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Abstract — Research on smartphone-based human 

activity recognition (HAR) is prevalent in the field of 

healthcare, especially for elderly activity monitoring. 

Researchers usually propose to use of accelerometers, 

gyroscopes or magnetometers that are equipped in 

smartphones as an individual sensing modality for 

human activity recognition. However, any of these alone 

is limited in capturing comprehensive movement 

information for accurate human activity analysis. Thus, 

we propose a smartphone-based HAR approach by 

leveraging the inertial signals captured by these three 

sensors to classify human activities. These heterogeneous 

sensors deliver information on various aspects of nature, 

motion and orientation, offering a richer set of features 

for more accurate representations of the activities. 

Hence, a deep learning approach that amalgamates long 

short-term memory (LSTM) in temporal convolutional 

network (TCN) is proposed. We use independent 

temporal convolutional networks, coined as temporal 

convolutional streams, to independently analyse the 

temporal data of each sensing modality. We name this 

architecture multi-stream TC-LSTM. The performance 

of multi-stream TC-LSTM is assessed on the self-

collected elderly activity database. Empirical results 

exhibit that multi-stream TC-LSTM outperforms the 

existing machine learning and deep learning models, 

with an F1 score of 98.3%. 

Keywords— Elderly Activity Recognition, Multi-

Stream, Recurrent Neural Network, Deep Learning, 

Temporal Convolutional. 

I. INTRODUCTION  

The global elderly population continues to grow at 
a rapid rate. Therefore, developing human activity 
recognition (HAR) systems that are specifically 
tailored for elderly population is significant. These 
systems are crucial for their healthcare and safety 
needs. In recent years, AI-oriented tools have been 
widely employed in HAR research [1–3]. In other 

words, a wide range of machine learning and artificial 
intelligence techniques are explored to empower the 
capabilities of HAR systems [4]. By interpreting and 
understanding the behaviours of individuals, the 
applications provide support for the individuals’ needs 
and preferences. Generally, human activities are 
categorized into: (1) basic activities and (2) complex 
activities. The former activities are those actions that 
are relatively simple, such as walking, running and 
standing. On the other hand, complex activities are 
those actions that are more diverse and context-
dependent, involving a combination of basic activities. 
Examples of complex activities are eating a meal, 
drinking a cup of water, cooking a meal, driving a car, 
playing badminton, etc. Machine learning and deep 
learning algorithms have been extensively employed 
for an efficient HAR system to analyse the data and 
extract informative features [5–7].  

Nowadays, smartphones are an integral part of our 
lives. Almost everyone owns a smartphone. Thus, this 
ubiquitous presence of smartphones makes them a 
convenient platform for HAR. Researchers propose to 
use of accelerometers, gyroscopes or magnetometers 
that are equipped in smartphones as an individual 
sensing modality for HAR. However, any of these 
alone is limited in capturing comprehensive 
movement information for accurate human activity 
analysis. Thus, we propose a smartphone-based HAR 
approach by leveraging the inertial signals captured by 
these three sensors to classify human activities. These 
heterogeneous sensors deliver information on various 
aspects of nature, motion and orientation, offering a 
richer set of features for more accurate representations 
of the activities. 

Hence, we present a deep learning architecture – 
integrating a temporal convolutional network and a 
recurrent neural network for human activity analysis 
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and classification. Specifically, Temporal 
Convolutional Network (TCN) and long short-term 
memory (LSTM) architecture are incorporated to 
achieve improved performance in activity recognition. 
The key objective of the proposed model, named 
multi-stream TC-LSTM, is to directly process raw 
inertial data without preprocessing or supplemental 
domain knowledge and effectively capture relevant 
temporal patterns of the data. Multi-stream TC-LSTM 
leverages the strengths of TCN and LSTM for reliable 
human activity recognition.  

The overview of the proposed architecture is 
illustrated in Fig. 1. In this model, low-level features 
are computed using TCN that encodes spatial-
temporal information. Next, these low-level features 
are further input into a classifier to capture high-level 
temporal information using LSTM. The hierarchical 
extraction of these two levels of information facilitates 
more accurate predictions. Unlike other approaches 

[8–11], our proposed model utilizes a distant TCN for 
processing each individual sensor data. Each sensor 
instance of the convolution process is referred to as a 
convolutional stream, thereby forming a Multi-stream 
TC-LSTM architecture. This implementation 
enhances feature extraction by focusing on one 
specific sensor rather than on all sensors 
simultaneously. Moreover, the proposed architecture 
is adaptable to new sensor configurations since the 
convolutional streams are easily removed, added or 
modified. The adoption of LSTM in this model is due 
to its excellence at modelling sequential data. LSTM 
process utilizes past information. Contrasting 
recurrent neural networks (RNNs) that are prone to the 
vanishing gradient issue, LSTM addresses this 
problem via their unique memory cell structure which 
enables effectively capturing information over longer 
time horizons. This feature is significant for learning 
temporal patterns. 

 

Fig. 1. The overview of the proposed Multi-stream TC-LSTM architecture. 

The contributions of this paper are: 

1. An end-to-end human activity recognition 
system is developed. The proposed system directly 
works on the captured raw inertial data. There is no 
preprocessing, nor any prior domain knowledge is 
required. 

2. By utilizing individual temporal 
convolutions, the proposed Multi-stream TC-LSTM 
independently processes and analyses data from 
different sensor types. This allows customized 
convolutional processes tailored to befit specific data 
properties or features of each sensor, extracting more 
meaningful information from the sensor data. 

3. Since convolutional streams are completely 
independent to each other, this modularity facilitates 
straightforward integration of additional sensor inputs 
by just adding new convolutional streams for the data 
of the new sensors. Similarly, if a sensor is removed, 
the corresponding convolutional stream can be simply 
removed from the system. 

II. RELATED WORK 

Deep learning models have demonstrated 
outstanding performance across diverse applications, 
ranging from speech recognition to video 
classification. Their capability to extract informative 
patterns and dependencies from raw data makes them 
a preferred feature analysis approach for sensor-based 
human recognition. Convolutional Neural Network 
(CNN)-based deep learning models have been 
extensively utilized for HAR [5, 9, 10]. Cho et al. 
proposed a CNN-based deep model with bidirectional 
LSTM and CNN to recognize human activity [5]. Two 
publicly available databases which are WISDM and 
UCI-HAR were used for the model performance 
assessment. The proposed CNN-based model 
outperforms the existing approaches in smartphone-
based HAR. Furthermore, Kim et al. introduced a 
wearable IMU to evaluate patients through BBS (Berg 
balance scale) for balance assessment [12]. The 
proposed stacking ensemble model contains a dense 
layer comprising two one-dimensional-CNN heads 



Vol 6 No 2 (2024)  e-ISSN: 2682-8383 

86 

 

and a GRU head. The obtained empirical results 
demonstrated that the model’s computational 
complexity and performance were improved. The 
authors highlighted that their proposed algorithm is 
potential to a wearable healthcare device for users to 
understand their balance ability and probability of 
failing, helpful for falling prevention.  

Recurrent models are popular for time series data 
classification, and human activity recognition is a kind 
of time series classification [13]. In other words, 
recurrent models can extract temporal dependencies 
from inertial signals and these temporal features are 
crucial in comprehending the progression of motion 
activities over time. A lightweight Recurrent Neural 
Network (RNN) is proposed on a low-power 
microcontroller for HAR [14]. The experimental 
results demonstrated the feasibility of the RNN model 
in the constrained-resource scenario. The proposed 
system attained a promising recognition performance 
while maintaining low memory consumption. 

A variant of RNN, i.e. bidirectional LSTM, was 
utilized to classify and recognize human activity [15]. 
In this work, a robust HAR model is developed by 
combining Deep SqueezeNet and bidirectional LSTM. 
Furthermore, an improved flower pollination 
optimization algorithm, known as IFPOA, was 
adopted for bidirectional LSTM’s hyperparameter 
optimization.  The integration of SqueezeNet and 
bidirectional LSTM enables the model to extract short- 

and long-term dependencies from the data.  
Nevertheless, when dealing with long data sequences, 
recurrent models are computationally expensive, 
causing high memory consumption, especially when 
dealing with long sequences as well as large batch 
sizes.  

In recent years, the employment of Temporal 
Convolutional Networks (TCNs) has been widespread 
in smartphone-based human activity recognition. The 
key factors are their efficient parallel processing and 
capability to capture long-term dependencies while 
requiring lower memory. Sarmela et al. proposed a 
lightweight TCN-based deep learning model for HAR 
[16]. The model extracts features from inertial data 
through parallel Convolutional Heads. Besides that, 
dilated causal convolutions and residual connections 
are incorporated into the model to preserve the longer-
term dependencies of the data. The model’s 
performance was assessed on three databases and 
promising performances were obtained. Linh and 
Bach proposed a temporal convolutional network with 
Hidden Markov Chain for human activity recognition 
post-processing [17]. In the paper, an algorithm was 
presented to produce huge noisy data for weight 
initialization in the model. In the post-processing 
stage, the authors proposed a technique to smooth the 
model’s prediction. A promising results are obtained. 

 

 

Fig. 2. The proposed system architecture.
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III. PROPOSED METHOD DESIGN 

There are multiple sensors embedded in 
smartphones. Any of these sensors alone is limited in 
capturing inclusive movement information for 
accurate human activity analysis and recognition. In 
this paper, we propose a smartphone-based HAR 
approach by leveraging the inertial signals captured by 
three sensors, i.e. accelerometer, gyroscope or 
magnetometer, to classify human activities. The 
adoption of multiple heterogeneous sensors enables 
the collection of diverse information on different 
aspects of nature, motion and orientation. This rich 
information is crucial to represent the underlying 
dynamics of activity data. In the proposed model, a 
temporal convolutional (TC) network and long short-
term memory (LSTM) are integrated. We name this 
architecture multi-stream TC-LSTM.  

Figure 2 illustrates the multi-stream TC-LSTM 
architecture for multiple sensing modalities analysis. 
Firstly, the captured sensor data is processed. Unlike 
other approaches [8–11], independent temporal 
convolutional analysis is performed on each sensor 
data. Each sensor instance of the convolution process 
is coined as a convolutional stream. In other words, 
multiple temporal convolutional streams are 
conducted to independently process the temporal data 
of different sensing modalities captured by multiple 
sensors. This independent sensor-specific data 
analysis enables a more thorough extraction of diverse 
information from different sensing modalities. In this 
study, TCN is adopted for temporal convolutional 
analysis. The primary reasons for applying TCN are 
(1) TCN performs well for sequential data [18], and 
(2) causal convolution is implemented in TCN in such 
a way that the convolutional operation does not take 
future values as inputs, preventing information 
leakage from the future to the past. 

In the proposed model, each TCN stream is 
constituted by residual blocks. In each residual block, 
there are temporal convolutions, batch normalizations, 
ReLU activation functions and spatial dropouts, as 
illustrated in Fig. 3. The stacking of multiple residual 
blocks in each TCN stream empowers the network to 
effectively capture the hierarchical features of the data 
sequences. Since the sequential data passes through 
consecutive layers, the network can abstract and 
represent the complex patterns progressively. In this 
work, dilated temporal convolutions are performed to 
enlarge the receptive fields, enabling long-term 
dependency analysis to extract data characteristics and 
relationships across a temporal span. From Fig. 3, we 
can notice that there is a 1×1 convolution in a residual 
block. This is called residual connection and is a key 
feature of a residual block. The residual connection is 
vital as it allows the gradient to pass directly through 
the block, even when the gradients become very small 
values due to reiterated convolutions and activations. 
This feature helps address the vanishing gradient 
problem and facilitates the training of a deeper 
network. 

 

Fig. 3. Residual block. 

In order to capture long-term patterns of the inertial 
signals, we apply one-dimensional dilated 
convolutions in TCNs for larger receptive fields to 
effectively capture information from distant time 
paces in the sequence data, as illustrated in Fig. 4. The 
dilated causal convolution process can be formulated 
as follows, 

𝑥𝑙
𝑡 = ℎ (∑ 𝑤𝑙

𝑘𝑥(𝑙−1)
(𝑡−(𝑘×𝑑))

+ 𝑏𝑙
𝐾−1
𝑘=0 )  (1) 

, where  𝑥𝑙
𝑡 is the output of the neuron at t position in 

the lth layer; K is the length of the kernel; 𝑥𝑙
𝑡  is the 

weight of k position; d is the dilation factor of the 
convolution; 𝑏𝑙  is a bias. In this work, the Rectified 
Linear Units (ReLU) activation function, i.e. ℎ(𝑥) =
max (0, 𝑥) , so that the model can capture data 
nonlinearities to handle complex interactions. Besides, 
the implementation of batch normalisations speeds 
and stabilises model training. Spatial dropout helps fix 
vanishing gradients by regularising. Spatial dropout 
trains the network to learn more robust and 
generalisable properties by randomly losing neurons. 

 

Fig. 4. Dilated causal convolution with two layers with kernel length 
2 and dilated rate 2. 
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After the temporal convolution analysis, the 
generated feature maps of each stream are 
concatenated and further processed by LSTM to 
improve the temporal abstraction of the inertial 
signals. This amalgamation of TCN and LSTM 
imparts a multi-level abstraction of the inertial signals 
in such a way that TCN produces initial abstraction at 
fixed temporal scales, and LSTM refines the 
abstraction by adjusting its gating mechanisms and 
memory cells to learn temporal variations in the data 
which are crucial to exhibit assorted movement 
dynamics. Furthermore, unlike traditional recurrent 
neural networks (RNNs) that suffer from the vanishing 
gradient problem, LSTM addresses this issue via their 
unique memory cell structure which enables 
effectively capturing information over longer time 
horizons. This feature is significant for learning 
temporal patterns in motion data. 

An LSTM network comprises an input layer, 
hidden layers and an output layer. Memory cells 
contained in the hidden layers and each cell comprises 
3 gates to maintain and regulate the cell state (forget 
gate, input gate and output gate). The structure of a 
memory cell is presented in Fig. 5. 

 

Fig. 5. LSTM memory cell structure (source: Giang et al., 2022). 

IV. EXPERIMENT RESULT AND DISCUSSION  

The effectiveness of the proposed framework is 
evaluated on our self-collected elderly activity 
recognition dataset. In the literature, there are 
relatively fewer studies on elderly HAR compared to 
activity recognition focused on adults. Hence, in this 
paper, elderly activity recognition is focused. There 
are 13 volunteers in the age range of 60 years old and 
above. Among the participants, there are eight females 
and five males. These elderly people can move and 
behave normally, though some have age-related 
conditions such as high cholesterol, high blood 
pressure and/or high blood sugar levels.  

The data collection was conducted at the 
participants’ homes and in the home yards. During the 
data collection, the volunteers placed a Samsung 
Galaxy A52s 5G smartphone in their left front pocket. 
Each participant was required to perform six basic 
activities: standing, sitting, laying, brisk walking and 
stair climbing. Each activity was recorded for a total 
duration of 2 minutes. This could be split into two one-
minute sessions performed at separate times upon the 

request of the elderly. At the sampling rate of 20ms, 
acceleration signals were acquired. A sliding window 
(with an overlap rate of 50%) was applied to segment 
the inertial data sequence with a window size of 128 
data points. Each data sample (also referred to as 
window) is represented by the x, y and z coordinates of 
the acceleration signal data. In total, the database 
contains 3762 data samples. 

After the data sampling comprising data collection 
and segmentation, the data sample was preprocessed 
to scale the features within the range between 0 and 1. 
This process is to ensure the equal contribution of all 
features to the data analysis, preventing features with 
larger scales from dominating. The collected dataset 
was then randomly split into three sets, with 70% for 
model training data, 15% for model validation and 
15% for model testing.  

A. Performance Metrics 

In this study, various performance metrics are 
considered to evaluate the performance of multi-
stream TC-LSTM: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
                      (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 

               

                     (3) 

𝐹1 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                      (4) 

, where 𝑇𝑝 is a true positive,  𝐹𝑝 is a false positive, and 

𝐹𝑛 is a false negative. 

B. Analysis of Model Hyperparameters  

Hyperparameters are essential in developing and 
optimizing deep learning models. They directly impact 
the capability of a deep learning model to learn data 
patterns and generate accurate predictions. In this 
section, we examine the impact of specific 
hyperparameters on the performance of the proposed 
multi-stream TC-LSTM. The effect of dilation factors 
on activity recognition performance is analysed and 
recorded in Table 1. Based on the empirical results, we 
can observe that the performance of the proposed 
model slightly declines as the dilation rates increase. 
While the dilation factor exerts a certain influence on 
the model’s performance, the influence is minor. 
However, dilation rates significantly influence the 
model's complexity. A greater number of model 
parameters are generated with higher dilation rates. 
Excessively complex models could trigger model 
overfitting, wherein the models capture random 
fluctuations and noise present in the training data. This 
consequence is detrimental to the model’s overall 
performance, resulting in unreliable predictions. This 
finding is illustrated in Table I by the decrease in F1 
score when dilation rates are extended up to 32. 
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Table I. Performance of different dilation factors in the proposed 
model. 

Dilation 

Rate 

No of 

Parameters 

Precision Recall F1 

Score 

1,2,4 6059538 0.9836 0.9845 0.9839 

1,2,4,8 8173074 0.9738 0.9679 0.9702 

1,2,4,8,16 10286610 0.9778 0.9789 0.9782 

1,2,4,8,16,32 12400146 0.9708 0.9714 0.97 

 

Next, the effect of dropout factors on the 
performance of activity recognition is studied. 
Dropout imposes regularization into the model to 
counter overfitting. However, excessive use of 
dropout can hinder the model from learning data 
patterns. Table II records the performance of different 
dropout factors of the proposed model. From the 
results, we can observe that a dropout rate of 0.05 
attains the best performance with a high F1 score. We 
can deduce that with this dropout rate value, the 
proposed model is able to maintain its capability of 
capturing informative data patterns while preventing 
overfitting. When the dropout rates increase, there is a 
noticeable degradation in the recognition 
performance. Performance degradation could 
potentially arise due to the excessive reduction of 
neuron activations during training (associated with 
higher dropout rates), leading to underfitting. The 
model fails to learn the underlying patterns in the data. 

Table II. Performance of different dropout factors in the proposed 
model. 

Dropout Rate Precision Recall F1 Score 

0.05 0.9892 0.9885 0.9889 

0.1 0.9803 0.9795 0.979 

0.2 0.9396 0.9368 0.9358 

C. Performance Analysis  

In this section, the performance analysis of the 
proposed model is conducted. The recognition 
performance of each activity class is summarized in 
Table III. Furthermore, we also present the 
performances of multi-stream Temporal 
Convolutional Network (i.e. multi-stream TC). This 
analysis is to elucidate the contribution and 
significance of the LSTM component within the 
proposed multi-stream TC-LSTM. In other words, by 
excluding and scrutinizing the function of LSTM, we 
examine the performances of the proposed multi-
stream TC-LSTM (i.e. with LSTM) and multi-stream 
TC (i.e. without LSTM).  

The empirical results demonstrate that the 
proposed multi-stream TC-LSTM achieves better 
recognition performance with an F1 score of 98.3%; 
whereas when the LSTM component is excluded from 
the architecture, the performance of the model 
degrades with approximately 4% in the F1 score. This 
analysis suggests that the LSTM component 
contributes considerably in capturing intricate 
temporal patterns from human activity signals. The 

recurrent nature of LSTM facilitates an effective 
sequential dependency modelling for the inertial data 
and enables the model to comprehend the underlying 
dynamics for characterizing the activities.  

Table III. Performance of the proposed Multi-stream TC-LSTM and 
Multi-stream TC (without LSTM). 

Activity Precision Recall F1 Score 

Multi-stream TC-LSTM 

Brisk Walking 0.94 0.99 0.96 

Climbing Stairs 1.0 0.99 1.0 

Laying 1.0 1.0 1.0 

Sitting 1.0 1.0 1.0 

Standing 1.0 0.99 0.99 

Walking 0.96 0.94 0.95 

Mean 0.983 0.985 0.983 

Multi-stream TC 

Brisk Walking 0.79 0.86 0.82 

Climbing Stairs 1.0 1.0 1.0 

Laying 1.0 1.0 1.0 

Sitting 1.0 1.0 1.0 

Standing 1.0 1.0 1.0 

Walking 0.88 0.82 0.85 

Mean 0.945 0.947 0.945 

 

Additionally, the confusion matrix of multi-stream 
TC-LSTM is also depicted in Fig. 6. We can notice 
that five walking samples have been misclassified into 
brisk walking class, and one sample of brisk walking, 
climbing stairs and standing, respectively, have been 
misclassified into walking class. This could be 
because of the similar inertial patterns between 
walking and brisk walking, especially on the 
gyroscope signals, as shown in Fig. 7. Besides that, we 
also observe that the proposed model achieves good 
recognition performance in distinguishing passive 
activities such as laying, sitting and standing. This 
may result from the distinct nature of the axial signals 
(blue, green and orange coloured) of the accelerometer 
and gyroscope of these classes, see Fig. 8. 

 
Fig. 6. Confusion matrix of the Multi-stream TC-LSTM. 
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(a) 

 

(b) 

Fig. 7. Gyroscope signal patterns of a (a) brisk walking sample and 
(b) walking sample.  

 

 

(a) 

 

 

(b) 

 

 

(c) 

Fig. 8. Accelerometer (up) and gyroscope (down) signal patterns of 
a (a) laying sample, (b) sitting sample and (c) standing sample.   

V. CONCLUSION 

This paper proposes an efficient smartphone-based 
HAR model that leverages the collective competencies 
of multiple smartphone-embedded inertial sensors for 
a more inclusive feature analysis of elderly activities. 
The proposed deep learning framework is coined 
multi-stream TC-LSTM. In this model, the acquired 
raw data is firstly segmented into fixed-time windows 
using a sliding window technique. This enables a 
systematic examination of consecutive patterns, 
easing the analysis process. The segmented training 
data is then used to train and build an optimal model 
for feature extraction. Unlike other models, our 
proposed model engages independent temporal 
convolutional analysis on each inertial data, known as 
a convolutional stream. Since the employment of 
different sensors, the proposed model performs 
multiple temporal convolutional streams, allowing 
independent processing of inertial data of diverse 
sensing modalities. This enhances the model's ability 
to characterise the multisensory inertial data for more 
comprehensive feature extraction of diverse 
information. The extracted temporal features are 
further processed by LSTM for temporal abstraction. 
The results demonstrate that the proposed multi-
stream TC-LSTM can obtain a promising performance 
in human activity recognition with an F1 score of 
98.3%. 
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