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Abstract - High resolution Chlorophyll-a (Chl-a) can indicate 

the trophic status of the water and provide useful information 

on optical features of water body in water quality monitoring. 

Remote sensing has great potential to offer the spatial and 

temporal coverage needed. Over the last decades the SeaWIFS 

and MODIS were applied, but not suitable due to the low spatial 

resolution for monitoring Chl-a in coastal area. However, the 

retrieval of Chl-a in the coastal region is usually challenging due 

to the other in-water substances regardless of Chl-a, hence 

resulting in the satellite retrieved Chl-a overestimation. By the 

advancement of the Sentinel-2 and Landsat 8 satellites, 

continuous high resolution optical imageries have served for 

remarkable coastal mapping capability thanks to the 

spectroscopic capability certain spectral bands and as high as 

10-meter spatial resolution. This paper aims to evaluate the 

performance of the SEADASS and SNAP processor for Chl-a 

estimation from the Operational Land Imager (OLI) and 

MultiSpectral Instrument (MSI) data in Johor waters. The 

representative models, in standard algorithm OC3 and C2RCC, 

were adapted to retrieve Chl-a concentration. The statistical 

regression has shown that these algorithms give an acceptable 

Chl-a estimation at medium and high resolution with R2 = 0.44 

from OC3 and R2 = 0.55 from C2RCC comparing to the in-situ 

data. Despite of the spatial, temporal and spectral variability, 

this paper shows that OLI and MSI could provide Chl-a 

mapping capability at suitable Chl-a estimation techniques.  

Keywords— Chlorophyll-a, remote sensing, spatial resolution, 

band ratio. 

I. INTRODUCTION 

Chlorophyll-a (Chl-a) concentration plays an important 
role as an indicator for biomass and abundant of 

phytoplankton in the ecosystem [1, 2]. Conventionally, in situ 
measurement has been practiced for measuring the Chl-a 
concentration. Yet, such acquisition limit to provide historical 
and long-term information and this becomes even more 
complicated for larger Chl-a mapping campaign.  

 Optical remote sensing has made a significant impact and 
proved to be useful in Chl-a mapping. Water containing 
marine biotic features has more complex characteristics, as 
the organisms contain chlorophyll and other pigments used for 
photosynthesis. Photosynthetic pigments absorb sunlight 
strongly and record peaks at different wavelengths of 
absorption spectrum [3]. Since 1978, several sensors have 
been designed for ocean colour observation and commonly 
used to study marine biotic populations. Ocean colour satellite 
instruments, such as the Sea-viewing Wide Field-of-view 
Sensor (SeaWiFS) and the Moderate Resolution Imaging 
Spectroradiometer (MODIS), are widely used by 
oceanographers in which comprehensive data on the near-
surface concentration of the photosynthetic pigment, spatio-
temporal Chl-a (mg m−3) can be extracted [4]. However, these 
sensors only satisfy the basic requirements for measuring Chl-
a in open ocean. For Case-2 water, the requirement of higher 
spatial resolution is high to provide less than 1 km Chl-a 
mapping for estuaries and coastal waters. 

Case-2 water conditions typically occur in coastal water 
where the optical properties are significantly influenced by the 
other constituents, such as dissolved organic materials (DOM 
or CDOM) and suspended particulate materials whose 
concentration do not covary with the phytoplankton 
concentration. High resolution Chl-a can indicate the trophic 
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status of the water and provide useful information on optical 
features of water body that is usually applicable to water 
quality monitoring and phytoplankton study. With the 
development of remote sensing techniques, the spectral 
resolution of the satellite data has been improved [5]. MSI and 
OLI have served for continuous high and medium resolution 
optical imageries and embarked remarkable Chl-a mapping 
capability and observation of coastal water in finer details 
thanks to the multispectral images with spatial resolution of 
10 and 30 meters and revisit interval of 10 to 16 days 
respectively. 

Historically, algorithm based on a spectral ratio of remote 
sensing reflectance (Rrs) has been used to produce global Chl-
a product from measurements made by satellite instruments. 
The accuracy and utility of an empirical ocean colour 
algorithm for estimating global Chl-a distributions depends on 
the characteristics of the algorithm and the in-situ 
observations [6]. NASA has provided a few standard Chl-a 
algorithm such as OC4 and OC3M for SeaWiFS and MODIS 
sensors. OC4 sensor has four spectral channels covering blue 
to green bands at 443, 490, 510 and 555 nm. For OC3M, two 
spectral channels from blue to green range (443, 488 and 547 
nm). However, this refinement is confined to Case-1 water 
(e.g clear water) [7]. OC3L algorithms combine two 
algorithms, the band ratio OCx algorithm and the Hu color 
index (CI) algorithm to estimate the Chl-a concentration. The 
OCx algorithm is a fourth-order polynomial relationship 
between a ratio of Rrs and Chl-a in situ and the CI algorithm 
is a three-band reflectance difference algorithm employing the 
difference between Rrs in the green band and a reference 
formed linearly between Rrs in the blue and red bands, with a 
sensor-specific coefficients, a0 to a4. C2RCC processor is 
composed of a set of additional neural networks performing 
specific tasks and special neural networks have been trained 
to cover extreme ranges of scattering and absorption. The 
models provide a robust, fast and easy to implement 
approaches in estimating bio-optical constituents by also 
taking into consideration the highly turbid and eutrophic 
waters where the conventional bio-optical models usually 
failed. 

 In the Case-2 water, the retrieval of Chl-a is usually 
challenging due to low spatial resolution for monitoring Chl-
a in coastal region and other in-water substances regardless of 
Chl-a, hence resulting in satellite-retrieved Chl-a 
overestimation. Previous study has reported a highly 
overestimated Chl-a retrieved using NASA standard 
algorithm was found in the Case-2 water of Malacca Straits 
due to high nutrient inputs discharged from the rivers [8-9]. 
The study on the overestimation of Chl-a in Case-2 water also 
supported by Sun [10], Cannizarro [11], Moses [12] and 
Darecki [13] at different regions.  

Less study was conducted to study the Chl-a estimation by 
using remote sensing in Johor water. Therefore, this paper 
aims to evaluate the derivation of Chl-a concentration from 
OLI and MSI using standard algorithm, OC3L and C2RCC. 
The performance of both algorithms was validated using in 
situ measurement to the specific conditions of Johor water. 
Consequently, the statistical analysis presents the 
performance and the suitability of both algorithms in 
retrieving Chl-a from Case-2 water. 

II. MATERIALS AND METHODS 

A. Study Area 

Fig. 1. The study area in the West Johor Straits. The red 

triangle marks the sampling points where the in-situ 

measurements were collected. 

The study area located at West Johor Straits in the 
southeast coast of Peninsular Malaysia (1° 10’ 0” N – 1° 30’ 
0” N and 103° 20’ 0” E – 103° 40’ 0” E). It receives freshwater 
inflows and exposed to nutrients expelled from numerous 
rivers (i.e. Sg. Pulai) and subjected to tidal influence by the 
Straits of Malacca and Straits of Johor. The West Johor Straits 
also experiences a tropical climate and primarily subjected to 
two monsoon seasons - the Northeast Monsoon (NEM) and 
the Southeast Monsoon (SEM) [14]. In the eastern Malacca 
Straits, high concentrations of Chl-a are likely occurring due 
to the upwellings resulted by the NEM. During the SEM, the 
prevailing wind suggested the cause of  downwelling that 
resulted in low concentrations of Chl-a. The whole area has 
experienced rapid industrialization and urbanization and has 
adversely impacted the water quality of Johor water. Station 1 
is located near to Forest City, station 2 closely to Port of 
Tanjung Pelepas and Station 3 is very near to Pulau 
Merambong. Figure 1 shows the map of study area. 

B. In Situ Measurement 

Phytoplankton samples were collected fortnightly during 
high tide from January 2017 to December 2018. Triplicates of 
1-L water samples were collected at subsurface water using a 
Van Dorn water sampler for dissolved inorganic and Chl-a 
analysis. For the Chl-a analysis, 1-liter seawater samples were 
filtered onto glass-fibre filters (Whatman®, UK). The filters 
were blotted dry, folded in aluminium foil, and kept frozen 
prior to Chl-a extraction. Chl-a was extracted by 90 % 
acetone; and measured by using the multi-wavelengths 
spectrophotometer as described in Parsons et al. (1984). 

The concentration of Chl-a (mg m−3) was estimated by 
using the following equation 
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Chla =  
(11.85 E 664 −  1.54 E 647 −  0.08 E 630 )x v

𝑉 × 1
 (1) 

where, E represents the absorbance at different wavelength 
(corrected by 750 nm reading), v is the volume of acetone 
(ml), V is the volume of water filtered (liter) and 1 is the path 
length of cuvette (cm). 

C. Satellite Data 

To meet the requirements of ocean colour remote sensing, 
the medium and high resolution satellite data, Landsat 8 OLI 
and Sentinel-2 MSI were employed in this study. OLI imagery 
can generate high-quality aquatic science products, such as 
remote sensing reflectance (Rrs) with high spatial resolution, 
up to 30 meters that allow Chl-a mapping and monitoring 
optical properties of inland waters, with 11 spectral bands 
channel in the visible/near infrared (VNIR), short wave 
infrared spectral range (SWIR), panchromatic, cirrus and 
thermal infrared zone. However, the revisiting time of 16 days 
has slightly restricted the capability to monitor coastal water 
conditions in Johor waters. The launched of the twin satellites 
of Sentinel-2 MultiSpectral Instruments (MSI), S2A in 2015 
and S2B in 2017, respectively, has improved the temporal 
resolution of satellite data. These data were selected due to it 
spatial resolution of 10-m and a 10-day revisit period for each 
single Sentinel-2 and 5-days revisit period for the combined 
constellation over the study area. Level-1C data with 13 
spectral channels in the visible, VNIR and SWIR were 
obtained from https://scihub.copernicus.eu/ for further Chl-a 
analysis.  

The time gap between the satellite and in-situ data were 
calculated to match up with in situ data, up to 5 days apart.  
The Rrs were extracted using OC3L and neural network and 
validated with the in-situ data.  

D. Chl-a Derivation 

The empirical Landsat OC3L algorithm is devised in the 
basis of band ratio, Rrs at 443, 482, 561 and 655 nm. The Chl-
a algorithms combine two algorithms, OC3 band ratio 
algorithm and Hu color index (CI) algorithm (Chl-hu) [15]. 
The CI algorithm is used for chlorophyll retrievals below 0.15 
mg m−3. For chlorophyll retrievals above 0.2 mg m−3, the OC3 
algorithm is used. Meanwhile, if the values in between 0.15 
mg m−3 and 0.2 mg m−3, the CI and OC3 algorithm are blended 
using a weighted approach. 

Several inputs including Rrs band ratio and the global 
coefficients, a0 to a5 were employed in empirical algorithm to 
estimate the chlorophyll-a concentration. Spectral remote 
sensing reflectance, Rrs(λ) were expressed by the spectral 
radiance upwelling from beneath the ocean surface and 
normalized by the downwelling solar irradiance at each sensor 
wavelength, λ, in the visible domain with units of sr−1. The 
coefficients were derived using version 2 of the NASA bio-
Optical Marine Algorithm Data set (NOMAD). The 
functional form of the OC3 algorithm is as follows: 

    

𝐶ℎ𝑙𝑎 =  10(0.2412− 2.0546 R+1.1776 R2−0.5538 R3−0.4570R4) (2) 

 

𝑅 = 𝑙𝑜𝑔10 (𝑅𝑟𝑠561
443 > 𝑅𝑟𝑠561

482)      (3) 

 

where Chla represents the chlorophyll-a concentration (mg 
m−3), Rrs is the remote sensing reflectance (sr−1) and R is the 
blue-to-green band ratio (unitless). Rrs 443, Rrs 482, Rrs 561, 
and the coefficient for OLI sensor, a0 to a4. However, these 
operational OC3L algorithms are only applicable in the clear 
water [16].  

For retrieving Chl-a from Sentinel-2 MSI, the C2RCC is 
used for Case-2 waters. Rrs 443, Rrs 490 and Rrs 510 from 
blue band and Rrs 560 from green band were applied in this 
case. A non-linear relationship of two sets variables were 
established and tuneable coefficients of C2RCC model were 
optimised. In this study, the spectral distribution of ocean 
colour data corresponds to the input variables set, hence 
produce output set consists of Chl-a concentration, total 
suspended material concentration and the concentration of 
DOM. Hence, in this paper, the performance of C2RCC 
compared with results of in situ measurement for Chl-a 
retrieval. 

RMSE and R2 coefficient are applied to validate the Chl-a 
retrieved at three sampling stations. The RMSE equation will 
be computed using equation below. 

 

𝑅𝑀𝑆𝐸 =  √∑ (𝐶ℎ𝑙𝑎𝑠−𝐶ℎ𝑙𝑎𝑔)
2𝑛

𝑖=1

𝑛
  

 (4) 

 

where Chlas represents the estimated Chl-a concentration (mg 
m−3) from satellite and Chlag is Chl-a concentration from in 
situ measurement (mg m−3). 

 III. RESULTS AND DISCUSSION 

The study produced the remote sensing reflectance (Rrs) 
and Chl-a from OC3 and C2RCC. Chl-a retrieved from 
satellite were matched up with in situ Chl-a based on the 
nearest date and location of measurement. The availability of 
match-up data in Johor water is limited due to cloud cover, 
hence weaken the sensibility of the algorithm towards the 
Case-2 water. Chl-a retrieved from OC3L and C2RCC were 
plotted with in situ Chl-a, as shown in Fig. 2.  
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Fig. 2. Temporal variations of in-situ Chl-a, OC3L-retrieved Chl-a (a, b and c) and C2RCC-retrieved Chl-a (d, e and f) in three 
sampling stations.

 

Obviously, the result shows underestimation and 
overestimation Chl-a retrieved from the OC3L and neural 
network of Johor waters. The Chl-a retrieved was 
underestimated at S1, meanwhile Chl-a was overestimated in 
S2 and S3. Due to the natural and human activities along Johor 
Straits, Chl-a absorption ratio can exceed the observed. Rapid 
urbanization of the area affects to lower blue-to-green 
absorption and higher blue-to-green reflectance resulted in 
underestimation of Chl-a over S1. Existence of living plants 
and animals (i.e. seagrass bed and phytoplankton), nutrient 
enrichment and runoff of sediments from numerous rivers 
along Straits of Johor also affect the Chl-a estimation. Since 
the blue light strongly absorbed by CDOM and 
phytoplankton, increases CDOM also increases the blue-to-
green absorption, hence decreases in blue-to-green reflectance 
ratio that can be misinterpreted as the higher chlorophyll 

concentration [16], at S2 and S3, on 28th August 2017, 27th 
October 2017, 12th December 2017 and 9th May 2018. 
Meanwhile, on 12th October 2017 and 13th February 2018, the 
increase of blue-to-green ratio causing the low Chl-a retrieval.  

The Chl-a retrieved by OC3L and C2RCC, was plotted 
against the in-situ Chl-a collected from three sampling 
stations, and the regression line were calculated to evaluate 
algorithm performance as shown in Fig. 3. Table 1 presented 
the RMSE and R2 value for Johor water.  
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Table 1. RMSE and R2 value calculated from OC3 and C2RCC. 

Bio-optical algorithms OC3 C2RCC 

RMSE (m) 7.264 7.334 

R2 0.44 0.55 

 

  

Fig. 3. Statistical regression of in-situ Chl-a, OC3L-retrieved Chl-a and C2RCC-retrieved Chl-a in Johor water. 

 

The RMSE values of OC3 and C2RCC were 7.264 m and 
7.334 m, meanwhile R2 values were 0.44 and 0.55. Based on 
the statistical analysis done for both algorithms, the 
performance of OC3L from OLI is trivial and not very suitable 
to Case-2 water, compared to performance of C2RCC for MSI. 
The OC3L more accurately and efficiently estimated in clear or 
more oceanic water that dominated by phytoplankton where the 
optical properties and bottom reflectance is negligible [5, 10]. 
The statistical analysis of C2RCC has shown a slightly better 
results compared to OC3L. C2RCC is a multi-mission ocean 
colour processor, relies on a large database of simulated water 
leaving reflectance, and related top-of- atmosphere radiances, 
and inverted by neural networks. The processor has been 
validated for the different sensors, with good results for Case 2 
waters. Despite the relatively good overall accuracy of the 
C2RCC products, several issues still remain to be addressed 
and further analysis should include studies on the spatial, 
vertical, and temporal variability of the water quality based on 
the Chl-a products. Future work should also extend this method 
by offering the water quality products and ecological state 
estimation. 

IV. CONCLUSION 

With the help of multispectral satellite, this study assesses 
the performance of OC3L and C2RCC processor in retrieving 
Chl-a in West Johor Straits using Landsat MSI and Sentinel 
MSI imagery. The results show the underestimation and 
overestimation Chl-a. Chl-a concentration estimated from both 
algorithms were evaluated and concurrently correlated with in 
situ data at sampling stations (R2 = 0.44 from OC3L and R2 = 
0.55 from C2RCC). The seasonal spatial and temporal of Chl-
a has not been able to be clarified due to the small number of 
MSI and OLI images available for this study. Therefore, locally 
tuned algorithm and new techniques, such as machine learning 
techniques is necessary for Chl-a retrieval to improve Chl-a 
estimation in Straits of Johor and to produce a better inversion 
result. Despite differences in their spatial, spectral, and 
temporal characteristics, this paper shows that both processor, 
OC3L and C2RCC appears to be feasible and can play 

significant roles in Chl-a mapping and monitoring water 
quality. 
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