.5-score, F1-score, F2-score, AUC, and PR-AUC. A lower value in the average rank signifies 

superior performance across predictive models throughout the trimesters. Based on the findings, the superior 

performance of Ensemble-SMOTE over other class imbalance treatment methods can be explained by analyzing its 

average rank across various performance metrics. Ensemble-SMOTE exhibits a notably low average rank of 6.96, 

indicating its consistent effectiveness in enhancing model performance across different evaluation criteria. 

Specifically, Ensemble-SMOTE achieves competitive rankings in critical metrics such as accuracy, recall, F0.5-

score, F1-score, and F2-score, which are pivotal for assessing the overall effectiveness of predictive models. Its 

average rank of 2.46 for accuracy, 1.71 for recall, 6.95 for F0.5-score, 1.99 for F1-score, and 1.72 for F2-score 

demonstrates its proficiency in correctly identifying positive instances while maintaining a balance between 

precision and recall, ultimately leading to high-quality predictions. Although precision ranks slightly higher at 22.78, 

its overall performance across multiple metrics remains impressive, contributing to Ensemble-SMOTE's overall 

effectiveness. Additionally, the ensemble nature of Ensemble-SMOTE likely contributes to its superior performance. 

By combining multiple variants of SMOTE, it leverages the strengths of each technique while mitigating their 

individual weaknesses. This ensemble approach allows Ensemble-SMOTE to effectively address class imbalances 

and improve model generalization across different trimesters, resulting in consistently superior performance 

compared to other class imbalance treatment methods. 

In summary, the statistics provided highlight Ensemble-SMOTE's remarkable ability to enhance model performance 

across various evaluation metrics, positioning it as a superior choice for mitigating class imbalance issues in 

predictive modelling tasks within the context of the given dataset. 

V. CONCLUSION 

In conclusion, this work has aimed to (i) compare various class imbalance treatment methods in mitigating the 

problem of class imbalance with different sampling ratios, (ii) propose an ensemble class imbalance treatment 

method in mitigating the problem of class imbalance, and (iii) develop and evaluate predictive models in identifying 

the likelihood of students graduating on time during their studies in university. After feature selection, NearMiss, 

SMOTE, SMOTE-N, SMOTE-ENN, and SMOTE-Tomek were compared with different sampling ratios ranging 
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from 50% to 90%. Moreover, an ensemble algorithm, Ensemble-SMOTE is developed to aggregate the dataset 

generated by the SMOTE variants such as SMOTE, SMOTE-N, SMOTE-ENN, SMOTE-Tomek in mitigating the 

problem of class imbalance effectively. The dataset generated by class imbalance treatment methods were used as 

the input of the predictive models, namely LR, LDA, GNB, KNN, SVM, DT, RF, GB, AdaBoost, XGBoost, LGBM, 

and CatBoost in detecting GOT. The predictive models were evaluated based on accuracy, precision, recall, F0.5-

score, F1-score, F2-score, AUC, and PR-AUC. Based on the findings, LR with Ensemble-SMOTE outperformed 

other predictive models and class imbalance treatment methods by achieving the highest accuracy (85.30% - 

88.30%), recall (90.40% - 93.80%), and F1-score (90.20% - 93.10%) from 6th until 10th trimester. By performing 

statistical test analysis, Ensemble-SMOTE is ranked as the top-performers by achieving the lowest value in the 

average rank based on the performance metrics. This suggests that Ensemble-SMOTE could generate useful 

synthetic samples with less noise, improving the model performance in detecting GOT. In the future, additional 

research could incorporate and examine more complicated approaches in mitigating class imbalance when the 

dataset is highly imbalanced.  
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