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Abstract – Vaccination is the best approach in curbing the 

spread of a pandemic. However, during pandemic one of the 

challenge is limited number of vaccine due to limited 

manufacturing capacity and high demand. Therefore, optimal 

vaccine distribution is needed to ensure maximum effectiveness 

in decreasing the total infections in the population. In this paper, 

the vaccine distribution is optimized using sine cosine algorithm 

improved with mutation (SCAmut). The SEIR model of H1N1 

pandemic in 2009 is used as the case problem here. The 

effectiveness of SCAmut vaccine deployment is studied using 

two factors, which are vaccine coverage percentage and vaccine 

releasing time. The algorithm's result is compared with three 

traditional methods and original SCA without mutation. The 

findings suggested that the proposed SCAmut is able to provide 

more effective vaccination distributions better than the three 

traditional methods and also the original SCA. 

Keywords— Vaccine deployment, H1N1, SEIR, Sine cosine 

Algorithm, Mutation 

I. INTRODUCTION  

 Recent global Covid-19 pandemic outbreak has affected 
worldwide population with the rapid spread of the highly 
infectious and deadly SARS-CoV-2 virus. The Covid-19 
pandemic is a wakeup call for all of us that pandemic is not 
something from the relics of history or exist only in a sci-fi 
movie. Pandemic is a real threat to mankind and could happen 
at any time.   

Pandemic is referred to spread of infectious disease across 
international boundaries, frequently on worldwide scale. It 
could be caused by a novel virus/ bacteria/ fungus or a strain 
that has not affected people for a long time. Humans have little 
to no immunity to it in most cases. Infectious disease can be a 
deadly threat to humanity as it claims the lives of millions of 
people when the spread of it cannot be controlled. In the case 
of Covid-19, the virus spreads rapidly from person to person 
throughout the world. The infectious disease is caused by a 
novel virus which is called as SARS-CoV-2 virus. It has the 

characteristics of person-to-person transmission and 7-14 
days incubation period, which brings a great difficulties for 
epidemic prevention and control [1]. As of February 25, 2022, 
the novel coronavirus illness (COVID-19) had caused a major 
public health crisis, with more than 431 million confirmed 
infections and 5.93 million deaths worldwide.  

The impact of COVID-19 shows how important is 
pandemic preparedness. One of the worrying factors during a 
pandemic is the limited resources in hospitals to handle the 
number of patients need to be treated. To lessen the 
hospitalization, mortality and morbidity burden, a variety of 
non-pharmaceutical measures are enforced, such as the use of 
facemasks, handwashing, shelter-in-place orders, remote 
schooling, workplace closures, cancellation of public 
meetings, and travel restrictions [2]. However, these 
approaches may have negative consequences due to the 
psychosocial changes that result in isolation, contact 
limitations, and an economic closure. The changes lead to the 
rise of mental health issues such as anxiety and stress, increase 
of domestic violence, child abuse and suicidal cases [3, 4]. 

Vaccination on the other hand is an effective method in 
preventing and curbing the spread of viral deceases. 
Vaccination reduces the number of people who are at risk of 
contracting a disease by boosting the immune system to 
protect them. As a result, immunisation can limit the disease's 
infection to a smaller population of susceptible individuals. 
The vaccines are expected to be given to the population to 
achieve herd immunity so that life can return to normalcy 
prior to the respective outbreak. But, vaccine production is 
frequently costly, and time-consuming causing limited supply 
[5]. Therefore, the distribution of vaccines to susceptible 
persons must be optimised in order to achieve the optimum 
effects [6].  

The optimal vaccine distribution is a complex nonlinear 
operational research problem. The distribution planning can 
be guided by SEIR model of the disease. Therefore, this study 
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focuses on the optimization of vaccine distribution using a 
metaheuristic algorithm, namely sine cosine algorithm with 
mutation (SCAmut). The study is carried using vaccination 
data from the 2009 Hong Kong H1N1 influenza pandemic [7].  
Some influenza strains wander genetically from year to year 
as seasonal flu [8]. Similarly, the H1N1 strain also continues 
to circulate as seasonal flu virus.  

The term "metaheuristics" refers to a class of approximate 
optimization algorithms. Approximate optimization 
techniques are used to solve problems intelligently by picking 
the best option from a larger collection of possibilities under 
some computational constraints. They were frequently 
adopted to solve complicated optimization problems when 
standard or classical optimization approaches were ineffective 
and inefficient. "To investigate or to find via trial and error" 
and other terms are used to describe the subordinate heuristic, 
which is referred to as a metaheuristic. Metaheuristics are 
more advanced than ordinary heuristics, and this might 
translate into better performance. Metaheuristics have become 
more popular than exact approaches in solving optimization 
problems because of its potential to be used across a wide 
variety of fields, including engineering, business, 
transportation, and even the social sciences. New approaches, 
applications, and performance evaluations have been 
developed by the metaheuristic community. There are 
numerous metaheuristic algorithms that take their cues from 
nature while others from physics or mathematical field like 
the sine cosine algorithm (SCA) [9]. SCA is chosen here due 
to its strength in solving nonlinear optimization problem. 
However, SCA suffers from poor convergence rate and global 
search [10] – [12]. Hence, differential evolution-based 
mutation operator is proposed here to improve the 
performance of SCA. 

This paper is arranged as follows. Section 2 introduces the 
literature's models of infectious illness transmission and 
control. The implementation of the suggested method is 
discussed in Section 3. Detailed simulations and analysis are 
carried out in Section 4. Section 5 is where the conclusions 
are drawn. 

II. INFECTIOUS DISEASE TRANSMISSION AND CONTROL 

MODELLING 

The spread of epidemics is one of society's most 
dangerous challenges. Given that humanity has previously 
experienced devastating pandemics such as the Spanish flu in 
1917, the Hong Kong virus (H3N2) in 1968, and the swine flu 
(H1N1) in 2009, forecasting epidemic evolution appears to be 
one of the most pressing issues faced by our civilizations [8]. 
The isolation of a new coronavirus by a team of Chinese 
scientists on January 7, 2020 (later designated coronavirus 
disease 2019 (Covid-19) by the World Health Organization), 
which causes severe acute respiratory syndrome in patients 
infected with this virus (later designated coronavirus disease 
2019 (Covid-19) by the World Health Organization), shed 
new light on this issue. 

Mathematical models in epidemiology have become key 
tools in analysing the spread and control of infectious diseases 
in recent decades [8]. On the basis of infectious diseases 
characteristics, many epidemic transmissions are modelled 
using SEIR model. The SEIR models divide the population 
into four compartments based on the epidemic [8]. The 4 
compartmental models are: 

• Susceptible (S) 

• Exposed (E) 

• Infectious (I) 

• Recovered (R) 

Given a number of individuals in a population, initially all 

are vulnerable (or susceptible) to contracting the disease and 

grouped in the S compartment. As the pandemic progresses 

and vaccine becomes available, some susceptible individuals 

will be vaccinated removing them from the potentially 

contagious population. In the meantime, some people will be 

exposed to the disease as a result of their contact and social 

activities with infectious population. The group of population 

exposed to the disease are in, E. Those who are exposed and 

infectious are in the I compartment, whereas those who are 

infectious but already recovered are in the R compartment.  

The SEIR model can be extended to include more 

elaborate state of the population, like hospitalization, 

vaccinated, dead, etc. Additionally, different disease have 

different SEIR model like the SEIR model for Covid-19 [1] 

and H1N1 [7]. SEIR models are also tailored to specific 

region or location of the outbreak [13, 14]. 

A. Hong Kong H1N1 SEIR 

The Hong Kong H1N1 SEIR model in [7] is applied in this 

work. This model is suitable because the model incorporates 

the vaccination efficacy. The researchers represent the SEIR 

model using the following Eqs. (1) to (5); 

dSi/dt = (-λi) · [Si - ∆vi] + (-∆vi)    (1) 

dEi/dt = (-γ) · Ei + λi · [Si - ∆vi]    (2) 

dIi/dt = (-τ) · Ii + γ · Ei    (3) 

dRi/dt = τ · Ii    (4) 

dVi/dt = ∆vi    (5) 

, where i represents the age group. There are five age groups 

(𝑛 = 5) of population considered in the experiment where (1) 

individuals of 5-14 years, (2) 15-24 years, (3) 25-44 years, (4) 

45-64 years, and (5) 65 years or above. Chowell et al. [15] 

claimed that separating the entire population into numerous 

groups can provide better assess of the individual’s risk of 

becoming infected. This is because people of different ages 

have varied rates of social contact, therefore, their chances of 

becoming infected are varied. When vaccine doses are 

limited, an effective vaccine distribution approach that takes 

age factor and the social contact into consideration will lower 

the number of infected people during the pandemic better than 

the strategy that does not take this into consideration.  

The λi, γ, τ, and vi are infection risk, probability of exposed 

individual to get infected, recovery rate and number of 

individuals vaccinated in group i. The probabilities of the 

exposed individuals to be infected by the disease and the 

recovery rates are set at 𝜏 = 0.25, 𝛾 = 0.334. These values 

are the same for the five age groups. The infection risk of the 

group is calculated using Eq. (6) 
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Fig. 1. Illustration of the contact rates between age group. 
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In the H1N1 SEIR model defined by [7], the vulnerability 
values of the population are 𝛽1 = 0.434, 𝛽2 = 0.158, 𝛽3 =
0.118, 𝛽4 = 0.046 , and 𝛽5 = 0.046. The number of 

individuals in population i is presented as 𝑝𝑖, while 𝑐𝑖𝑗  is the 

numbers of contacts between different age groups. These 
numbers are determined based on the demographical statistics 
of 2006 Hong Kong Population By-census and a survey on 
contact pattern conducted in [16]. The population size of each 
age group are as follow; 𝑝1 = 0.94𝑚, 𝑝2 = 0.91𝑚, 𝑝3 =
2.30𝑚, 𝑝4 = 1.86𝑚 , and 𝑝5 = 0.85𝑚. Meanwhile, the 
contact rates of the groups are illustrated in Fig. 1. It can be 
observed that the individuals within the same group have 
more frequently contact with each other than those in the other 
groups. Youngsters in group 𝐵1 have the highest contact 
frequency within same age group and the individuals in 𝐵3  
have the highest total contact frequency. 

III. THE PROPOSED SOLUTION 

The implementation of the SCAmut for vaccines 
distribution is discussed in this section. Initialization of 
population, fitness evaluation, updating the best solution, and 
modify the population procedures are all part of the SCA 
optimization process. 

For stochastic population-based optimization strategies 
like SCA, a random collection of solutions is used to begin the 
process of finding the best solution. Using an objective 
function and a set of rules, the optimization technique 
evaluates and improves the solutions [9]. There is no 
guarantee that a solution will be found in a single run. 
However, the likelihood of discovering the global optimum 
grows as the number of random solutions and optimization 
steps (iterations) increases. All stochastic population-based 
optimization requires two important phases: exploration and 
exploitation. For exploration of SCA, a random solution set is 

combined with high rate of randomization to locate interesting 
parts of the search space [9]. There are, however, subtle shifts 
in the random solutions in the exploitation phase, and the 
random variations are far lower than in the exploration phase. 
The solutions of SCA are following position update equations 
shown in Eqs. (7) and (8): 

  X𝑖
𝑡+1 =  X𝑖 

𝑡 +  𝑟1 ×  𝑠𝑖𝑛 (𝑟2) × |𝑟3𝑃𝑖
𝑡  − 𝑋𝑖

𝑡|                   (7)  

                       

        X𝑖
𝑡+1 =  X𝑖 

𝑡 + 𝑟1 ×  𝑐𝑜𝑠 (𝑟2) ×  |𝑟3𝑃𝑖
𝑡  − 𝑋𝑖

𝑡|                  (8) 

, where 𝑋𝑖
𝑡 is the current solution's location in the i-th 

dimension at the t-th iteration, 𝑟2 𝑎𝑛𝑑 𝑟3  are random values, Pi 
is the destination point's position in the i-th dimension, and || 
is the absolute value. Pi is selected based on the solutions 
fitness value, which is a problem dependent function. In this 
research the fitness function is the total number of infection. 

These two equations are combined to form the following 
formula 

 X𝑖
𝑡+1  = {

X𝑖 
𝑡 + 𝑟1 ×  𝑠𝑖𝑛 (𝑟2) × |𝑟3𝑃𝑖

𝑡 − 𝑋𝑖
𝑡|,     𝑟4 <  0.5

X𝑖 
𝑡 + 𝑟1 ×  𝑐𝑜𝑠 (𝑟2) × |𝑟3𝑃𝑖

𝑡 − 𝑋𝑖
𝑡|,     𝑟4 ≥  0.5

          (9) 

, where 𝑟4 is a random number in the range of [0,1] and used 
to determine whether the solution is updated using either Eqs. 
(7) or (8). 

Four primary SCA parameters may be seen in the 
equations above: r1, r2, r3 and r4. To determine the next 
position (or movement direction), r1 specifies the area (or 
space) in which the next position (or movement direction) can 
occur using Eq. (10): 

                                𝑟1  =  𝑎 −  𝑡 
𝑎

𝑇
                              (10) 

, where t represents the current iteration, T is the maximum 
number of iterations, and 𝑎 is a constant. Movement in or out 
of a given direction is determined by the r2 parameter, which 
is a random value within the range of [0, 2π]. The random 
weight r3, highlight or de-emphasis the influence of 
destination on distance definition stochastically. This is 
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followed by the changeover between the sine and cosine 
components based on the random parameter r4. 

 
Fig. 2. Flowchart of SCAmut algorithm. 

 Here, mutation is proposed to improve the performance of 
SCA in lowering the total infection. The position update with 
mutation is shown in Eq. (11).  

 𝑉𝑘
𝑖 =  𝑋𝑘𝑛

𝑖 + 𝐹 ∙ (𝑈1
𝑖 − 𝑈2

𝑖)                                 (11) 

The mutation operator used here is inspired by differential 

evolution’s mutation. It is used to create a trial vector 𝑉𝑘
𝐺 for 

each solution in the current population of ith iteration. It is 

done by mutating a target vector 𝑋𝑘𝑛
𝑖 . 𝑈1

𝑖 and 𝑈2
𝑖  are also 

randomly selected solution and different with the target vector 
and parent vector. Scale factor F is a user defined parameter. 

 The mutation is introduced to delay convergence of SCA 
to that the population can explore better solution. To balance 
the exploration and exploitation, the mutation is carried by 
one agent only. Specifically, the mutation is performed on the 
worst agent, i.e.; target vector is the worst agent. The worst 
agent is identified and the mutation is done after the candidate 
solution is updated using SCA search equation and the fitness 
evaluation will be done after the mutation process. 

 The proposed SCA with mutation (SCAmut) algorithm's 
flowchart is shown in Fig. 2. Here, the algorithm is looped till 
maximum number of iterations is reached. 

B. Implementation of the Proposed Algorithm 

 The dimension of the SCAmut’s solution follows the 
number of the age group. Since the H1N1 model adopted here 
divided the population to 5 age groups, the dimension of the 
solutions is also equal to 5. Each of the SCAmut solution 
represents the proposed percentage of total vaccine given for 
the respective age group. Therefore, the following equations 
need to be satisfied. 

                                   ∑ 𝑋𝑖
𝑡,𝐺 = 15

𝐺=1                                  (12)                                                       

                                   𝑉𝐺 = 𝑋𝑖
𝑡,𝐺𝑉𝑚𝑎𝑥                                (13)              

                                       ∑ 𝑉𝐺 = 𝑉𝑚𝑎𝑥
5
𝐺=1                                   (14) 

, where G represent the group number, 𝑉𝐺 is the total vaccine 
allocated to group G and 𝑉𝑚𝑎𝑥  is the total vaccine available. 

 The fitness of a solution is evaluated here based on the 
SEIR model’s total number of infection. The objective here is 
to minimize the infection value.  

                   𝑓(𝑋𝑖
𝑡) = ∑ ∑ 𝐼𝐺(𝑑)5

𝐺=1
𝑑𝑚𝑎𝑥
𝑑=1                        (15) 

, where d is the day starting from the pandemic outbreak till 
the end at dmax. I is calculated using the SEIR model shown 
in Eqs. (1) – (5). 

IV. SIMULATION AND ANALYSIS 

In the experimental section, the performance of the 

proposed SCAmut will be compared with some traditional 

vaccine deployment strategies. First, the settings of the 

simulations are described. 

A. Settings of the Simulation 

 The vaccine coverage and releasing time influence the 
total number of infection within the population. The 
composition of the population in each age group is 𝑝1 =
0.94 × 106, 𝑝2 = 0.91 × 106, 𝑝3 = 2.30 × 106, 𝑝4 =
1.86  × 106, and 𝑝5 = 0.85 × 106. Initially 30 individuals 
in 𝑝 are set exposed to the disease this is similar to [6]. Various 
vaccine coverage and the releasing time are used in the 
experiment according to [7] and the duration of the pandemic 
is T = 300. The parameters in the SCAmut are set as follows; 
the search population is 20, and F = 0.5. The maximum 
number of SCAmut’s iteration is 1000. 

B. Traditional Deployment Methods for Comparison 

In the literature [7], the vaccine deployment strategy is 
generally made according to the transmissibility of the disease 
(S1), the vulnerability of the population (S2), or the infection 
risk of the disease (S3). Therefore, the SCAmut’s 
performance is compared with the three traditional strategies 
(S1 to S3) in this work.  

Strategy 1 (S1): Based on Transmissibility 

 According to the transmissibility strategy, more vaccine 
doses are given to the individuals with a higher contact 
frequency. The vaccination proportion 𝑣𝑖 for each age group 

𝑝𝑖 at time 𝑡𝑣𝑎𝑐𝑐  is 

𝑣𝑖(𝑡) =  
∑ 𝑐𝑖𝑘

𝑛
𝑘=1

∑ ∑ 𝑐𝑗𝑘
𝑛
𝑘=1

𝑛
𝑗=1

,     𝑖 = 1,2, … , 𝑛.                                  (16) 

Strategy 2 (S2): Based on Vulnerability 

 

 

Start 

 

Initialize the population of individuals 

(solutions) 𝑋𝑖 (𝑖 = 1, 2, … , 𝑛) randomly, 

t=0 

Evaluate each of the individuals by the 

objective function 

Update the best solution found so far ( 𝑃 = 𝑋 ) 

Update 𝑟2 , 𝑟3 , and 𝑟4, randomly 

 

Update candidate solution, using SCA 

search equation  

 

Final solution = the best solution P 

Stop 

 

t = t + 1 t < max_iter 

Update 𝑟1using equation  

Yes 

No 

Perform mutation operation 
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 This strategy focuses on the infectious vulnerability 𝛽𝑖 . 
The number of vaccine doses for each population group is 
proportional to their infectious vulnerabilities. The 
vaccination proportion 𝑣𝑖 for each age group 𝑝𝑖 at time 𝑡𝑣𝑎𝑐𝑐  
is 

𝑣𝑖(𝑡) =  
𝛽𝑖

∑ 𝛽𝑗
𝑛
𝑗=1

,     𝑖 = 1,2, … , 𝑛.                                           (17) 

Strategy 3 (S3): Based on Infection Risk 

 The vaccination proportion 𝑣𝑖 for each age group 𝑝𝑖 at 
time 𝑡𝑣𝑎𝑐𝑐  is based on the value of the time-dependent 

infection risk 𝜆𝑖(t); thus 

𝑣𝑖(𝑡) =  
𝜆𝑖(𝑡)

∑ 𝜆𝑖(𝑡)𝑛
𝑗=1

,     𝑖 = 1,2, … , 𝑛.                                        (18) 

C. Findings 

i. Vaccine releasing time 

Four vaccination release days are investigated here; day 

1, day 50, day 75 and day 100. The total number of vaccine 

available is 5% of the total population. This setting is 

following the experimental setting in [6]. The findings are 

illustrated in Figs. 3 to 6.   

From the figures, it is clear that different days of vaccine 

deployment have huge impact in controlling the total 

infections during epidemic. As we can see from the result, 

day 1 and day 50 give better result than day 75 and day 100. 

Where the peak of infection can be significantly lowered with 

earlier vaccination program.  

The contribution of SCAmut is significantly noticeable 

when the vaccine is released on day 1 and 50. The total 

infection of the population using vaccination percentage 

given by SCAmut is the lowest for the two cases. 

Interestingly, the infection curve of vaccination distribution 

on day 1 shows that different distribution according to the 

different strategy effect the day of the peak. The vaccine 

distribution of SCAmut delayed the peak the most.  

Vacinnation program that begins at later day; day 75 and 

100, did not give good result, the peaks of the infection case 

regardless of the vaccination strategy are similar to without 

vaccination. Nonetheless, the vaccination smoothen the 

curve faster than without vaccination and SCAmut is the 

fastest.  

From the findings here, it is observed that with early 

deployment of vaccine during pandemic, we can efficiently 

control the infection risk of the virus, lower the total infection 

and even delay the peak. This would allow health provider to 

have better preparation and not stressing the health facilities. 

Most importantly SCAmut gives the best distribution 

percentage, better than the distribution of SCA and the three 

traditional strategies.   

 

Fig. 3. Day 1 vaccine released. 

 

Fig. 4. Day 50 vaccine released. 

 

Fig. 5. Day 75 vaccine released. 

 

Fig. 6. Day 100 vaccine released. 

ii. Vaccine coverage doses 
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In this test, the vaccination doses supply for the 

population are varied; 5%, and 10%, while the release day is 

fixed at day 50. The results are shown in Figs. 7 and 8.  

 

Fig. 7. Vaccine coverage for 5%. 

 

Fig. 8. Vaccine coverage 10%. 

As expected, the greater the number of available vaccine, 
the lower the infection rate and its peak. The total infection 
using SCAmut vaccination distribution with vaccine 
coverage of 10% have better result in reducing the infection 
during the epidemic which only around 20000 maximum 
daily cases, compared to 5% vaccine coverage that have near 
40000 daily infections. The SCAmut always outperformed 
strategy 1 and 2.  

V. CONCLUSION 

This project was aimed to study the optimization of 
vaccine distribution to minimize the total infections. Hong 
Kong H1N1 SEIR is adopted in this study. An improved 
version of SCA, SCAmut is proposed to better distribute the 
vaccine among several age groups so that the total infections 
is minimized. The SCAmut is compared with three traditional 
vaccine deployment strategies and original SCA. The 
SCAmut is found to contribute to better handling of the 
vaccine, where the infection peak is better lowered and 

delayed. The performance is better than traditional strategies 
and performance of original SCA. 
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