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Abstract — The Open-Radio Access Network (O-

RAN) alliance is leading the evolution of 

telecommunications towards a greater intelligence, 

openness, virtualization, and interoperability within 

mobile networks. The O-RAN standard incorporates of 

many components the Open-Central Unit (O-CU) and 

Open-Distributed Unit (O-DU), network slicing and 

heterogeneous base stations (BS). Together, these 

innovations have given rise to a three-tiered user 

association (UA) relationship in a type of network called 

heterogeneous network (HetNet) with network slicing-

enabled. There is an absence of efficient UA schemes for 

achieving fair resource allocation in such network 

scenario. Hence, this study formulates the fairness-aware 

UA problem as a utility-based combinatorial 

optimization problem, which is computationally hard to 

solve. Hence, an efficient Binary Particle Swarm 

Optimization (BPSO)-based UA scheme is proposed to 

solve the problem. Through simulations of an O-RAN 

based HetNet with network slicing-enabled, 

performance of the proposed BPSO-UA scheme is 

compared against two other baseline UA schemes. 

Results demonstrate the effectiveness of the proposed 

BPSO-UA scheme in achieving high fairness through 

equitable network slicing resource allocation, thereby 

leading to higher user connectivity rate and comparable 

average spectral efficiency. This innovative approach 

sheds light on the potential of metaheuristic algorithms 

in tackling intricate UA challenges, offering valuable 

insights for the future design and optimization of mobile 

networks. 

Keywords— User association, Heterogeneous network, 

Open-radio access network, Network slicing, Binary 

Particle Swarm Optimization. 

I. INTRODUCTION 

The O-RAN architecture represents a departure 
from traditional proprietary and monolithic radio 
access network (RAN) into a disaggregated 
architecture where the radio units, distributed units, 
and control units are decoupled for a more modular 
and interoperable approach [1]. This functional split 
results in the RAN being split into three segments of 
backhaul, mid-haul and fronthaul connections. 
Fronthaul represents the link between the base station 
(BS) and the processing-centric Open-Distributed 
Unit (O-DU). The mid-haul acts as an intermediate 
segment that facilitates communication between O-
DUs and the Open-Central Unit (O-CU), which 
aggregates network traffic from multiple sources 
before forwarding it to the next network segment. 
Lastly, the backhaul is responsible for connecting the 
core network to aggregation points of O-CU which 
completes the link between the access network to the 
mobile telecommunication infrastructure. The 
introduction of granular control and disaggregated 
function into a traditionally monolithic RAN 
architecture is related to two well-established network 
architecture: heterogeneous network (HetNet) and 
network slicing. HetNet characterizes a 
telecommunications network that incorporates 
different tiers of BS, such as macrocells and small 
cells, strategically addressing the increasing demands 
for connectivity and capacity [2]. Network slicing 
enables the creation of logical networks, each with 
appropriate isolation, resources and optimized 
topology to serve specific service categories or 
customers [3].  

User Association (UA) is the process by which 
users in a mobile network establishing connections to 
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serving BSs. The introduction of network slicing and 
HetNets has given rise to a three-tiered UA 
relationship, involving user equipment (UE) and 
virtualized network slices (NSs) provided by different 
tiers of BSs. Existing UA schemes for traditional 
networks typically consider optimizing network 
parameters independently, leading to distributed 
control implementations [4].  This method of UA 
results in the underutilization of small base stations 
and overloading of macro base stations in HetNets [5]. 
Hence, the multi-UA problem has been studied along 
with other network functions such as power control 
and radio resource allocation to enhance load 
balancing within HetNets.  

The authors in [6] have developed a UA scheme 
that achieves high energy efficiency while ensuring 
minimum user rates and effectively offloading users to 
smaller cells. Another study investigated a low-
complexity, distributed biasing method that increases 
the likelihood of users connecting to smaller cells, 
outperforming conventional UA based on maximum 
received signal strength [7]. The authors in [8] and [9] 
focused on heuristic algorithms for UA and resource 
allocation in HetNets, while others explored deep 
learning approaches (e.g., Zhao et al. [10], Zhang et al. 
[11]). Recent research delved into UA for network 
slicing-enabled networks. Amine et al. [12] proposed 
a novel network slicing architecture facilitating UA 
within 5G ultra-dense HetNets, while Ye et al. [13] 
addressed joint UA and resource allocation for load 
balancing. However, Jayanthi et al. [14] introduced an 
evolutionary approach for UA within a multi-tenant 
sliced HetNet, albeit under the unrealistic assumption 
of each network slice being served by a single base 
station, without accounting for co-channel 
interference. Joda et al. [15] combined UA with 
placement optimization in O-RAN but did not 
consider network slicing. Nizam et al. [16] addressed 
UA in hybrid access networks with slicing but adopted 
a non-O-RAN architecture in their model.  

Despite these efforts, there remains a notable 
research gap concerning UA schemes for network 
slicing-enabled HetNets deployed under an O-RAN 
architecture. This gap is particularly critical due to the 
three-tiered association relationship between UEs, 
NSs, and BSs. Efficient UA is paramount for 
achieving load balance among NSs and preventing 
either overloading or underutilization. Importantly, 
none of the previously mentioned UA schemes are 
suitable for addressing this challenge, as they lack the 
capability to handle three-tiered associations 
effectively. This challenge arises from the 
combination of continuous (e.g., signal strength) and 
discrete (e.g., slice selection) variables, the presence 
of multiple optimal solutions, and discontinuities 
within the feasible solution space. Classical 
optimization techniques, designed for continuous and 
well-defined problems, prove inadequate in such 
scenarios. 

This research addresses this critical gap by 
proposing a novel three-tiered UA scheme leveraging 
the power of Computational Intelligence (CI) [17]. CI 

techniques excel at tackling complex optimization 
problems with mixed variable types, multiple optima, 
and non-smooth solution spaces. We adopt the Binary 
Particle Swarm Optimization (BPSO) algorithm [18], 
renowned for its robustness and efficiency in 
exploring diverse solution landscapes and handling 
discrete variables. BPSO mimics the collective 
foraging behaviour of swarms, iteratively refining 
candidate solutions to reach optimal placements of 
UEs, NSs, and BSs, considering load balancing and 
resource utilization across NSs. 

The rest of the current paper is structured as 
follows. In Section II, we introduce the system model 
and formulate the three-tiered UA problem. Section III 
presents the proposed BPSO based UA scheme and 
discusses the process of the BPSO algorithm in detail. 
Section IV presents the simulation results and 
discussion. Section V concludes the paper. 

II. SYSTEM MODEL AND PROBLEM 

FORMULATION 

The O-RAN architecture adopts a control and user 
plane separation paradigm, featuring the presence of 
two distinct entities: The O-DU governing the user 
plane, and the O-CU managing the control plane. In 
the context of a UA problem, the O-CU makes a 
centralized decision about UA and routing based on 
various factors, including load balancing, network 
conditions, and user requirements. On the other hand, 
the O-DU forwards user traffic and consumes the 
network resources, i.e., NSs. Figure 1 shows the 
system model of an O-RAN based HetNet with 
network slicing-enabled. 

 

 

Fig. 1. System model of the UA problem. 

From the user plane perspective, the Network Slice 
Management Block is responsible for overseeing the 
various types of NSs and their overall capacity. Each 
BS’s O-DU has the capability to accommodate various 
types of slices, aligning with the network operator's 
deployment strategy. Despite this flexibility, each 
slice is consistently identified within the management 
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block based on its overall capacity. The system model 
delineates multiple Small Base Stations (SBS) within 
the coverage radius of a single Macro Base Station 
(MBS). Each BS is paired with an O-DU, which in 
turns hosts the NSs associated with User Equipment 
(UEs). However, for a UE to establish an association 
with a BS, certain conditions must be met: the UE 
must be subscribed to the corresponding NS, possess 
sufficient signal strength, and there must be available 
capacity within the management block for the given 
slice.  

Based on the system model, a mathematical 
definition is given to the three-tiered UA problem as a 
maximization of the summation of utility function, fα(z) 
of various NSs deployed in the network: 
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Firstly, the numbers of BS, NS and UE are 
represented by the variables K, M and U, while their 
lowercase counterparts, i.e., k, m, and u denote specific 
instances of individual BSs, NSs and UEs, 
respectively. The O-DU which holds the association 
of a NS m to BS k is modelled as an independent binary 
matrix variable xmk. If xmk = 1, it means that NS m is 
available at the O-DU belonging to BS k, otherwise xmk 
= 0. The variable, akmu is the 3D UA matrix used to 
represent the network wide UA association. If akmu = 
1, it means that UE u associates with NS m to BS k. 
Rku denotes the spectral efficiency between BS k and 
UE u, serving as a metric to characterize the network 
channel condition. It quantifies the effectiveness of 
data transmission over the allocated frequency. Rmax,m 
is the maximum spectral efficiency that a NS m can 
allocate within the management block. The utility 
function, fα (z) is defined as follows:  

 

 

 (2) 
 

 

The variable α indicates a fairness notion, where α 

= 1 corresponds to proportional fairness, α = 2 

signifies delay-fairness, and as α → ∞ indicates max-

min fairness [19]. Proportional fairness indicates the 

notion of logarithmic growth that signifies a 

significant gain in fairness initially. However, as the 

allocation reaches a certain level, the incremental 

improvement in fairness diminishes, reflecting a 

balanced distribution of spectral efficiency across 

users. As for both the delay and max-min fairness, 

their formula indicates that as the resulting network-

wide resource usage increases the contribution to the 

overall fairness of the resource allocation is small. The 

maximization problem is subject to the following 

constraints: 
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Constraint Eq. (3) guarantees that the total 
aggregate transmission rate of all the UEs associated 
with NS m does not exceed the maximum aggregate 
transmission rate of NS m. To illustrate, envisioning 
each NS as a pie, the slices of these pies are distributed 
among the users subscribed to NS m and associated 
with the network. Consequently, the total pie allocated 
to the users logically cannot exceed the overall pie 
designated for NS m. Constraint Eq. (4) ensures that 
each UE u associated with BS k that can meet the 
minimum spectral efficiency requirement through NS 
m. Back to the analogy of pie sharing, UEs express a 
preference for the size of their pie slice; failure to meet 
this preference implies the UE will not get a slice of 
pie. Constraint Eq. (5) guarantees that each UE can 
only associate with one NS via one BS at any given 
time. In constraint Eq. (6), the variable akmu takes the 
value of either zero or one.  

III. BINARY PARTICLE SWARM 

OPTIMIZATION (BPSO) 

A. BPSO Working Principle 

The BPSO deals with the optimization problem 
with binary variables, where the potential solutions are 
represented as binary strings (sequences of 0s and 1s). 
Each element in the binary string is considered a 
decision variable which takes either zero or one. Let 
pi(t) denote a single position at time step t, its new 
position, pi(t+1) is expressed as follows,  

( 1) ( ) ( 1)i i ip t p t v t+ = + +   (7) 

To effectively explore the solution space, PSO 
requires a mechanism for changing the positions of its 
particles. The position of the particle for the next 
iteration, pi(t+1) is the summation of the current 
position, pi(t) with a velocity, vij(t+1). The changes in 
the position of the particle facilitate the search for a 
better solution. The ranking of a particle is determined 
by its fitness value. The fitness value is computed 
using a fitness function that maps a particle to a real 
value. This approach enables the quantification and 
comparison of a particle's performance. In a 
maximization problem, the optimization process 
deems the particle with a higher fitness value to be a 
better solution.  The particle keeps track of its position 
with the highest fitness value as personal best or pbest. 
The global best or gbest particle is the particle with the 
highest pbest value in an iteration. Based on the two 
information, the velocity at the next time step, vij(t+1) 
is defined as 
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The variables c1 and c2 are the acceleration 
constants which determine the exploration and 
exploitation aspects of the algorithm, respectively, and 
r1 and r2 are random numbers. The variable yi(t) 

represents the single pbest particle, while ˆ ( )
i

y t

represents the gbest particle. Let yi(t) represent the 
pbest experience of the particle, and the pbest particle 
of the next iteration is determined as follows,   

 ( ) if ( ( 1)) ( ( ))
( 1)

( 1) if ( ( 1)) ( ( ))
i i i

i
i i i

y t f p t f y t
y t

p t f p t f y t
+ 

+ =
+ + 

         (9) 

The fitness of pbest, f(yi(t)) is compared to the 
fitness of the position of the next time step, f(pi(t+1)). 
Considering a maximization problem, the particle 
should always hold a higher pbest. Hence in the 
occasion of the latest position having a higher fitness, 
the particle stores the new position, pi(t+1) as its pbest. 

Then, the gbest particle, ˆ ( )
i

y t is determined through 

finding the largest value pbest particle of that iteration. 

1
ˆ ( ) max{ ( ),..., ( )}i iy t y t y t=  (10) 

The term exploration and exploitation in BPSO 
arises from the degree of influence exerted by the 
pbest and gbest particles on the results of subsequent 
generation. When the velocity is primarily guided by 
the particle's own pbest, the BPSO is considered as 
explorative, which emphasizes a particle’s own 
exploration of the solution space. However, if the 
velocity is predominantly driven by the gbest of the 
entire swarm, the BPSO is considered to be 
exploitative, focusing on refining and exploiting the 
current best solution found by the swarm. Striking the 
right balance between exploration and exploitation is 
a key aspect of PSO to achieve an effective and 
efficient search for optimal solutions. 

The PSO algorithm was originally designed to 
operate in continuous space. A discrete binary version 
of PSO was also introduced [18]. In a continuous 
space, the particle’s position assumed continuous 
values and is changed by adding a continuous velocity. 
For a discrete PSO, the particle’s position is a vector 
that holds binary value of ‘0’ or ‘1’. For a single bit in 
the vector to change, it is determined by its 
continuous-valued probability. This probability is the 
velocity normalized to a value between 0 and 1 using 
the sigmoid function.  

 
( )

1
( )

1
sigmoid v t

v t
e−

=
+

  (11) 

By confining the velocity within the range of [0,1], 
it becomes interpretable as the probability of a single 
bit within the particle changing. Based on the 
probability, the position in the next time step, pij(t+1) 
is updated as follows,  

1 ( 1)
( 1)

0
sigmoid

ij

rand v t
p t

otherwise

 +
+ =  (12) 

In order to determine the position of the particle in 
the next time step, pij(t+1), a random value is 
generated to compare to the probability. If the 
generated random value is lower than the probability 
threshold, the corresponding bit in the particle will be 
set to '1'. Figure 2 illustrates the 2D matrixes depicting 
the relationship between velocity and particle position. 

 
Fig. 2. Relationship between position, pij(t) and velocity, vij(t) in 

BPSO. 

The BPSO algorithm maintains a 2D matrix of 
swarm of particles with each row representing a 
particle’s unique solution to the problem. The velocity, 
traditionally viewed as the rate of movement in 
continuous space, is redefined in BPSO as the 
probability of changing a single bit within a particle. 
To represent velocity as a probability, normalization is 
required, achieved by applying the sigmoid function to 
the velocity values. After which the probability still 
depends on the particle’s pbest and the gbest particle 
at iteration t to experience changes and to guide the 
solution. The pbest and gbest particles are selected by 
ranking the particles and choosing them based on the 
fitness value calculated by the fitness function. The 
whole process is repeated until the maximum number 
of iterations is reached or the improvement on the 
fitness function value is negligible. 

B. Proposed BPSO Based UA Scheme  

For the UA scheme to leverage on the robustness 
and computation capabilities of the BPSO algorithm, 
it is imperative to establish a representation of the 
network wide UA. The 3D UA matrix, akmu consists of 
K rows, M columns and U pages, representing the BS, 
NS and UE, respectively. The elements of akmu can take 
binary values, either 0 or 1. A value of 1 indicates that 
user u is associated with the network through base 
station in row k and the network slice in column m. 
This method of formulating the UA matrix sets the 
foundation for constructing a solution space for the 
algorithm. Figure 3 illustrates the relationship between 
the HetNet with network slicing-enabled and the UA 
matrix.  

 
Fig. 3. Generation of the user association matrix akmu from the 

system model. 



Vol 6 No 2 (2024)  e-ISSN: 2682-8383 

20 

 

The linkage between the UA matrix to the BPSO 
is built by a matrix transformation operation of 
flattening the 3D matrix into a single dimensional 
vector while preserving its order. Figure 4 shows how 
the relationship is drawn between the 3D UA matrix 
and the BPSO particle.  

 

Fig. 3. Mapping the 3D UA matrix, akmu, into a single vector of 

BPSO particle, p. 

The flattening of the 3D matrix forms a single 
vector, where network wide UA is represenable by 
index of the particle. Figure 5 illustrates the internal 
details of a single BPSO particle, denoted as p, and its 
correlation with indices corresponding to BSs and NSs. 

 

Fig. 4. Indexing of a single BPSO particle p for UE with user index 

u = 1. 

The linearization of akmu into a single vector of a 
particle, p streamlines the optimization process for the 
implementation of BPSO algorithmic process. This 
reduction of the dimensionality of the UA matrix 
enhances the efficiency of swarm-based optimization 
techniques like BPSO. The linearized vector allows 
for improved navigation of the solution space, leading 
to enhanced computational efficiency and 
compatibility with optimization algorithms. 

A UA scheme in the context of wireless 
communication networks involves the assignment of 
UEs to specific network entities, such as BSs or access 
points. The BPSO based UA scheme represents an 
innovative approach to associating users to the 
network in the context of the UA problem defined in 
our system model. Unlike conventional methods, the 
proposed scheme introduces a heuristic optimization 
algorithm that treats the user association problem as a 
search process in a solution space represented by 
particles. In this section, the linkage of the UA scheme 

and how the equations in the BPSO algorithm is 
applied is described. Figure 6 presents the workflow 
of BPSO for generating a feasible solution. 

 

Fig. 5. Flowchart of the BPSO based UA scheme. 

There are mainly two phases for the BPSO based 
UA scheme: an initialization phase and an iterative 
phase. During this phase, several key parameters, 
including the particle's velocity, position, fitness, 
pbest, and gbest particle, are initialized with 
predetermined values. An intervention is introduced to 
this initialization phase in the form of measuring and 
adding the penalties, adjusting the strength of fitness 
and penalties, and storing them as the new fitness to 
the particles. After the initialization process, the 
iteration process will start by updating the velocity, 
position, calculating fitness with the same mentioned 
intervention and updating the pbest and gbest particle. 
At the end of the iteration process, the gbest solution 
undergoes a final refinement step before it is presented 
as the ultimate solution. 

After initializing the position and velocity of the 
BPSO swarm, the fitness of the initial position is 
calculated. The pbest of the particles are initialized to 
their initial fitness, the initial gbest is set to be the best 
initial pbest. The iteration process starts with updating 
the velocity according to the velocity update rule in Eq. 
(8). The change of velocity is influenced by the pbest 
and gbest particle. By using the normalized velocity, 
the position of the particle is updated based on the 
position update rule in Eq. (12). The fitness and the 
penalties of the new position are calculated and stored 
as the particle’s fitness. The pbest update rule in Eq. 
(9) is applied to determine whether to assign the pbest 
to the newly updated position, whereas Eq. (10) is 
applied to determine the gbest particle.      

The transition to an unconstrained maximization 
problem through penalty method functions introduces 
certain challenges, notably impeding particle 
exploration due to frequent penalty function violations. 
Integrating the penalty function into the objective 
function results in fitness values falling within a range 
of significantly large negative numbers, posing 
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challenges for convergence. To address these issues 
and enhance the search for the fairest UA solution, two 
strategic interventions are introduced into the BPSO 
algorithm. These interventions aim to refine the 
optimization process and overcome obstacles posed by 
penalty functions, making the pursuit of optimal UA 
solutions more effective and nuanced.  

In Intervention 1, constraints on the objective 
functions are incorporated as penalties within the 
fitness function. These penalties, when added to the 
objective functions, result in a significant negative 
value of the objective function. What proved to be 
highly undesirable was the persistent stagnation of the 
gbest fitness throughput the entire iteration. To 
address this issue, a work around is employed, 
whereby the strength of the fitness is linearly increased 
while the strength of the penalties is linearly decreased. 
The implementation of this approach has significantly 
enhanced particle exploration and yielded more 
favourable results. The immediate implication of the 
intervention is the convergent behaviour of the fitness 
of the gbest particle. Conventionally, the objective 
function is a graph that shows the quantified 
performance of the solution in an optimizing algorithm. 
In this case, the intervention made to the objective 
function is observed to have facilitated the quality of 
the solution provided by the gbest particle.  

Intervention 2 occurs at the end of the iteration 
process, where the particle is inspected to ensure 
compliance with the constraints and user associations 
within the network. While the first intervention may 
have produced particles that adhere to the constraints 
imposed as penalties, the solution at this stage remains 
unsatisfactory. The second intervention is simply a 
process of user association based on the remaining 
spectrum efficiency in the NSs. Several parameters for 
the proposed BPSO UA scheme are defined during the 
initialization phase before the iterative heuristic search 
process is initiated. Table I shows the values and 
description of these parameters.  

In Eq. (8), the stochastic influence on the velocity 
update rule is determined by constants c1, c2, and 
random numbers r1 and r2. The constant c1 signifies 
exploration, influencing the particle based on its own 
past position, while c2 represents exploitation, with the 
particle influenced more by the global best particle. 
Varying these coefficients leads to different 
algorithmic behaviours (see Section 16.4 of [17]).  

For consistent influence, static and equal values for 
c1 and c2 attract particles toward the average solution 
between their personal best (pbest) and the global best 
(gbest). Choosing a value of 1.5 for both c1 and c2, 
which can be determined based on the constriction 
factor approach in [20] would ensure smoother particle 
exploration and exploitation trajectories. A larger 
swarm size is beneficial for better exploration in the 
search space, but it comes with increased 
computational time. Here, a swarm size of 50 particles 
is chosen, which generally performs well for a PSO 
algorithm [21]. With the aforementioned settings, we 
have experimentally assessed the convergence 

performance of the proposed algorithm based on a 
simulation scenario with settings given in the next 
section, and found that the proposed algorithm 
converges within 100 iterations. As such, a maximum 
of 100 iterations is chosen for the proposed algorithm. 
It is noteworthy that we do not use the convergence 
criterion, where the BPSO terminates when the fitness 
function value can no longer be improved. This is 
because in some situations, the proposed algorithm 
could continue to iterate for a larger number of 
iterations, which is impractical for the real-time UA 
process. That said, fixing the maximum number of 
iterations to 100 also does not always guarantee 
convergence, which is a possible limitation. 
Nevertheless, in the next section, we show that the 
proposed algorithm still performs well with 100 
iterations. The α value determines the function used in 
calculating the objective function (refer to Eq. (2)). 
Setting α to 1 employs a logarithmic function in fitness 
calculation, indicating diminishing returns for higher 
spectral efficiency sums. This concept, borrowed from 
packet scheduling and flow control, aligns with 
limiting user rates to prevent congestion and promote 
overall network fairness. 

Table I. Parameter definitions for the initialization phase of BPSO. 

Parameter Value Description 

c1 1.5 Refer to Eq. (8). 

c2 1.5 Refer to Eq. (8). 

Number of 
particles 

50 
The number of 
unique UA 
solutions. 

Maximum 
iteration 

100 
The maximum 
number of iterations 
for BPSO. 

alpha 1 Refer to Eq. (2).  

Particle’s 
velocity 

{ ℝ+ ,…} 

The velocity is 
initialized to 
random positive real 
value. 

Particle’s 
position 

{02,12, …} 

The position is a 
vector of binary 
numbers 
representing a 
unique solution. 

Particle’s 
fitness 

ℝ 

A positive real 
number quantifying 
the performance of 
a position. 

Particle’s pbest  {02,12, …} 
Holds the particle’s 
own position with 
the highest fitness. 

Particle’s gbest {02,12, …} 
Holds the best 
particle among all 
pbest particles. 

IV. RESULTS AND DISCUSSION 

Several parameters and equations collectively 
define the network channel for the HetNet model, 
offering insights into the scale, configuration, and 
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capabilities of the simulated O-RAN HetNet with 
network slicing-enabled. Firstly, the log-distance path 
loss model is employed to characterize signal strength 
to each UE from the BSs. The specific path loss 
equations differ depending on whether it is an MBS or 
an SBS. For the MBS, the path loss equation is 140.7 
+ 36.7 log (d), while for a SBS, it is 128.1+37.6 log 
(d). The Shannon’s capacity, C = B log2 (1 + SINR), 
where C represents capacity, B signifies bandwidth, is 
employed to quantify the quality of the received signal. 
The signal-to-interference-plus-noise ratio (SINR) is 

formulated as SINR =  
𝑃max,𝑘𝐺𝑘𝑢

∑ 𝑃𝑚𝑎𝑥,𝑖𝐺𝑖𝑢+𝑁0𝑖∈𝐾{𝑘}
, where 

Pmax,k is the maximum transmit power of BS k, Gku is 
the channel gain between BS k and UE u, and N0 
represents the noise. The summation term, i.e. 
∑ 𝑃𝑚𝑎𝑥,𝑖𝐺𝑖𝑢𝑖∈𝐾{𝑘}  considers the transmit power of BS 

i, which represents the rest of the BSs other than BS k, 
as interference power. By calculating the ratio of 
Shannon’s capacity to available bandwidth, B, we 
obtain R = log2(1+SINR), which quantifies how 
efficiently information is conveyed within the 
available spectrum. Hence in the UA problem, the 
value of Rku, is the radio link capacity between a BS k 
to a UE u is considered in the system model.  Next, the 
simulation considers a total of 20 BSs, comprising one 
MBS and 19 SBS. Four distinct NSs are defined. The 
UEs are categorized into four groups with varying 
sizes: 50, 100, 150, and 200. The maximum capacity 
for each of the four NSs is defined by Rmax, with values 
{10, 20, 25, 30} in bits per second per Hz. The 
simulation assumes a MBS radius of 500 meters. 
Additionally, the maximum transmit power of the 
MBS and maximum transmit power of SBSs are 
assumed to be 40 dBm and 30 dBm, respectively.  

The following presents performance results 
collected from the proposed UA scheme using BPSO 
and two other baseline UA schemes: BSNS (Baseline 
Scheme 1), where UEs are initially associated with 
BSs based on the maximum SINR. Subsequently, UEs 
are associated with NSs available in the associated 
BSs. The second scheme, NSBS (Baseline Scheme 2), 
prioritizes associating UEs with NSs capable of 
meeting the target data rates. This is followed by the 
association of UEs with BSs where the associated NSs 
can be accessed, based on maximum SINR. The 
proposed BPSO-UA scheme simultaneously evaluates 
multiple instances of the UA matrix, ranks them by 
their objective function and selects the best solution as 
the UA solution for the network. This approach 
employs heuristics to identify the best UA matrix that 
satisfies the network's performance metrics. 
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The first performance metrics is Jain’s Fairness 
Index (FI), which quantifies the fairness of resource 
distribution across multiple NSs. Equation (13) 

provides the mathematical definition for Jain’s FI, 
denoted as J.  

The variable Rm’ denotes the spectral efficiency of 
a user connected to NS m using a specific UA scheme, 
while Rmax represents the total network slice capacity. 
Equation (13) quantifies the resource dispersion across 
NSs concerning their allocated capacity. Jain’s FI 
yields a continuous value within the range of [0, 1], 
where J = 0 corresponds to the least fair allocation and 
J = 1 represents the fairest allocation, ensuring that all 
entities received equal benefits. Utilizing the FI value, 
researchers can calculate the average variation or 
dispersion in the allocated spectral efficiency of each 
slice, offering insights into how network slice 
efficiency varies across the three UA schemes. Figure 
7 shows the result of Jain’s FI for the different schemes, 
considering four user groups. 

 
Fig. 6. Jain’s fairness index for the three UA schemes in four user 

groups. 

The analysis across four user groups (i.e., 50, 100, 
150, and 200 users) reveals consistent results in terms 
of FI values for the three UA schemes. Specifically, 
the BSNS scheme lags behind both NSBS and the 
proposed BPSO-UA scheme. The results indicate that 
out of the three schemes, the proposed scheme 
achieves superior fairness in the distribution of NSs. 
Nevertheless, it is important to note that fairness 
within NS distribution primarily reflects operator-side 
equity in resource allocation, ensuring a well-balanced 
network resource load. For a comprehensive 
evaluation of fairness from the user's perspective, we 
present the corresponding fairness metric in Eq. (14), 
referred to as the user connectivity rate.   

 

(14) 

The user connectivity rate indicates the percentage 
of satisfied users, U’ in the network relative to the total 
user population, |U|. Satisfied users are those whose 
minimum data speed requirements are met. Users 
unable to meet their needs are dropped or left 
unconnected to the network. The network adheres to a 
policy defining the available throughput to be shared 
among users, akin to an aggregate shared throughput. 
When users connect to the network, they consume a 
portion of this shared throughput, and a surge in 
connections depletes the shared throughput more 

User connectivity
'
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rapidly. Consequently, the network's goal is to 
establish connections for as many users as possible, 
while ensuring that they receive, at a minimum, the 
required throughput for effective network usage. 
Figure 8 shows the user connectivity rate for all four 
user groups across the three UA schemes. 

 
Fig. 7. User connectivity rate for the three UA schemes in four user 

groups. 

While NSBS can more fairly distribute the load of 
the network resources, the BSNS scheme facilitates a 
higher number of connected users. The proposed 
BPSO-UA scheme demonstrates a modest 
improvement in this performance metric compared to 
the other two schemes. A higher user connectivity rate 
implies that the BPSO scheme can accommodate more 
users without necessitating disconnections. However, 
in the worst-case scenario of channel conditions, 
involving noise and interference from all BSs, a 
significant portion of users may still experience 
insufficient signal strength. Consequently, it becomes 
imperative to assess the quality of user connections by 
quantifying their average spectral efficiency, as 
described by Eq. (15).  
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Fig. 8. Average spectral efficiency for the three UA scheme in four 

user groups. 

The average spectral efficiency is calculated by 
summing the spectral efficiency achieved by the 
connected users, represented as Rku’, and then dividing 
this sum by the total number of users in the network, 
|U|. As illustrated in Fig. 9, due to resource limitation, 
it is evident that as the network’s user population 
grows, the average spectral efficiency of each user 
follows a decreasing trend.  

The BSNS scheme serves as a benchmark by 
associating users with the network according to 
maximum received signal strength, representing an 
upper limit for per-user spectral efficiency. The 
proposed BPSO approach achieves a similar average 
spectral efficiency per user as BSNS. The primary 
objective of BPSO is to maximize the total spectral 
efficiency of the network. While there may be a slight 
reduction in per-user spectral efficiency with a smaller 
number of users, the proposed BPSO scheme 
demonstrates the potential for achieving comparable 
or even higher average spectral efficiency in scenarios 
involving larger user groups. 

V. CONCLUSION 

In this paper, we address the complex challenge of 
three-tiered UA in a network slicing-enabled 
heterogeneous O-RAN, involving UE connections to 
NSs provided by various BS tiers. We formulate this 
challenge as a utility-based combinatorial 
optimization problem, which presents significant 
computational difficulties for conventional 
approaches. To address this, we leverage the BPSO 
metaheuristic algorithm. Results show that the 
proposed BPSO UA scheme surpasses two baseline 
schemes in terms of fairness, user connectivity rate, 
and spectral efficiency. For future work, we suggest 
exploring the scalability and adaptability of the BPSO 
algorithm in larger, dynamic network scenarios. 
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