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MATHEMATICAL MODELING ON THE TRANSMISSION DYNAMICS 
OF ZIKA VIRUS

 Murugappan Mullai*, G. Madhan Kumar, Grienggrai Rajchakit* and Govindan Vetrivel  

 
Abstract – Zika virus is a mosquito-borne virus that is 

commonly transmitted by mosquitoes of the Aedes 
genus. The transmission dynamics of the Zika virus in 
males, females, and children are comparatively studied. 
The study aims to analyze and find the population that 
affects more due to Zika transmission. This paper deals 
with the non-linear Mathematical model of the dynamics 
of Zika virus transmission.  The reproductive ratio of the 
model is calculated to analyze the spread of the Zika 
virus.  The equilibrium and the stability of the model are 
found and analyzed analytically. Numerical simulation is 
carried out to support the analytical results and to 
estimate the most affecting population in different 
equilibria. 

Keywords—Mathematical model, Zika virus, Equilibrium, 

Stability. 

1. INTRODUCTION 

The aim of this paper deals with the non-linear 
mathematical model of the Zika virus and its spread in 
the human population. The Zika virus is a flavivirus 
dispersed by mosquitos that originated in monkeys in 
Uganda in 1947 as part of a yellow fever surveillance 
network. It was later observed in civilians of Uganda and 
Tanzania’s United Republic in 1952[3]. Infections with 
the Zika virus have been documented in Asia, the 
Pacific, the Americas, and Africa. Yap Island in 
Micronesia saw a Zika virus outbreak in 2007 that was 
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caused by the Asian family of the virus (ZIKV) [4, 5]. The 
recent emergence of Zika demonstrates that diseases 
that spread primarily through other means can also have 
a sexual component to their spread [6, 7]. A pregnant 
woman who contracts the mosquito-borne Zika virus 
runs the risk of giving birth to a child with birth 
abnormalities [8,9]. The Zika virus is typically 
transmitted to humans by the bite of an infected 
mosquito of the Aedes genus, most notably Aedes 
aegypti in tropical areas. Aedes mosquitos bite most 
often throughout the day, peaking in the early morning 
and late afternoon/evening. This is the mosquito that 
spreads dengue disease, chikungunya, and yellow 
fever. The Zika virus may also spread via sexual activity. 
Blood transfusion and other mechanisms of 
transmission are being researched. F.B.Agusto et al.[1] 
framed a mathematical model of the Zika virus and 
discussed its vertical transmission, and also Joel 
C.Miller[12] discussed mathematical models of SIR 
disease and sexual transmission routes. P. Suparit et al. 
[15] proceed with a time-dependent mosquito bite to 
model the Zika spread. M. Rahman et al. [9] studied and 
recorded the parameters, disease characteristics, and 
prevention of Zika transmission. Using fractional order 
derivative, Shahram Rezapour et al. [17] furnished a 
math model for Zika transmission. In 2020, S.K. Biswas 
et al. [18] formed a mathematical model to study the 
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Zika virus dynamics by considering the population of 
both humans and mosquitoes. A case study in India has 
been conducted on Zika virus progression dynamics 
using the SIR-SI math model by Ravins Dohare et al. 
[16]. By considering the nonlinear general incidence 
rate, Ahmed Alshehri and Miled El hajji [2] undergoes a 
study on Zika transmission in 2022. Recently, a 
mathematical study to learn about the infection of the 
Zika virus with microcephaly threat was conducted and 
presented by Mahmoud A. Ibrahim and Attila Denes [6]. 
S.K. Biswas et al. [19] submitted a case study on Zika 
transmission with saturated incidence and optimal 
control.  
In this paper, a mathematical model of zika transmission 
was formulated and studied with the population of 
males, females and children. The previous and recent 
studies don’t have a comparative study among the 
human and gender populations. Here we considered 
three compartments viz., Susceptible, Infected, and 
Recovered to study the transmission dynamics of Zika 
virus. The equilibrium and its stability results are 
analytically obtained and numerical simulation, which 
portrays a clear picture of the most affected population 
by Zika. The analytical and numerical study results of 
Zika transmission for a certain period (year-wise) can be 
recorded and it provides clear ups and downs of Zika 
spread with the altering increasing and decreasing rate, 
seasonal spread scale, etc. The significance of the 
study is quite useful to take initial precautionary 
measures to control the virus spread by clearing the 
stagnant water, eradicating it through mosquito spray 
and pesticides, creating awareness among the public, 
etc. The government and private agencies can be 
alerted at the right time by using this study results. 

                   

                 2. Model Formulation  

Consider, N = 𝑆𝑚+ 𝐼𝑚 + 𝑆𝑓  + 𝐼𝑓 + 𝑆𝑐 + 𝐼𝑐 + R  

where,   

• N denotes the total population.  

• 𝑆𝑚 , 𝑆𝑓 and 𝑆𝑐 denote the number of 

Susceptible males, Susceptible females and 
Susceptible children population who may or 
may not get infected with Zika virus.  

•  𝐼𝑚 ,  𝐼𝑓 , 𝐼𝑐  denote the number of Infected 

males, Infected females and Infected 
children population who got infected with 
Zika virus  

• R denotes the number of recovered 
individuals (male, female and child).  

 

The mathematical model is proposed as follows: -      

                 
𝑑𝑆𝑚

𝑑𝑡
 = 𝛬1 − 𝛼1(1 + θ) 𝑆𝑚𝐼𝑚− 𝛼2𝑆𝑚𝐼𝑓  − 𝜇1𝑆𝑚    

               
𝑑𝐼𝑚

𝑑𝑡
 =  𝛼1(1 + θ) 𝑆𝑚𝐼𝑚+ 𝛼2𝑆𝑚𝐼𝑓  − 𝜏1𝐼𝑚 − 𝜇1𝐼𝑚    

               
𝑑𝑆𝑓

𝑑𝑡
 = 𝛬2 − 𝛽1(1 + θ) 𝑆𝑓𝐼𝑓− 𝛽2𝑆𝑓𝐼𝑚  − 𝜇2𝑆𝑓 

       (2.1) 
𝑑𝐼𝑓

𝑑𝑡
 =  𝛽1(1 + θ) 𝑆𝑓𝐼𝑓+ 𝛽2𝑆𝑓𝐼𝑚  − 𝜏2𝐼𝑓 − 𝜇2𝐼𝑓    

                 
𝑑𝑆𝑐

𝑑𝑡
 = 𝛬3 − 𝛾1(1 + θ) 𝑆𝑐𝐼𝑐− 𝛾2𝑆𝑐𝐼𝑓  − 𝜇3𝑆𝑐 

                  
𝑑𝐼𝑐

𝑑𝑡
 =  𝛾1(1 + θ) 𝑆𝑐𝐼𝑐 + 𝛾2𝑆𝑐𝐼𝑓  − 𝜏3𝐼𝑐 − 𝜇3𝐼𝑐    

                         
𝑑𝑅

𝑑𝑡
 =  𝜏1𝐼𝑚 + 𝜏2𝐼𝑓  + 𝜏3𝐼𝑐 - µR 

 

The transfer diagram of our model is shown below: 

 

The parameters used in the model are described 
below 

Parameters                     Description 

𝛬1                                Male recruitment rate 

𝛬2                                Female recruitment rate 

𝛬3                                Child recruitment rate 

𝜇1                                Male natural death rate 

𝜇2                                Female natural death rate 

𝜇3                                Child natural death rate 

𝛼1(1 + θ), 

𝛽1(1 + θ) and              Rate of transmission from S to I 

𝛾1 (1 + θ) 

𝛼2, 𝛽2 𝑎𝑛𝑑 𝛾2               Rate of transmission from S to I 

𝜏1, 𝜏2 𝑎𝑛𝑑  𝜏3                Treatment Rate 

 

3. Male and Female Population 

                  
𝑑𝑆𝑚

𝑑𝑡
 = 𝛬1 − 𝛼1(1 + θ) 𝑆𝑚𝐼𝑚− 𝛼2𝑆𝑚𝐼𝑓  − 𝜇1𝑆𝑚    

               
𝑑𝐼𝑚

𝑑𝑡
 =  𝛼1(1 + θ) 𝑆𝑚𝐼𝑚+ 𝛼2𝑆𝑚𝐼𝑓  − 𝜏1𝐼𝑚 − 𝜇1𝐼𝑚    
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𝑑𝑆𝑓

𝑑𝑡
 = 𝛬2 − 𝛽1(1 + θ) 𝑆𝑓𝐼𝑓− 𝛽2𝑆𝑓𝐼𝑚  − 𝜇2𝑆𝑓 

       (2.2) 
𝑑𝐼𝑓

𝑑𝑡
 =  𝛽1(1 + θ) 𝑆𝑓𝐼𝑓+ 𝛽2𝑆𝑓𝐼𝑚  − 𝜏2𝐼𝑓 − 𝜇2𝐼𝑓    

                         
𝑑𝑅

𝑑𝑡
 =  𝜏1𝐼𝑚 + 𝜏2𝐼𝑓  - µR 

Case 1: 𝐼𝑚=0 

  Now, the model exhibits two equilibria, namely, 

(2.3)          𝐼0 = (𝑆𝑚
0 , 𝑆𝑓

0, 𝐼𝑓
0, 𝑅0) = (

𝜆1

µ1
,
𝜆2

µ2
, 0,0) 

(2.4)          𝐼∗= (𝑆𝑚
∗ , 𝑆𝑓

∗, 𝐼𝑓
∗, 𝑅∗) 

where, 

                  𝑆𝑚
∗ =

𝛬1

𝛼2𝐼𝑓
∗+ µ1

 

                  𝑆𝑓
∗ = 

𝜏2+𝜇2

𝛽1(1+𝜃)
 

                      𝐼𝑓
∗ = 

𝜆2−𝜇2𝑆𝑓
∗

𝛽1(1+𝜃)𝑆𝑓
∗ 

                      𝑅∗ = 
𝜏2 𝐼𝑓

∗

𝜇
 

Theorem 2.1. The disease-free equilibrium point exists 
only when 𝑅0 < 1.  

Proof. The evaluated jacobian at disease free point is 
given by 

 

(2.5)       J= 

(

 
 
 

−𝜇1 0 −𝛼2
𝛬1

𝜇1
0

0 −𝜇2 −𝛽1(1 + 𝜃)
𝛬1

𝜇1
0

0 0 𝛽1(1 + 𝜃)
𝛬1

𝜇1
− 𝜏2 − 𝜇2 0

0 0 𝜏2 −𝜇)

 
 
 

 

After linearization,  

 

 

 

(2.6)  

 

(

 
 
 
 
 
−𝜇1 − 𝜆 0 −𝛼2

𝛬1
𝜇1

0

0 −𝜇2 − 𝜆 −𝛽1(1 + 𝜃)
𝛬1
𝜇1

0

0 0 𝛽1(1 + 𝜃)
𝛬1
𝜇1
− 𝜏2 − 𝜇2 − 𝜆 0

0 0 𝜏2 −𝜇 − 𝜆)

 
 
 
 
 

 

which gives the characteristic equation 

(−𝜇1 − 𝜆)(−𝜇2 − 𝜆)( 𝛽1(1 + 𝜃)
𝛬1

𝜇1
− 𝜏2 − 𝜇2 − 𝜆)( −𝜇 − 𝜆) 

=0 

where, 

𝛽1(1 + 𝜃)
𝛬1
𝜇1
− 𝜏2 − 𝜇2 − 𝜆 = 0 

𝜆 = 𝛽1(1 + 𝜃)
𝛬1
𝜇1
− 𝜏2 − 𝜇2 < 0 

 

𝛽1(1 + 𝜃)
𝛬1
𝜇1
< (𝜏2 + 𝜇2) 

𝛽1(1 + 𝜃)
𝛬1
𝜇1

𝜏2 + 𝜇2
< 1 

i.e., 𝑅0 < 1. 

Therefore, the disease-free equilibrium point exists only 
when 𝑅0 < 1. 

Case 2: 𝐼𝑓 = 0 

Now, the model exhibits two equilibria namely, 

(2.7)     𝐸0 = (𝑆𝑚
0 , 𝐼𝑓

0, 𝑆𝑓
0, 𝑅0) = (

𝜆1

𝜇1
, 0,

𝜆2

𝜇2
, 0) 

(2.8)    𝐸∗ = (𝑆𝑚
∗ , 𝐼𝑚

∗ , 𝑆𝑓
∗ , 𝑅∗) 

where,  

                𝑆𝑚
∗ =

𝜏1 + 𝜇1
𝛼1(1 + 𝜃)

 

               𝐼𝑚
∗ =

𝛬1 − 𝜇1𝑆𝑚
∗

𝛼1(1 + 𝜃)𝑆𝑚
∗

 

               𝑆𝑓
∗ =

𝜆2
𝛽2𝐼𝑚

∗ + 𝜇2
 

               𝑅∗ =
𝜏1 𝐼𝑚

∗

𝜇
 

4. Female and Child Population 

         
𝑑𝑆𝑓

𝑑𝑡
 = 𝛬2 − 𝛽1(1 + θ) 𝑆𝑓𝐼𝑓− 𝛽2𝑆𝑓𝐼𝑚  − 𝜇2𝑆𝑓 

  (2.9)     
𝑑𝐼𝑓

𝑑𝑡
 =  𝛽1(1 + θ) 𝑆𝑓𝐼𝑓+ 𝛽2𝑆𝑓𝐼𝑚 − 𝜏2𝐼𝑓 − 𝜇2𝐼𝑓 

          
 𝑑𝑆𝑐

𝑑𝑡
 = 𝛬3 − 𝛾1(1 + θ) 𝑆𝑐𝐼𝑐− 𝛾2𝑆𝑐𝐼𝑓  − 𝜇3𝑆𝑐 

                 
𝑑𝐼𝑐

𝑑𝑡
 =  𝛾1(1 + θ) 𝑆𝑐𝐼𝑐+ 𝛾2𝑆𝑐𝐼𝑓  − 𝜏3𝐼𝑐 − 𝜇3𝐼𝑐 

                 
𝑑𝑅

𝑑𝑡
 =  𝜏2𝐼𝑓 + 𝜏3𝐼𝑐  - µR 

Case 1: 𝐼𝑓 = 0 

Now, the model exhibits two equilibria, namely, 

(2.10)      𝐹0 = (𝑆𝑓
0, 𝐼𝑐

0, 𝑆𝑐
0, 𝑅0) = (

𝛬2

𝜇2
,
𝛬3

𝜇3
, 0,0) 

(2.11)     𝐹∗ = (𝑆𝑓
∗ , 𝐼𝑐

∗, 𝑆𝑐
∗, 𝑅∗) 

where, 

             𝑆𝑓
∗ =

𝜆2

𝜇2
 



Vol 5 No 2 (2023)  E-ISSN: 2682-860X 

82 
 

                𝑆𝑐
∗ =

𝜏3 + 𝜇3
𝛾1(1 + 𝜃)

 

               𝐼𝑐
∗ =

𝛬3 − 𝜇3𝑆𝑐
∗

𝛾1(1 + 𝜃)𝑆𝑐
∗
 

               𝑅∗ =
𝜏3 𝐼𝑐

∗

𝜇
 

Theorem 2.2. The disease-free equilibrium point exists 
only when 𝑅0 < 1.  

Proof. The evaluated jacobian at disease free point is 
given by 

  

(2.12)        J=

(

 
 

−𝜇2 0 0 0
0 −𝜇3 0 0

0 0 𝛾1(1 + 𝜃)
𝛬3

𝜇3
− 𝜏3 − 𝜇3 0

0 0 𝜏3 −𝜇)

 
 

 

After linearization, 

(2.13) 

(

 
 

−𝜇2 − 𝜆 0 0 0
0 −𝜇3 − 𝜆 0 0

0 0 𝛾1(1 + 𝜃)
𝛬3
𝜇3
− 𝜏3 − 𝜇3 − 𝜆 0

0 0 𝜏3 −𝜇 − 𝜆)

 
 

 

which gives the characteristic equation 

(−𝜇2 − 𝜆)(−𝜇3 − 𝜆)( 𝛾1(1 + 𝜃)
𝛬3

𝜇3
− 𝜏3 − 𝜇3 − 𝜆)( −𝜇 − 𝜆) 

=0 

where, 

𝛾1(1 + 𝜃)
𝛬3
𝜇3
− 𝜏3 − 𝜇3 − 𝜆 = 0 

𝜆 = 𝛾1(1 + 𝜃)
𝛬3
𝜇3
− 𝜏3 − 𝜇3 < 0 

𝛾1(1 + 𝜃)
𝛬3
𝜇3
< (𝜏3 + 𝜇3) 

𝛾1(1 + 𝜃)
𝛬3
𝜇3

𝜏3 + 𝜇3
< 1 

i.e., 𝑅0 < 1. 

Therefore, the disease-free equilibrium point exists only 
when 𝑅0 < 1. 

Case 1: 𝐼𝑐 = 0 

Now, the model exhibits two equilibria, namely, 

(2.14)       𝐺0 = (𝑆𝑓
0, 𝐼𝑓

0, 𝑆𝑐
0, 𝑅0) = (

𝛬2

𝜇2
, 0,

𝛬3

𝜇3
, 0)    

(2.15)       𝐺∗ = (𝑆𝑓
∗ , 𝐼𝑓

∗ , 𝑆𝑐
∗, 𝑅∗) 

where, 

                    𝑆𝑓
∗ = 

𝜏2+𝜇2

𝛽1(1+𝜃)
 

                   𝐼𝑓
∗ =

𝛬2 − 𝜇2𝑆𝑓
∗

𝜏2 + 𝜇2
 

                  𝑆𝑐
∗ =

𝛬3
𝛾2𝐼𝑓

∗ + 𝜇3
 

                  𝑅∗ =
𝜏2 𝐼𝑓

∗

𝜇
 

                               

                   5. Numerical Simulation 

The numerical simulation signifies the relationship 
between time and population. The model is discussed 
under two criteria: 1) For Males and Females, 2) For 
Female and Children. This study helps us to find the 
population that is highly and lowly affected due to zika 
spread. For a total of 500 days, the ups and downs of the 
population can be noted for every interval gap of 50 
days. The final results show that the male and female 
population is highly affected when compared to other 
population in 𝐼0 equilibrium (Fig 1 & 4), where the basic 
reproduction number (𝑅0) is less than 1. In 𝐼∗ equilibrium, 
the infected and recovered rate of the population is high, 
where the basic reproduction number (𝑅0) is greater than 
1 (Fig 2 & 3). 

 

A Numerical simulation that relates the susceptible       
male (𝑆𝑚), susceptible female (𝑆𝑓), Infected (I), and 

Recovered (R), under 𝐼0 𝑎𝑛𝑑 𝐼
∗ equilibrium, is shown in 

Fig 1 & 2. A Simulation that relates susceptible females 
(𝑆𝑓), susceptible children (𝑆𝑐), Infected (I), and 

Recovered (R) under  𝐼∗ 𝑎𝑛𝑑  𝐼0 equilibrium is shown in 
Fig 3 & 4. 

 

         

 

Figure 1: Existence of 𝐼0 equilibrium point at 𝑅0 = 0.6718 < 1 
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            Figure 2: Existence of 𝐼∗ equilibrium point at 𝑅0 = 3.8290 > 1 

 

 

            

                 

        Figure 3: Existence of 𝐼∗ equilibrium point at 𝑅0 = 6.0718 > 1 

 

 

 

         Figure 4: Existence of 𝐼0 equilibrium point at 𝑅0 = 0.6718 < 1 

 

                              6. Conclusion  

In this manuscript, we framed and analyzed a non-linear 
mathematical model regarding Zika virus transmission 
between male, female, and child populations. The 
equilibria of the model are found, and the reproduction 
ratio is determined, i.e., when 𝑅0 < 1 disease-free state 
exists and 𝑅0 > 1 endemic state exists. The stability of 
the model is shown graphically, and numerical simulation 
is carried out to support the analytical findings. Through 
the numerical simulations, we conclude that the male 
and female populations are highly affected when 
compared with other populations, at 𝑅0 < 1. At 𝑅0 > 1, 
the infected and recovered rate is higher than the taken 
joint populations. In the future, we plan to execute a math 
model with another disease transmission, economic 
crisis, etc. 
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