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     Abstract —Mathematical modelling based on the 

compartmental Susceptible – Exposed – Infected - 

Recovered (SEIR) model is proposed in this paper to 

study the pandemic outbreak. In addition, simulations 

from both the deterministic approach as well as the 

stochastic approach are implemented to validate the 

present study. Among each state, the transitions between 

different categories are simulated by using various graph 

models including the complete graph, the steady Erdos-

Renyi graph, as well as the varying Erdos-Renyi graph. 

The related parameters for the SEIR model are chosen 

from available literature and the effect of some other 

factors such as the inflow or outflow of travellers in a city 

as well as the impact of vaccination rate is explored. 

Furthermore, the difference between the simulation 

results coming from the deterministic SEIR model and 

the stochastic SEIR one is examined to check the 

availability of the present simulation. It is found that, the 

stochastic simulation based on the complete graph is 

more consistent with the deterministic SEIR model. 

Keywords—Epidemic Outbreak, SEIR Model, 

Complete Graph, Steady Erdos-Renyi Graph, Varying 

Erdos-Renyi Graph 

I. INTRODUCTION  

A susceptible-infectious-recovered (SIR) model is 

used in [1] to simulate the infectious trend and 

trajectory of COVID-19 to understand the severity of 

the disease as well as to estimate the approximate 

number of days required for the trend to decline in 

Malaysia. The transmission rate, 𝛽, is used to predict 

the cumulative number of infectious individuals. The 

study findings indicate that outbreak control measures 

such as Movement Control Order (MCO), social 

distancing implementation and increased hygienic 

awareness are essential in controlling the spread of the 

pandemic outbreak in Malaysia. 

The simple but fundamental SIR model has been 

used to generate important insights about the evolution 

of a new epidemic in an idealized susceptible 

population with random connection. However, for 

most infectious diseases, there is a latent period 

between being infected and becoming infected, i.e., 

the exposed category (E). It is reasonable to add the E 

state into the SIR model in order to account for the 

complex disease transmission scenarios and the 

complicated flows between them. 

The susceptible-exposed-infectious-recovered 

(SEIR) model is implemented in [2] to estimate the 

infected population and the number of casualties of 

epidemic disease caused by highly contagious 

coronavirus that has spread in Northern Italy. A case 

study is performed rigorously in view of the lack of 

suitable data and the uncertainty of the different 

parameters. The said analysis shows how isolation 

measures, social distancing, and knowledge of the 

diffusion conditions are useful in understanding the 

dynamics of the epidemic. 

A SEIR model is used by [3] to study the 

worldwide COVID-19 pandemic outbreak in terms of 

exposed, infected, recovered/deceased, and original 

confirmed cases as well as to predict the future 

outbreak of COVID-19 in specific countries such as 

Hubei Province, China; Taiwan; South Korea; Japan 

and Italy. In order to calculate the number of 

confirmed cases in each country, four differential 

equations are applied, and the results are plotted; in 

addition, polynomial regression with the logic of 
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multiple linear regression is also exploited to forecast 

the further spreading of the pandemic. The calculated 

and predicted cases of the confirmed population are 

plotted, and the perfect true results for the future 

spreading of the pandemic is observed from the 

intersection of the lines of calculated and predicted 

cases. 

A mathematical SEIR model with a restriction 

parameter is used in [4] to explore the dynamic of the 

COVID-19 pandemic. A nonlinear and robust control 

algorithm based on variable structure control (VSC) 

for controlling the transmission of COVID-19 is 

proposed in that study. The VSC algorithm is essential 

in defining a switching surface and there are three 

switching surfaces which depend on the different 

combinations of susceptible, exposed, infected and 

total population. 

An extended SEIR model with a vaccination 

compartment is proposed in [5] to simulate the 

spreading of the novel coronavirus disease (COVID-

19) in Saudi Arabia, in which seven stages of infection 

involving susceptible (S), exposed (E), infectious (I), 

quarantined (Q), recovered (R), deaths (D), and 

vaccinated (V) are considered. A data assimilation 

method named ensemble Kalman filter (EnKF) is used 

to constrain the model outputs and its parameters with 

available data. Meanwhile, the joint state-parameters 

estimation experiments with daily data are conducted 

for enhancing the model’s forecasting skills. 

Numerical results show that the proposed model is 

capable to achieve accurate prediction of the epidemic 

development up to two-week time scales, and the 

number of confirmed cases and deaths are 

significantly decreased by intensifying the vaccination 

campaign. 

The objective of this paper is to perform the 

pandemic simulations based on SEIR model in both 

deterministic and stochastic approaches. In addition, 

different modes of interaction between each state 

(category) will be simulated by using Complete 

Graph, steady Erdos-Renyi graph, and the varying 

Erdos-Renyi graph theory. Moreover, differences 

between the deterministic model and the stochastic 

SEIR model will be analysed and compared. Lastly, 

related parameters will be investigated, and some 

other factors including vaccination rate and inflow or 

outflow rate due to traveling will be explored. 

II. SEIR MODEL 

As one of the fundamental ideas for the 

mathematical modelling of epidemiology related 

to the transmission of infectious diseases, SEIR model 

is commonly used to simulate the outbreak of a 

pandemic. In the SEIR model, the population will be 

classified into four categories, respectively 

Susceptible (S), Exposed (E), Infected (I), and 

Recovered (R). A typical schema scenario for these 

four states/ categories is depicted in Fig. 1. 

 
Fig. 1. Disease transmission flow of the proposed SEIR model. 

 

Each category in the SEIR model is described as 

below: 

• Susceptible category S, consists of the total 

number of individuals who are susceptible to the 

disease. 

• Exposed category E, represents the total number 

of individuals who are exposed to the disease. 

They are individuals who ae in contact with the 

infected individuals and become infectious with 

an incubation rate, 𝜎. 

• Infected category I, denotes the total number of 

individuals who are infected with the disease and 

are capable of spreading and infecting others with 

the disease. 

• Recovered category R, expresses the total number 

of individuals who are recovered from the disease 

and can be removed from the system. Normally, 

the individuals who are recovered will not flow 

back to category S since they are assumed to have 

immunity to the disease. 

A. Deterministic SEIR Model 

Since the total population, 𝑁 =  𝑆 +  𝐸 +  𝐼 +
 𝑅  is likely to be large, instead of 

dealing with such large numbers, we will simplify the 

computation by dividing each category with N and 

thus calculating the proportion of each category. A 

system of ordinary differential equations (ODEs) for 

the SEIR model in terms of the function 𝑠(𝑡), 𝑒(𝑡),
𝑖(𝑡) and 𝑟(𝑡) is given by 

 

𝑠′(𝑡) = −𝛽𝑠(𝑡)𝑖(𝑡),

𝑒′(𝑡) = 𝛽𝑠(𝑡)𝑖(𝑡) − 𝜎𝑒(𝑡),

𝑖′(𝑡) = 𝜎𝑒(𝑡) − 𝛾𝑖(𝑡),

𝑟′(𝑡) = 𝛾𝑖(𝑡),

 (1) 

where s denotes the proportion of individuals in 

category S, e represents the proportion of individuals 

in category E, i denotes the proportion of individuals 

in category I, r represents the proportion of individuals 

in category R and t is the time variable. Related 

parameters are defined as below: 

• 𝜆: Exposure rate (rate at which a suspected person 

becomes exposed). It is the product of the rate of 

contact, 𝛽 and the probability of infection given 

that contact occurred, in particular, 𝜆 =
𝛽𝐼

𝑁
. 

• 𝛽: Transmission rate (rate of contact). 

• 𝜎: Incubation rate (rate at which an exposed 

person becomes infected). 

• 𝛾: Recovery rate (rate at which an infected 

person becomes recovered). 

B. Equilibria 
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An equilibrium state happens when the values of 

the 𝑠′(𝑡), 𝑒′(𝑡), 𝑖′(𝑡) and 𝑟′(𝑡) in Eq. (1) are equal to 

zero, in particular, the system is likely to enter an exact 

equilibrium with no more changes and is given by 

 

[
 
 
 
𝑠′(𝑡)

𝑒′(𝑡)

𝑖′(𝑡)

𝑟′(𝑡)]
 
 
 

= [

−𝛽 𝑠 𝑖 
𝛽 𝑠 𝑖 −  𝜎 𝑒
𝜎 𝑒 − 𝛾 𝑖

𝛾 𝑖

] = [

0
0
0
0

].  (2) 

After solving the system of Eq. (2), it can be easily 

found that, at equilibrium state, the solutions of our 

SEIR model are given by 

𝑠 ≡  constant, 𝑒 =  𝑖 =  0, 𝑟 ≡  constant. 

Since 𝑒 =  𝑖 =  0, all equilibria of our SEIR model 

are known as disease-free equilibria. When there is an 

infection and it never disappears from the population, 

such equilibria are known as endemic equilibria since 

the disease is endemic. 

Suppose that N represents a city’s population and 

assumes that travel into and out of the city is allowed. 

Then, it is appropriate to consider adding some terms 

that represent the influx of travellers in some category, 

that is, the number of people entering minus the 

number of people leaving. By adding a small influx 

into susceptible category 𝑆, and exposed category 𝐸, 

of our SEIR model, even if we assume that infected 

people do not travel, there will still be an effect on the 

disease-free equilibrium of our model. Let 𝑎  be the 

influx of travellers in susceptible category 𝑆 and 𝑏 be 

the influx of travellers in exposed category E. By 

adding 𝑎 and 𝑏 to our ODE system, we have 

 

𝑠′(𝑡) = −𝛽𝑠(𝑡)𝑖(𝑡) + 𝑎,

𝑒′(𝑡) = 𝛽𝑠(𝑡)𝑖(𝑡) − 𝜎𝑒(𝑡) + 𝑏,

𝑖′(𝑡) = 𝜎𝑒(𝑡) − 𝛾𝑖(𝑡),

𝑟′(𝑡) = 𝛾𝑖(𝑡) − (𝑎 + 𝑏).

 (3) 

Since the influxes 𝑎  and 𝑏  are added into the 

categories S and E, respectively and suppose 

that 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅,  where the total population, 

N, is constant, the influxes 𝑎  and 𝑏 

are subtracted from the last equation 𝑟′(𝑡) in Eq. (3). 

C. Basic Reproductive Number, 𝑅0 

A basic reproduction number, denoted as 𝑅0, is the 

classical epidemiological measure that used to indicate 

the reproductive power of the disease, that is, the 

expected number of infected persons in a population 

that is completely susceptible. It indicates whether or 

not the infection will spread throughout the 

population. 𝑅0 provides a threshold for the stability of 

the disease-free equilibrium point, that is, when 𝑅0 >
 1,  the disease-free equilibrium is not stable, when 

𝑅0  <  1, the disease-free equilibrium is stable. 

Since 𝑅0 is a threshold that used to determine the 

stability of the disease-free equilibrium point, it 

implies that 𝑅0 can be used to determine whether an 

epidemic outbreak is expected to occur or not. At 

equilibrium state, the ODE system for the SEIR model 

is given by Eq. (2) and can be solved, in which we can 

find that 

𝑠 ≡  constant, 𝑒 = 𝑖 = 0, 𝑟 = constant. 

Here, we let 𝑠 = 𝑠0  and 𝑟 = 𝑟0 , where 𝑠0  and 𝑟0  are 

constants. By adding up the equations 𝑑𝑒/𝑑𝑡  and 

𝑑𝑖/𝑑𝑡 in Eq. (2), we have 

 
𝑑(𝑒+𝑖)

𝑑𝑡
= (𝛽𝑠 − 𝛾)𝑖. (4) 

From Eq. (4), if we assume that 𝑖 is a small positive 

value, then the value of 𝑒 +  𝑖  will decrease to its 

equilibrium value only when 𝛽𝑠0 −  𝛾 is negative, that 

is, 𝛽𝑠0  −  𝛾 <  0. Then, we have 

𝛽𝑠0 −  𝛾 <  0. 

Rearranging the terms, we find 

𝛽𝑠0  <  𝛾. 

If we assume that 𝑠0  =  1,  that is the whole total 

population, 𝑁, we find 

𝛽 −  𝛾 <  0 ⇒  𝛽 <  𝛾. 

By dividing 𝛾 on both sides of the inequality, we find 

𝛽

𝛾
 <  1. 

Since the basic reproductive of our SEIR model, 𝑅0 is 

given by 

𝑅0  =  
𝛽

𝛾
𝑠0, 

and assume that 𝑠0  =  1, we find 𝑅0 <  1.   

We show that if 𝑅0  <  1,  then 𝑒 +  𝑖  will decrease 

and the disease-free equilibrium is stable. Conversely, 

if 𝑅0 >  1, then 𝑒 + 𝑖  will increase and the disease-

free equilibrium is not stable. In particular, when 

𝑅0  >  1 , an epidemic outbreak could be expected, 

when 𝑅0 <  1, there is no epidemic outbreak. 

Although our model does not consider the impact 

of vaccination, we will still have a small discussion 

about it. Let 𝜈  represents the vaccination rate and 

assume that 𝜈 of the population are vaccinated, then 

that population will move directly from category 𝑆 to 

category 𝑅 . In other words, the initial individual in 

category 𝑆 , 𝑠0  will become 𝑠0 (1 −  𝜈).  Also, the 

basic reproductive number, 𝑅0  is revised to 𝑅0  =
 𝛽𝑠0 (1 −  𝜈).  So, if we have a sufficiently large 

population who have been vaccinated, then it is said to 

be effective to prevent an epidemic outbreak since 

when 𝜈  is sufficiently large, the value of 𝑅0  will be 

less than 1, that is, no epidemic outbreak. 

III. SIMULATIONS AND RESULTS 

In this section, numerical solutions for the 

deterministic SEIR model and simulations for the 

stochastic SEIR compartmental will be presented. All 
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the simulation results of the stochastic SEIR model 

will be compared with the numerical solutions of the 

SEIR equations in order to see if the simulation is 

expedient. 

A. Deterministic SEIR Model 

The numerical solutions to the system of ordinary 

different equations for the SEIR model, say Eq. (1), 

are solved by using Explicit Runge-Kutta method of 

order 5(4), and implemented in Python via importing 

the solve_ivp package, a package belongs to 

scipy.integrate. The approximate results for the 

curves of each category versus time are presented in 

Fig. 2, in which the adopted parameters are as follows 

[6]: 

• Transmission rate: 𝛽 = 2.2 𝛾, 
• Incubation rate: 𝛾 = 1 5.2⁄ , 
• Recovery rate: 𝛾 = 1/2.3, 
• Initial population in category S: 𝑠(0) = 0.99, 
• Initial population in category E: 𝑒(0) = 3(0.02)/

100,  
• Initial population in category I: 𝑖(0) = 0.02/100, 
• Initial population in category R: 𝑟(0) = 0,  
• Time domain: 𝑡 = 100 days. 

It can be seen from Fig. 2 that during the first few 

time steps, the number of suspected individuals 

decreases slowly, and the number of exposed 

individuals increases slowly as well. This is because 

the transmission is just beginning and not too many 

infected individuals will be contacted. However, as 

time goes by and the outbreak starts, it is obvious that 

a dramatic drop for the suspected category and a sharp 

rise for the exposed one can be detected. After the 

middle of the time span, the number of recovered 

individuals surpasses the number of suspected 

individuals, which implies that the pandemic is about 

to diminish. The number of exposed and infected 

individuals is comparably lower than that of suspected 

and recovered ones, and both reach a peak roughly in 

the vicinity of the golden cross. 

 
Fig. 2. SEIR model with 𝛽 = 2.2𝛾, 𝜎 = 1/5.2, 𝛾 = 1/2.3, 𝑠(0) =
0.99 , 𝑒(0) = 3(0.02)/100 , 𝑖(0) = 0.02/100 , 𝑟(0) = 0  and 𝑡 =
100 days. 

 

To explore the effect of influxes of travelers on the 

results of the deterministic SEIR model, the initial 

value problem introduced in Eq. (3) is further solved 

by using the solve_ivp package with the same 

setting of parameters as in Fig. 2 with additional 

influxes 𝑎 = 0.005 and 𝑏 =  0.001. From Fig. 3, it is 

observed that during the first 10 days, the number of 

suspected individuals increases, and the value of 

population fraction exceeds 1.0 as influx a is added to 

category S. Also, the number of recovered individuals 

during the first 18 days decreases and has a population 

fraction value that is less than 0 as influxes a and b are 

subtracted from category 𝑅. The number of recovered 

individuals surpasses the number of suspected 

individuals roughly at 𝑡 = 39  days, which appears 

earlier than the one without influxes 𝑎  and 𝑏  as 

presented in Fig. 2. The number of exposed and 

infected individuals is comparably lower than that of 

suspected and recovered ones, and both reach a peak 

roughly at 𝑡 = 35  days which is also earlier. In 

comparison to the model without influxes 𝑎 and 𝑏, the 

peak number of exposed and infected individuals are 

doubled. This is because the total number of the 

population has largely increased due to influxes 𝑎 and 

𝑏.  

 

Fig. 3. SEIR model with 𝛽 = 2.2𝛾, 𝜎 = 1/5.2, 𝛾 = 1/2.3, 𝑠(0) =
0.99, 𝑒(0) = 3(0.02)/100, 𝑖(0) = 0.02/100, 𝑟(0) = 0, 𝑡 = 100 

days, 𝑎 =  0.005 and 𝑏 =  0.001. 
 

To look into the effect of vaccination rate on the 

results of the deterministic SEIR model, Eq. (1) is 

solved by using the solve_ivp package with the 

same setting of parameters as Fig. 2, except 𝑠0  is 

replaced by 𝑠0 (1 − 𝜈) and 𝜈 is 0.50. From Fig. 4, the 

trend of curves S, E, I, and R is similar to the one in 

the previous case. The main difference between the 

SEIR models with and without vaccination rates is the 

reduction in the initial population of category S. When 

𝑡 =  0, there are 𝑠0𝜈 individuals in category S who are 

vaccinated and will be directly moved into category R, 

thus there will be 𝑠0(1 − 𝜈) individuals in category S. 

The number of recovered individuals surpasses the 

number of suspected individuals roughly at 𝑡 =  48 

days, which is slightly earlier than the one without 

vaccination rate. The peak numbers of exposed 
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individuals and infected individuals are half of the 

model without vaccination rate.  

 
Fig. 4. SEIR model with 𝛽 = 2.2𝛾, 𝜎 = 1 5.2⁄ , 𝛾 = 1/2.3,
𝑠(0) = 0.99(1 −  𝜈), 𝑒(0) = 3(0.02)/100, 𝑖(0) = 0.02/100,
𝑟(0) = 0, 𝑡 = 100 days and 𝜈 =  0.50. 

 

As for the effect of basic reproductive number 𝑅0 

on the epidemic outbreak, the behaviour of each 

category subjected to various values of 𝛽  is 

investigated in the following cases, where 𝑅0  is 

related to 𝛽 by 𝑅0 =
𝛽

𝛾
𝑠0. Firstly, the case when 𝑅0  >

 1 is considered. To investigate the effect of the values 

𝛽  on the results of the deterministic SEIR model, 

Eq. (1) is solved by using the solve_ivp package 

with the same setting of parameters as in Fig. 2, but 

𝛽 = 2.2𝛾  is revised into 𝛽 = 2.5𝛾, 𝛽 = 2.0𝛾  and 

𝛽 = 1.5𝛾 respectively. 

Figure 5(a) is the result for 𝛽 =  2.5𝛾, it can be 

found that the number of recovered individuals 

surpasses the number of suspected individuals roughly 

at 𝑡 = 45 days. The numbers of exposed individuals 

and infected individuals reach their peaks at 𝑡 = 45 

days. The peaks of the curves E and I are slightly 

higher and earlier than the model with 𝛽 = 2.2𝛾. 

Figure 5(b) is the numerical result for the 

deterministic model with 𝛽 = 2.0𝛾.  From Fig. 5(b), 

the number of recovered individuals surpasses the 

number of suspected individuals roughly after 𝑡 = 63 

days, which is later than the model with 𝛽 = 2.5𝛾. The 

numbers of exposed and infected individuals attain 

their peaks roughly at 𝑡 = 60 days. The peaks of the 

curves E and I are slightly lower and later than the 

model with 𝛽 = 2.5𝛾. 

Figure 5(c) shows the numerical result for the 

deterministic model with 𝛽 = 1.5𝛾 and 𝑡 = 150 days. 

From this figure, the number of recovered individuals 

surpasses the number of suspected individuals roughly 

at 𝑡 = 130 days, which is much later than the model 

with 𝛽 = 2.5𝛾  and 𝛽 = 2.0𝛾.  The numbers of 

exposed individuals and infected individuals reach 

their peaks roughly at 𝑡 = 95 days. The peaks of the 

curves E and I are much lower and later than the model 

with 𝛽 = 2.5𝛾 and 𝛽 = 2.0𝛾. 

 

 

 

Fig. 5. SEIR model with (a) 𝛽 =  2.5𝛾 (b) 𝛽 = 2.0𝛾 (c) 𝛽 = 1.5𝛾, 

and 𝜎 = 1/5.2, 𝛾 = 1/2.3, 𝑠(0)  =  0.99, 𝑒(0)  =  3(0.02)/
100, 𝑖(0) = 0.02/100, 𝑟(0) = 0 and 𝑡 = 150 days. 
 

From Fig. 5, it is observed that when the value of 

𝛽 decreases, the time required for the occurrence of 

the peaks in the curves E and I become longer, which 

means that the time span for an epidemic duration 

becomes longer. Also, the peak values of the curves in 

categories E and I decrease when 𝛽 decreases, causing 

a reduction in the number of individuals who are 

exposed to and infected with the disease. This implies 

that when the value of 𝛽 is small enough, an epidemic 

outbreak could be expected after a long time, or there 

may be no epidemic outbreak in the future.  

B. Simulation for The SEIR Model Based on A 

Complete Graph 

(a) 

(b) 

(c) 
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Based on Fig. 1, since the flow between each 

category is one-directional, the complete graph seems 

to be suitable and reasonable for the simulation of a 

stochastic SEIR model for each category. The 

movement of each individual from one category to 

another is a discrete Markov chain, which is a random 

process. In particular, the discrete Markov 

chain will enter one of the categories at some point, 

say category S at time 0, and the process will leave 

category S and move to category 𝐸 at time 𝑡 >  0. So, 

the transition from one category to another is a 

stochastic process, such that the amount of time it 

spends in each category before proceeding into the 

next category follow an exponential distribution with 

parameter 𝜆. Since the movement from one category 

to another is exponentially distributed, it is continuous. 

However, the simulation based on the complete graph 

is a discrete-time simulation, and thus a geometric 

distribution is used to replace the exponential 

distribution. 

Also, from the definition of a discrete Markov 

chain, when the process makes a transition from one 

category to the next category, there will be a transition 

probability, denoted as 𝑃𝑖𝑗  . From Eq. (1), the 

equations 𝑖′(𝑡)  =  𝜎𝑒(𝑡)  −  𝛾𝑖(𝑡) and 𝑟′(𝑡)  =  𝛾𝑖(𝑡) 

imply that there are 𝛾𝑖(𝑡) infected individuals that will 

move from category I to category R. Since 𝛾 

represents the recovery rate, the probability for an 

infected individual to become recovered is 𝑞 = 𝛾𝛿 , 

where 𝛿 denotes the time increment. If the generated 

random number is less than probability q, then that 

infected individual will move from category I to 

category R. 

The equations from Eq. (1) for categories E and I, 

which are equations 𝑒′(𝑡)  = 𝛽𝑠(𝑡)𝑖(𝑡)  −  𝜎𝑒(𝑡) and 

𝑖′(𝑡) =  𝜎𝑒(𝑡) −  𝛾𝑖(𝑡) also imply that there are 𝜎𝑒(𝑡) 

individuals who transfer from category E to category 

I. So, the probability for an exposed individual to 

become infected is 𝑝2  =  𝜎𝛿 since 𝜎 is the incubation 

rate. If the generated random number is less than 

probability 𝑝2, then an individual from category E will 

move into category I. 

From Eq. (1), the equations 𝑠′(𝑡) = −𝛽𝑠(𝑡)𝑖(𝑡) 

and 𝑒′(𝑡) = 𝛽𝑠(𝑡)𝑖(𝑡)  −  𝜎𝑒(𝑡) indicate that there are 

𝛽𝑠(𝑡)𝑖(𝑡)  individuals in category S who move to 

category I. Since the exposure rate, 𝜆 , equals to 

𝛽𝑖(𝑡), a suspected individual will turn into exposed 

one with a probability 𝑝1  =  𝛽𝛿 ·  𝐼[𝑗],  where 𝑗 =
0, 1, . . . , 𝑀 −  1 and M denotes the time frame index. 

So, a suspected individual will turn into exposed one 

if the generated random number is less than 

probability 𝑝1.  

The simulation results based on a complete graph 

for the curves of each category versus time are 

presented in Fig. 6, in which the total population, N, is 

3000, the initial population in category S, 𝑠(0) is 0.99, 

the initial population in category E, 𝑒(0) is 0.01, the 

initial population in category I, 𝑖(0) is 0, the initial 

population in category R, 𝑟(0) is 0, the time domain, 

T is 60 days, the number of discretization, M, is 4001 

and the transmission rate, incubation rate, and 

recovery rate are set based on [6]. 

In Fig. 6, the solid line represents the simulation 

based on a complete graph, while the dashed line 

represents the deterministic results. After the first few 

days, the stochastic curve S is above the deterministic 

curve S, and this remains until 𝑡 = 60 days. The 

stochastic curve R is lower than the deterministic 

curve R roughly at 𝑡 = 10 days, and this continues 

until 𝑡 = 60  days. Although there is a little 

discrepancy between the stochastic and deterministic 

results for the categories S and R, they are considered 

quite close to each other. For the categories E and I, 

their stochastic and deterministic results are close to 

each other, and they reach their peaks roughly at 𝑡 =
35 days. Hence, the simulation of the SEIR model 

based on a complete graph can completely describe 

and represent the deterministic result. 

 
Fig. 6. SEIR model based on a Complete Graph with 𝑁 =
3000, 𝛽 =  2.2/2.3, 𝜎 = 1/5.2, 𝛾 = 1/2.3, 𝑠(0) = 0.99, 𝑒(0) =
0.01, 𝑖(0) = 0, 𝑟(0) = 0, 𝛿 = 𝑇 /(𝑀 −  1),𝑀 =  4001 and 𝑇 =
60 days. 
 

To investigate the effect of the influx of travellers 

on the results of the SEIR model based on a complete 

graph, the setting of parameters is the same as in Fig. 

6 with additional influxes 𝑎 = 0.005 and 𝑏 = 0.001. 
However, for each time step 𝑡𝑗 of the simulation, the 

number of individuals in category S will be the sum of 

the counts of 0 in array 𝐶  and influx a, while the 

number of individuals in category E will be the sum of 

the counts of 1 in array 𝐶 and influx 𝑏. Similarly, the 

number of individuals in category R will be the counts 

of −1 in array 𝐶 subtracted by the sum of influxes 𝑎 

and 𝑏. 

Figure 7 is the simulation result for the SEIR 

model based on a complete graph with additional 

influxes 𝑎  and 𝑏 . At the beginning, the stochastic 

curve 𝑆 is below the deterministic curve 𝑆, but after 20 

days, the stochastic curve S surpasses the deterministic 

curve 𝑆 and rises above it. At first, the stochastic curve 

𝑅  is above the deterministic curve 𝑅 , but after the 

middle of time span, the deterministic curve 𝑅 

surpasses the stochastic curve 𝑅, and the deterministic 
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curve 𝑅  is again lower than the stochastic curve 𝑅 , 

roughly at 𝑡 =  52  days. However, the simulation 

result for category 𝑅  is not successful since the 

stochastic curve R failed to simulate below the value 0 

in the beginning stage. For the categories 𝐸  and 𝐼 , 

their stochastic results are below the deterministic 

result for the whole time domain. Also, the 

intersection of stochastic curves 𝑆 and 𝑅 and the peaks 

of categories 𝐸 and 𝐼 with influxes a and b are slightly 

earlier than the model without influxes 𝑎 and 𝑏. It is 

observed that the stochastic result for all the four 

categories is quite away from the deterministic result 

and the discrepancy between the stochastic and 

deterministic results for category 𝑆 , category 𝐸  and 

category 𝑅  are obvious. Hence, the simulation of 

SEIR model based on a complete graph with influxes 

𝑎 and 𝑏 is not successful and it is not as accurate as the 

deterministic result. 

 
Fig. 7. SEIR model based on a Complete Graph with 𝑁 = 3000,
𝛽 = 2.2/2.3, 𝜎 = 1/5.2, 𝛾 = 1/2.3, 𝑠(0) = 0.99, 𝑒(0) = 0.01,
𝑖(0) = 0, 𝑟(0) = 0, 𝛿 =  𝑇 /(𝑀 −  1),𝑀 = 4001, 𝑇 = 60 days,
𝑎 =  0.005 and 𝑏 =  0.001. 
 

To see the effect of vaccination rate on the results 

of SEIR model based on a complete graph, the setting 

of parameters is identical to that in Fig. 6 except 

𝑠0,   𝑒0  and 𝑟0  are revised into 0.99𝑁(1 −  𝜈),
0.01𝑁(1 −  𝜈) and 𝜈𝑁 respectively, where 𝜈 is 0.30. 

Figure 8 is the simulation result for the SEIR model 

based on a complete graph with vaccination 

rate, 𝜈 =  0.30.  

From Fig. 8, since the vaccination rate 𝜈 is 0.30, 

it is observed that the initial population in category 𝑆 

is reduced to 0.99(1 − 0.3)  which equals to 0.693. 

Similarly, when 𝑡 = 0, the population in category 𝑅 

increases to 0.30. The intersection of stochastic curves 

𝑆  and 𝑅  is roughly at 𝑡 = 50  days, which are much 

later than the model without vaccination rate. For the 

categories 𝐸 and 𝐼, they reach their peaks with values 

that are much smaller than the simulation without 

vaccination, roughly at 𝑡 = 52 days. From Fig. 8, it is 

observed that the stochastic and deterministic curves 

for the four categories are relatively close to each 

other. Hence, the simulation of the SEIR model based 

on a complete graph with vaccination rate can fully 

describe the deterministic result. 

 
Fig. 8. SEIR model based on a Complete Graph with  𝑁 =
3000, 𝛽 =  2.2/2.3, 𝜎 = 1/5.2, 𝛾 = 1/2.3, 𝜈 =  0.30, 𝑠(0) =
0.99𝑁 (1 −  𝜈), 𝑒(0) = 0.01𝑁 (1 −  𝜈), 𝑖(0)  =  0, 𝑟(0)  =
𝜈𝑁 , 𝛿 =  𝑇 /(𝑀 −  1),𝑀 = 4001 and 𝑇 =  60 days. 

C. Simulation for SEIR Model Based on A Steady 

Graph  

In this section, we are going to simulate the 

stochastic SEIR model using an Erdos-Renyi graph 

and investigate the outcomes of each category in the 

SEIR model from a simulation based on a steady 

Erdos-Renyi graph. An Erdos-Renyi graph is steady if 

the graph is generated for one time only at the 

beginning of the simulation, which means that the 

connection of the nodes in the generated Erdos-Renyi 

graph will not change for the whole simulation. In the 

simulation, a 𝐺(𝑛, 𝑝) model is used to generate the 

Erdos-Renyi graph, where 𝑛  is the total number of 

nodes and 𝑝 is the edge probability in the graph.  

The static probability for the movement of one 

category to another is the same as the transition 

probability set in the simulation based on a complete 

graph, except the probability 𝑝1 is revised into 𝑝1  =
 𝛽𝛿. In this simulation, contact tracing for the disease 

with exposed individual and infected individual are 

being considered, and the probability that an 

individual becomes exposed and infected becomes 

dynamic.  

The simulation results based on a steady Erdos-

Renyi graph for the curves of each category versus 

time are presented in Fig. 9 with the same parameter 

setting as Fig. 6 with the addition of the probability 

used in the Erdos-Renyi graph model 𝑃 = 𝛼1/(𝛼0 +
𝛼1),  where 𝛼0 = 1, 𝛼1 = 𝑑(𝛼0)/(𝑁 − 1 −  𝑑) and 

the number of an individual contacts with others, 𝑑 =
5.5. From Fig. 9, it is observed that in the beginning 

stage, the stochastic result is close to the deterministic 

result since there is only little randomness that has 

been taken into account in the model. When the time 

domain becomes larger, the discrepancy between the 

deterministic and stochastic results of curves S and R 

becomes larger. 
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Fig. 9. SEIR model based on a Steady Graph with 𝑁 = 3000, 𝛽 =
2.2/2.3, 𝜎 = 1/5.2, 𝛾 = 1/2.3, 𝑠(0) = 0.99, 𝑒(0) =
 0.01, 𝑖(0)  =  0, 𝑇 =  60 days and d = 5.5. 

 

For category 𝑆 , the stochastic curve before 𝑡 =
38 days is above the deterministic curve, but after 𝑡 =
38  days, it is lower than the deterministic curve. 

Before the intersection point of curves 𝑆 and 𝑅, which 

is roughly at 𝑡 = 42  days, the stochastic curve is 

below the deterministic curve, but it surpasses the 

deterministic curve once it passes through the 

intersection point. The peak of curve 𝐸 is roughly at 

𝑡 = 35 days, while the peak of curve 𝐼 is rough at 𝑡 =
37 days. Although the simulation of the SEIR model 

based on a steady graph is not as accurate as the 

deterministic result, it still has a good performance in 

describing the deterministic result. 

D. Simulation for the SEIR Model Based on a Varying 

Graph 

In this section, the stochastic SEIR model will be 

simulated based on a varying Erdos-Renyi graph. The 

simulation process is quite similar to the simulation 

process based on a steady Erdos-Renyi graph. The 

main difference between a steady graph and a varying 

graph is that the connection of the nodes in the varying 

Erdos-Renyi graph will change randomly for each 

time step 𝑡𝑗 , where 𝑗 = 0, 1, . . . , 500 and the number 

of discretization, 𝑀 = 501. The setting of parameters 

and the probability used are the same as in the 

simulation of  the SEIR model based on a steady 

Erdos-Renyi graph, however after the number of 

individuals in each category at the current time step is 

computed, the connection in the graph for the next 

time step will be reshuffled based on the following: 

For each individual i in the total population N and 

for 𝑘 =  𝑖 +  1, 𝑖 +  2, . . . , 𝑁 −  1, 

i. If node k is not connected to node 𝑖, a random 

number will be generated, and if the generated 

random number is less than 𝛼1𝛿, the connection 

between node 𝑘 and node i will be added. 

ii. Conversely, if node 𝑘 is connected to node 𝑖 , a 

random number will be generated, and if the 

generated random number is less than 𝛼0𝛿 , the 

connection between node k and node i will be 

removed. 

Figure 10 is the simulation result for the SEIR 

model based on a varying Erdos-Renyi graph. It is 

observed from Fig. 10 that in the beginning stage, the 

stochastic result for all the categories seems to be close 

enough to the deterministic result. However, as time 

goes by, the discrepancy between the deterministic 

and stochastic results is getting larger because the 

randomness involved in the model becomes larger. 

The stochastic curve 𝑆  becomes lower than the 

deterministic curve 𝑆 roughly after 10 days, and the 

discrepancy between the deterministic and stochastic 

results in the category 𝑆  becomes larger. After 20 

days, the stochastic curve 𝑅  surpasses the 

deterministic curve 𝑅  and when the time duration 

becomes longer, the discrepancy between the 

deterministic and stochastic curve 𝑅 is getting larger. 

Also, the intersection between the curves 𝑆 and 𝑅 for 

the stochastic result is earlier than the deterministic 

result. Although there are few discrepancies between 

the peaks of the stochastic and deterministic curves 𝐸 

and 𝐼 , they can be considered close enough to the 

deterministic result compared to curves 𝑆 and 𝑅.  

 

Fig. 10. SEIR model based on a Varying Graph with 𝑁 =
3000, 𝛽 = 2.2/2.3, 𝜎 = 1/5.2, 𝛾 = 1/2.3, 𝑠(0) = 0.99, 𝑒(0) =
0.01, 𝑖(0) = 0, 𝑇 = 60 days and 𝑑 = 5.5. 

IV. CONCLUSION 

In this paper, the SEIR model, which is a 

mathematical model that commonly used to describe 

the spread of an epidemic disease, is used in the 

present study to evaluate the number of individuals 

who are suspected, exposed, infected, and recovered 

for/from a disease based on the transmission rate, 

incubation rate, and recovery rate. The strength of 

SEIR model is that it is more realistic than the SIR 

model as it can help us understand the impact of 

isolating exposed individuals on the dynamics of 

disease spread. The results of the deterministic SEIR 

model and stochastic SEIR model based on complete 

graphs, steady Erdos-Renyi graphs and varying Erdos-

Renyi graphs are analysed and compared. The changes 

in the results for both the deterministic and stochastic 
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SEIR models when other factors such as vaccination 

rate and inflow or outflow rate due to travelling are 

explored. Among the stochastic models, the 

simulation based on the complete graph is more 

consistent with the deterministic result.  

When the value of the transmission rate decreases, 

the peaks of the number of exposed and infected 

individuals are reduced and moved farther out in time. 

However, while the value of the transmission rate 

decreases to a value that is small enough, making the 

basic reproductive number, 𝑅0, to be less than one, no 

epidemic outbreak is expected. Hence, the SEIR 

model indicates that control measures such as social 

distancing, limiting non-essential travel, wearing 

masks in public areas and vaccination campaigns are 

useful to reduce the number of exposures and 

infections of spreading disease and could effectively 

avoid the occurrence of pandemic outbreaks. 

Due to the limitation of time and scope, only a 

simpler SEIR model with influxes 𝑎  and 𝑏  are 

consider in this study to simulate the population 

distribution and flow among each category via 

Complete Graph and Erdos-Renyi graph theories. 

However, for many respiratory infections, immunity 

after recovery is generally temporary and recovered 

individuals will probably lose immunity and thus 

return to suspected state (𝑆) after a protected period. 

In addition, death toll due to infection will cause a loss 

of individuals from the 𝐼 group, meanwhile, all groups 

will also experience background death from other 

causes at a certain rate. Therefore, the loss of 

immunity, rate of births and deaths are also important 

factors when it comes to a SEIR epidemic outbreak 

model as they can contribute to susceptible 

recruitment into the state 𝑆  and create an ‘open 

epidemic’ status. Possible future work for the current 

study might reside on the extensions of the current 

SEIR model by introducing several extra components 

such as rate of immunity loss, rate of death due to 

infection and other cause, rate of vaccination and the 

age of category individual. A more complicated set of 

ordinary differential equations might occur, and the 

simulation process might need to be refined, 

moreover, other available random processes might 

need to be explored in order to deal with the 

complicated SEIR nature. 
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