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Abstract - A general supercapacitor model is developed by 

incorporating the effective surface area in the presence of pores. 

An analytical solution has been derived from the generic 

equation in Laplace domain based on the porous-electrode 

theory. This model demonstrates the effects of solution to matrix 

conductivity ratio, separator to electrode resistance ratio and 

discharge current density on the electrochemical impedance, 

capacitance and energy density of supercapacitor. The 

electrochemical impedance, capacitance and energy density of 

supercapacitor are calculated in this work. The maximum 

capacitance of 12.71 F/cm2 was computed in low frequency 

range in this device. The proposed model can be applied to 

simulate the characteristics of polymer-based supercapacitor in 

near future.  

Keywords—Supercapacitor, capacitance, electrochemical 

impedance, energy, modeling 

I. INTRODUCTION 

Supercapacitor is widely used in electric vehicles as a high 
power device. There are two mechanisms for energy storage 
in electrochemical capacitors i.e. double-layer charging 
process because of charge separation and a faradaic process 
because of redox reactions. It is also classified into two types 
namely double-layer (DL) capacitors and pseudocapacitors. 
Double-layer capacitor was extensively studied by 
determining the capacitance due to charge separation between 
an electrolyte and a metallic electrode [1, 2]. In the design of 
electrode, carbon materials are commonly used in double-
layer capacitor because of the large interface area between the 
electrolyte and electrode. The activated carbon is another 
large surface area material normally used to achieve high 
energy density in double-layer capacitor. Posey et al. [3] 
derived macroscopic equations to describe the behavior of 
double-layer capacitors under potentiostatic and galvanostatic 
charging in porous electrodes. A DL model was proposed by 
Newman et al. [4, 5] to describe DL charging in an 
electrochemical cell. This model is able to estimate the 
specific energy and power densities of electrochemical 
capacitors.  

Pseudocapacitors are introduced with relatively large 
surface area transition metal oxides such as amorphous 

RuO2.xH2O, CoOx and NiOx to improve the capacitor 
performance [6]. Pseudocapacitance is generated from the 
chemisorption of active ion or the faradaic redox reaction 
happening on the transition metal oxide. Ruthenium oxide, 
RuO2 with carbon electrode is mostly applied in 
pseudocapacitor based on faradaic reactions. The faradaic 
process significantly enhances the energy density in the 
capacitor. Low power density and high cost make pure 
RuO2.xH2O not suitable for electrochemical capacitor 
applications. Hence, nanostructured RuO2.xH2O-carbon 
composite materials with large surface area of porous 
activated carbon for high DL capacitance receive great 
interest recently. 

The constant current operation of the capacitor using Tafel 
kinetics was reported by Shi [7]. It was suggested that the 
pores of different sizes (i.e. micro-, meso and macropores) 
play different roles in contributing to DL capacitance. Much 
of the charge storage occurs in pores with diameters less than 
2 nm. The constant-current model was developed by 
Farahmandi [8] to investigate the effect of the ionic and 
electronic resistances of an electrochemical capacitor during 
the charging. A mathematical model using porous-electrode 
theory for an electrochemical capacitor was developed by 
Srinivasan et al. [9]. The analytical solutions were used to 
evaluate the capacitor performance under constant-current 
discharge and electrochemical impedance spectroscopy. DL 
capacitor model consists of two identical porous electrodes 
with a separator between them in the presence of electrolyte. 
The constant-current discharge model was applied to express 
the relationships of energy and power density of capacitor in 
terms of the physical parameters such as porosity, thickness 
etc. 

A one-dimensional model using the theory of porous 
electrode for an electrochemical capacitor with hydrous 
ruthenium oxide (RuO2.xH2O) electrodes was studied by Lin 
et al. [10]. The double-layer and surface faradaic processes 
were considered in their model to predict the performance of 
the capacitor under conditions of galvanostatic charge and 
discharge. The effects of particle size and capacitor current 
density on the charge or discharge condition were studied. 
They showed that the energy density and discharge time could 
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be increased by decreasing the particle size in DL capacitor. 
DL process had the shortest discharge time than faradaic 
process. The particle-packing effects were included in a 
mathematical model of electrochemical capacitor consisting 
RuO2 in porous activated carbon proposed by Lin et al. [11]. 
The effects of varying carbon type, carbon mass/volume 
fraction and discharge current density on the performance of 
RuO2/C electrochemical capacitors was investigated using 
this model. The optimization of carbon content at moderate 
rate increased the charge delivery and energy density and 
minimized the cost of capacitor. 

A pseudo two-dimensional model was developed by Kim 
et al. [12] to study RuO2/carbon supercapacitors by including 
the diffusion of protons in the oxide particle using the 
superposition technique. The governing equations and 
concentrated solution theory were applied in this model to 
study the effect of particle size of oxide, porosity and the ratio 
of concentration of electrolyte in the electrode on 
pseudocapacitor and DL capacitor. They found that the small 
nanosize particles and high porosity electrode generated the 
highest energy density at 5 kW/kg thus reduce the cost of the 
supercapacitor. 

The governing equations and the boundary conditions 
were generalized to model the capacitor using a current, 
potential or power excitation source by Verbrugge et al. [13]. 
A mathematical analysis based on porous electrode theory and 
a dilute-solution theory for the liquid phase within the pores 
of the electrode was employed. The influence of porosity and 
tortuosity on the transport parameters were incorporated in the 
carrier transport phenomena. Two phenomenological 
equations of ions transport by migration and diffusion, and 
molar flux of species away from the electrode surface due to 
charging and discharging of the electric double layer were 
employed for the liquid phase. 

This work improves previous models [9, 10] for DL 
capacitance and faradaic redox reactions by using porous-
electrode theory for varying composition and particle size 
effects on electrochemical capacitor performance. The effects 

of varying solution to matrix conductivity ratio, , the 

separator to electrode resistance ratio,  and the discharge 
current density on the electrochemical impedance, 
capacitance and energy density of supercapacitor were studied 
in this work. The supercapacitor model was then applied to 
compute the capacitance from Newman et al. [5] and Lin et 
al. [10] works in DL supercapacitor using the porous carbon 
electrodes.  

II. SUPERCAPACITOR MODEL 

The proposed supercapacitor model consists of two 
identical porous electrodes with a separator sandwiched 
between them as shown in Fig. 1. The potential of porous 
matrix and the potential of the solution in pores are denoted 
as 

1
 and 

2
. 

The current densities in the matrix and solution phases are 

developed using Ohm’ law as below 

 

𝑖1 = −𝜎
𝜕𝜙1

𝜕𝑥
                                                                           (1) 

 

𝑖2 = −𝜂
𝜕𝜙2

𝜕𝑥
                                                                            (2) 

 

, where  and  are the matrix phase conductivity and 

effective conductivity of the electrolyte in electrode. 

 

Fig. 1. The proposed supercapacitor model. 

Based on the conservation of charge in the device, the 

total current is 𝐼 = 𝑖1 + 𝑖2. The first derivatives of these 

current components are 

 
𝜕𝑖1

𝜕𝑥
= −

𝜕𝑖2

𝜕𝑥
= 𝑎𝑖𝑇                                                                    (3) 

 

, where a is the interfacial area per volume and iT is the device 

current per interfacial area.  
 

The relationship between the interfacial potential 

difference and the device current is expressed as 

 

𝑖𝑇 = −𝐶
𝜕(𝜙1−𝜙2)

𝜕𝑡
                                                                  (4) 

 

, where C is the capacitance per interfacial area. 

 
Hence, the normalized overpotential formula is  

 
𝜕2′

𝜕𝑥′2
=

𝜕′

𝜕𝜏
                                                                                   (5) 

 

, where ′ =
𝜙1−𝜙2

𝑉𝑜
 is the normalized overpotential,  𝑥′ =

𝑥

𝑙
  

is the normalized distance and 𝜏 =
𝜎𝜂 𝑡

𝑎𝐶𝑙2(𝜎+𝜂)
 is the 

normalized discharge time. 

 

By using Laplace transform, the solution for normalized 

overpotential in Eq. (5) is found to be  

 

′̅(𝑥′, 𝑠) = 𝐴cosh(𝑥′√𝑠) + 𝐵sinh(𝑥′√𝑠)                             (6) 

 

, where A and B are the constants at boundary conditions. 

 
The solution phase current is derived as 

 

𝑖2 = [
𝛿

(1+𝛿)
+

1

𝐼′

𝜕′

𝜕𝑥′]𝐼                                                              (7) 

 

, where  =
𝜂

𝜎
  is the ratio of solution to matrix phase 

conductivity and 𝐼′ =
(𝜎+𝜂)𝑙𝐼

𝜎𝜂𝑉𝑜
 is the normalized device 

current. 

 

The device current consists of the matrix phase and 
solution phase currents at x = 0 and x = l. The boundary 

conditions are written as 
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x' = 0,  
𝜕′

𝜕𝑥′
= −

𝛿

1+𝛿
𝐼′                                                             (8) 

 

x' = 1,  
 𝜕′

𝜕𝑥′
=

1

1+𝛿
𝐼′                                                                 (9) 

 

In the Laplace domain, the normalized overpotential is 

expressed in term of normalized device current after applying 
the boundary conditions from Eqs. (8) and (9) as 

 

′̅ =
cosh (𝑥′√𝑠)+𝛿cosh ((1−𝑥′)√𝑠)

(1+𝛿)√𝑠 sinh (√𝑠)
𝐼′̅                                        (10) 

 

Hence, the solution phase current yields  

 

𝑖2̅ = [
𝛿

(1+𝛿)
+

sinh(𝑥′√𝑠)−𝛿sinh ((1−𝑥′)√𝑠)

(1+𝛿)sinh (√𝑠)
]𝐼 ̅                             (11) 

 

The potential difference across the porous electrode is 

calculated as 

 

 �̅�2|𝑥′=0 − �̅�2|𝑥′=1=[
𝛿

(1+𝛿)2 +
(𝛿−1)(1−cosh(√𝑠))

(1+𝛿)2√𝑠 sinh(√𝑠)
]𝐼′̅𝑉𝑜            (12) 

 

The device voltage of two porous electrodes with a 

separator is written as 
 

𝑉𝐶𝑒𝑙𝑙 = 2𝑉𝑜 − 2[(𝜙2|𝑥′=0 − 𝜙2|𝑥′=1) + |𝑥′=0𝑉𝑜] −
𝑙𝑠𝐼

𝜂𝑠
    (13) 

 

, where ls and 𝜂𝑠 are the thickness and conductivity of 

separator. 

 

The normalized device voltage in Laplace domain is 

obtained from the potential difference in Eq. (12) as 

 

𝑉′̅ = 1 −
2𝛿𝐼′̅

(1+𝛿)2√𝑠 sinh (√𝑠)
−

(1+𝛿2)coth (√𝑠)𝐼′̅

(1+𝛿)2√𝑠
−

𝛿𝐼′̅

(1+𝛿)2 −
𝛼𝐼′̅

2
    

                                                                                          (14) 

 

, where  =
𝜎𝜂 𝑙𝑠

(𝜎+𝜂)𝜂𝑠𝑙
  is the ratio of separator to electrode 

resistance. 

 

Hence, normalized device voltage in time domain with 

constant current is expressed as  

 

𝑉′ = 𝛿𝜙 −
(1+3𝛿+𝛿2)𝐼′

(1+𝛿)2 −
2𝐼′

(1+𝛿)2
∑ [(−1)𝑛 +∞

𝑛=1

          𝛿]2𝑒−𝑛2𝜋2𝜏 −
𝛼𝐼′

2
                                                                        (15) 

 

, where 𝛿𝜙  is the delta function. 

 

The normalized overpotential is expressed in time domain 

at each electrode in following: 

 

′ = 𝐼′ +
2𝐼′

(1+𝛿)
∑ [(−1)𝑛 + 𝛿]cos (𝑛𝜋𝑥′)∞

𝑛=1 𝑒−𝑛2𝜋2𝜏       (16) 

 

The discharging current in supercapacitor is obtained by 

differentiating the normalized overpotential with respect to 

time. The device current per interfacial area is derived as  

 

 𝑖𝑇 =
2𝐼

(1+𝛿)𝑎𝑙
∑ [(−1)𝑛 + 𝛿]𝑛2𝜋2cos (𝑛𝜋𝑥′)∞

𝑛=1 𝑒−𝑛2𝜋2𝜏.                      

                                                                                          (17) 

 

The impedance of the device is obtained by differentiating 

the normalized voltage with respect to the current. By 

replacing s with 𝑗′ for a small sinusoidal perturbation 
voltage, the normalized impedance is 

 

𝑍′ =
4𝛿

(1+𝛿)2√𝑗′sinh (√𝑗′)
+

2(1+𝛿2)coth (√𝑗′)

(1+𝛿)2√𝑗′
+

2𝛿

(1+𝛿)2 +    

                                                                                          (18) 

 

The normalized impedance composes of real and 
imaginary components to show in the Nyquist plot.  

 

Hence, 𝑍′(𝜔′) = 𝑅𝑒(𝜔′) − 𝑗𝐼𝑚(𝜔′)                                   (19) 

 

, where  

  

𝑅𝑒(𝜔′) =
2𝛿

(1+𝛿)2√𝜔′/2

sinh(√𝜔′/2) cos(√𝜔′/2)−cosh(√𝜔′/2)sin (√𝜔′/2)

cosh2(√𝜔′/2)−cos2(√𝜔′/2)
              

                            

+
(1+𝛿2)

(1+𝛿)2√𝜔′/2

sinh(√𝜔′/2) cosh(√𝜔′/2)−sin (√𝜔′/2)cos(√𝜔′/2)

cosh2(√𝜔′/2)−cos2(√𝜔′/2)
                

                             

+
2𝛿

(1+𝛿)2 +                                                                          (20) 

 

𝐼𝑚(𝜔′) =
2𝛿

(1+𝛿)2√𝜔′/2

sinh(√𝜔′/2) cos(√𝜔′/2)+cosh(√𝜔′/2)sin (√𝜔′/2)

cosh2(√𝜔′/2)−cos2(√𝜔′/2)
    

                            

+
(1+𝛿2)

(1+𝛿)2√𝜔′/2

sinh(√𝜔′/2) cosh(√𝜔′/2)+sin (√𝜔′/2)cos(√𝜔′/2)

cosh2(√𝜔′/2)−cos2(√𝜔′/2)
   

                                                                                               

                                                                                          (21) 

 

and the normalized angular frequency, ′ = √
𝜔𝑎𝐶𝑙2(𝜎+𝜂)

2𝜎𝜂
. 

 

The calculated frequency dependence impedance, 𝑍′ can 

be used to obtain the capacitance of the device. The 

capacitance is the inverse of the product of frequency and the 
imaginary component of the frequency response [14].  

It is expressed as C =
𝜎𝜂 

𝐼𝑚(𝜔′)𝜔(𝜎+𝜂)𝑙
 .                                   (22) 

 

The energy delivered by the device is corresponding to 

the area under the voltage-time plot. By integrating the 

normalized device voltage in Eq. (15), the normalized energy 
density is calculated as 

 

𝐸′ = [1 −
(1+3𝛿+𝛿2)𝐼′

(1+𝛿)2 −
𝛼𝐼′

2
] 𝐼′ +

            
2𝐼′2

(1+𝛿)2
∑

[(−1)𝑛+𝛿]2

𝑛2𝜋2  (𝑒−𝑛2𝜋2𝜏 − 1) 
𝑛=1                     (23) 

 

III. RESULTS AND DISCUSSION 

The expression of capacitance and energy density in Eqs. 
(22) and (23) derived from the proposed supercapacitor model 
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are used to study the supercapacitor characteristics in 
frequency domain. This model is also applied to compute the 
capacitance obtained by previous results [5, 10] using similar 
device parameters for comparison. 
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Fig. 2. The normalized voltage discharge for separator to electrode resistance 

ratio,  = 0 (square), 0.1 (diamond), 0.5 (circle) and 1 (triangle) at a 
normalized constant current, I’ = 1 when electrode conductivity is high 

(solution to matrix conductivity ratio,  = 0) in supercapacitor. 

 

Figure 2 shows the discharge voltage for various 
separator to electrode resistance ratios at normalized constant 
current, I’ = 1 in a supercapacitor. The voltage discharge very 
fast when no separator or low resistance for separator in the 

device for the case  = 0. It could be due to the high electrode 
resistance in the device which is normally avoided when 
selecting the electrode material. The type of electrode plays 
an important role in determining the performance of 
supercapacitor. The porosity of the electrode is low where 
few charges are capable to store in the device and causes the 
instability of the output voltage. The calculated result shows 
that there is a significant voltage drop of an order across the 

device when separator to electrode resistance ratio,  = 1 due 
to the potential drops across both the separator and electrode 
in this capacitor. The total resistance consists of the 
resistances from separator, solution and electrode in series. 
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Fig. 3. The normalized current computed for solution to matrix conductivity 

ratio of  = 0.1 (circle), 0.5 (triangle) and 1 (square) when  = 0 in 

supercapacitor. 

 

Figure 3 shows the normalized current in a supercapacitor 

with no separator or low resistance for separator when  = 0. 

The current continues to flow as a good conductor when the 
electrical conductivity of the solution and electrode are 

equally important in the case solution to matrix conductivity 

ratio,  = 1. The computed current shows that there is limited 

device current flow when the solution conductivity is low as 

 decreases to 0.1. It explains that the low solution 

conductivity discourages the transportation of ion in the 

device. Moreover, it may be due to the blockage of ion 

transportation by the presence of low resistance separator. 

This is similar to the device studied by Newman et al. [5] 

using electric circuit model in the past research work. 
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Fig. 4. (a) The normalized impedance plot for solution to matrix conductivity 

ratio of  = 0.01 (square), 0.1 (diamond), 0.5 (circle) and 1 (triangle) when 

separator to electrode resistance ratio,  = 0.1. (b) The computed impedance 

characteristics using Newman et al.’s parameters (circle) with  = 0.01 and 

 = 0.01 and Lin et al.’s parameters (square) with  = 1×10−6 and  = 0.11 

in our model. 

 
The device behaves conductive when solution to matrix 

conductivity ratio,  of 0.01 in which the matrix conductivity 
is high in Fig. 4(a). The straight line in the plot explains the 
high electrical conductivity obeying Ohms’ law for porous 
electrode in the device. The supercapacitor behaves toward 
metallic characteristics when solution to matrix conductivity 
ratio approaches unity at high real Z value shown in the plot. 
Indeed the presence of solution aids the ion transport in the 
device hence enhances the conductivity in particular at the 
interface between the solution and electrode. The device 
resistance contributes mainly from the solution and porous 
electrode when the separator resistance is low. By applying 

(a) 

(b) 
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the proposed supercapacitor model, Fig. 4(b) shows the 
impedance characteristic curves calculated using Newman et 

al.’s [5] parameters of C = 30 µF/cm2 with  = 0.01 and  = 
0.01 and Lin et al.’s [10] parameters of C = 20 µF/cm2 with 

 = 1×10−6 and  = 0.11. Both results show the conductive 
behavior in these plots although there are some differences 
on material properties and device dimensional parameters. 
Their work focused on the low solution conductivity device. 
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Fig. 5. (a) The computed capacitance for solution to matrix conductivity 

ratio,  of 0.1 (circle), 0.5 (square) and 1 (triangle) with separator to electrode 

resistance ratio of  = 0.1 in supercapacitor. (b) The computed capacitance 

for Newman et al. (circle) and Lin et al. (square) using the proposed 

supercapacitor model. 

 

In Fig. 5(a), it is observed that the maximum capacitance 

of 12.71 F/cm2 occurs at low frequency region in general 

device model. The capacitance decreases when the frequency 

increases to 200 Hz. The device capacitance increases toward 

ideal capacitor for the case of solution to matrix conductivity 

ratio,  approaching unity. It is due to the uniformity of the 

current distribution when solution to matrix conductivity 

ratio is unity. It is observed that the capacitance value is 
getting smaller when the solution conductivity decreases in 

the device. 
The supercapacitor model is applied to calculate the 

capacitance of 30 µF/cm2 for double-layer supercapacitor 
from Newman et al. work as shown in Fig. 5(b). It shows that 
the proposed supercapacitor model fitted closely to Newman 
et al.’s result at 75 Hz using their device parameters in 
double-layer supercapacitor with the porous carbon 

electrodes. The dependence of  is similar to our work but the 

numerical values are different for an order due to the 
differences of a few physical and device parameters used for 
thick device in their work. In this work, the maximum 
capacitance of 175.86 µF/cm2 was calculated using their 
device parameters. In contrast, our model is not able to 
reproduce the assumed capacitance value of 20 µF/cm2 from 
Lin et al. work in an electrochemical capacitor with hydrous 
ruthenium oxide (RuO2.xH2O) electrodes incorporating the 
double layer charges and surface faradaic processes. The 
maximum capacitance of 1.56 F/cm2 was computed from our 
model. The difference of capacitance value of five orders 
with our result is due to the assumption of capacitance value 
in micron range made in their model. In our computational 
work, the capacitances computed in these results used the 
conductive behavior with inclusion of solution conductivity 
shown in Fig. 4(b). 
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Fig. 6. The normalized energy for solution to matrix conductivity ratio,  of 
0.1 (solid-line) and 1 (dash-line) when separator to electrode resistance ratio 

is unity ( = 1) in the supercapacitor. 

 

Figure 6 shows more energy storage for solution to matrix 

conductivity ratio,  of 0.1 when conductivity of porous 
electrode is high. Hence, the relatively low conductivity of 
the solution is capable to store energy with charge carriers 
accumulated on the electrodes in the device. In the case of the 
solution and electrode conductivities are equally high, it 
implies the high capacitance to achieve the high energy 
storage in the short period of time in this device. The current 
continues to flow uniformly in between the solution and 
electrode. It may function as a good supercapacitor to meet 
the requirements for renewable energy storage. On the other 
hand, it takes more time to accumulate the desired energy for 
separator to electrode resistance ratio of unity with the 
resistive separator inserted in the device. The additional 
separator resistance contributes to the overall device 
resistance. 

IV. CONCLUSION 

A supercapacitor model was developed to determine the 
capacitance of a supercapacitor using porous-electrode 
theory. The electrochemical impedance, capacitance and 
energy density of supercapacitor were calculated by applying 
the Laplace transform in proposed theoretical model. The 
maximum capacitance of 12.71 F/cm2 was obtained at low 
frequency in this device. The proposed supercapacitor model 
will be used to simulate the electrical characteristics of 
polymer-based supercapacitor in near future. 

(a) 

(b) 
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