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An Edge Convolution Neural Network Model for Plant Health 
Classification Using Camera

Charis Teoh Yi En and Kok Beng Gan * 

Abstract – As per the Food and Agricultural 
Organization (FAO), plant diseases infect approximately 
1.3 billion tonnes of crops. Historically, farmers relied 
on visual inspection for disease detection and 
classification. In this study, a Convolutional Neural 
Network (CNN) with five convolutional layers was used 
to accurately recognize plant diseases. A deployable 
CNN model was developed for classifying plant 
diseases, integrated into a web application with a 
camera, forming a vision system integrated with CNN 
model. The CNN model was trained using a public 
dataset comprising 19,384 images of potatoes, peppers, 
and tomatoes, collected under controlled conditions. 
These plants were chosen due to their common 
occurrence in Malaysia. The evaluation metrics F1 
score were used to assess the model’s performance. 
The accuracy and F1-score of the trained model were 
97.2% and 97%, respectively. 

Keywords—Plant Health, Edge, Classification, Convolution 

Neural Network. 

 

I. GENERAL 

A study by a scientist from UC Agriculture and 
Natural Resources indicates that crop losses have 
surged from 10% to 40% due to plant diseases. In 
developing nations, over 80% of agricultural output is 
produced by small-scale farmers, making them 
particularly vulnerable to these losses. Climate change 
exacerbates this problem, leading to a significant crop 
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loss from insects and diseases due to harmful viruses 
and bacteria. This plant health can devastate yields, 
limiting food availability and accessibility, and driving 
up prices. However, advancements in computer vision 
present a prospect to expand the use of artificial 
intelligence in agricultural [1]. Early detection of plant 
health can lead to effective treatments and boosting 
crop yields. The classification of plant diseases is 
challenging due to the vague symptom boundaries on 
leaves. Image analysis of plant diseases can be 
complicated by poor-quality images affected by factors 
such as lighting, resolution, and weather conditions. 
Moreover, different plant diseases may exhibit similar 
symptoms.  

A multitude of literatures review have been studied 
and analyzed, focusing on the typical workflow of plant 
disease classification [2]. This approach encompasses 
several steps: acquiring images, pre-processing them, 
segmenting the images, extracting features, and finally 
classifying the images. Plant disease classification is 
accomplished by extracting features from images of 
the plants [3] and subsequently classifying these 
features [4]. Yang [5] suggests that while a lot of focus 
is on deep learning, specifically DCNN, CNN is 
adequate for image processing and can extract 
sufficient information. The author suggests that using 
a combination of a shallow CNN and a traditional 
machine learning algorithm can be more effective in 
detecting and classifying plant diseases. This 
approach requires lesser parameters compared to 
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deep learning models. This model can achieve high 
precision, recall, and F1-score. Srivastava [6] also 
implemented CNN model with an accuracy of 88% for 
plant disease detection and classification. Toda [7] 
reduced 75% parameters by eliminating unnecessary 
layers by applying neuron-wise and layer-wise 
visualization techniques for plant disease detection 
and classification. Sladojevic [8] employed a deep 
CNN approach for plant disease detection and 
classification with 96.3% accuracy. 

Gogul [9] explains that unique feature extraction 
method makes CNNs particularly effective for image 
classification, as they extract features from lower to 
higher levels in an image. ANNs can easily overfit 
when dealing with large images, which also require 
more powerful processors due to their complex 
vectors. When comparing the performance of CNN, 
ANN, and SVM in classifying vegetation species, they 
achieved accuracies of 99%, 94%, and 91% 
respectively [10]. 

A lack of sufficient leaf image samples can result in 
overfitting. To address this, Arsenovic [11] carried out 
a study employing conventional augmentation 
techniques and GAN to expand the dataset. The model 
trained in this manner achieved an accuracy of 
93.67%. Future research should focus on detecting 
and categorizing various plant diseases in different 
geographic area. Harte [12] trained a CNN model with 
augmentation and transfer learning, achieving 97.2% 
accuracy and an F1 score over 96.5%. This model has 
been deployed as a web application. Rishiikeshwer 
[13] showed that CNN model with 3600 augmented 
datasets can achieve 98% accuracy, but with 400 leaf 
images the accuracy dropped to 95%. 

A significant number of deep learning models don’t 
perform well when applied to independent data. As a 
result, numerous research efforts have been made to 
explore how the use of segmented images can 
enhance model accuracy. Both Chowdhury [14] and 
Paul Sharma [15] have addressed this issue by training 
CNN models with segmented image data. Sharma’s 
[16] showed that the S-CNN model with segmented 
images achieved an accuracy of 98.6% on 
independent data, surpassing the F-CNN model 
trained with full images. Chowdhury’s modified U-net 
segmentation model [14] achieved an accuracy of 
98.66%, an IoU of 98.5%, and a Dice score of 98.73%. 
Additionally, EfficientNet-B7 achieved accuracies of 
99.12% for six category classification and 99.95% for 
binary classification.  

The EfficientNet-B4 model can classify 10 classes 
with segmented images at 99.89%. However, the 
quality of image segmentation remains an issue. 
Hassan [17] employed models such as InceptionV3, 
MobileNetV2, InceptionResnetV2, and EfficientNetB0 
for the detection and classification of plant diseases. 
The dataset was divided into an 80-20 split, with 80% 
of the images used for training and 20% for testing. 
This division helped reduce both the computational 
cost and the number of parameters. The 
EfficientNetB0 model achieved an accuracy of 99.6%. 
Training the images on the MobileNetV2 and 
EfficientNetB0 architectures required 565 and 545 

seconds per epoch, respectively, when using colored 
images.  

In CNN, the feature maps are repeatedly extracted 
through convolution for image classification [18]. The 
network then produces a label representing the 
predicted class. The CNN network parameters can be 
optimized using gradient descent and back-
propagation methods [19]. Tabbakh and colleagues 
[20] have shown the effectiveness of using Vision 
Transformer to extract deep features from leaves, but 
they have not yet implemented the model in a mobile 
application. 

Petrellis [21] has successfully created a mobile 
application for plant disease monitoring with accuracy 
over 90%. Rishiikeshwer [13] has utilized a CNN which 
is integrated into an IoT Web Application designed to 
acquire, process and display the predicted name of the 
plant disease. Ramcharan [22] has trained a CNN 
model that is implemented in a mobile application. 
However, the F1-score performance dropped by 32% 
when applied to real-world images and videos. 
Therefore, it’s crucial to supply ample images for 
training the CNN model to ensure its applicability in 
real-world scenarios. Numerous applications of 
Convolutional Neural Networks (CNN) are centered 
around image recognition, including systems for 
attendance tracking through masked face recognition 
[23], as well as biomedical applications [24-25].  

The aim is to develop an edge CNN model to 
categorize plant diseases in real-time at the edge using 
a camera. The system’s disease classification model, 
based on CNN, was trained with OpenCV and Python 
using 20,638 images of healthy and diseased 
potatoes, peppers, and tomatoes. The model can 
identify and categorize plant diseases by analyzing the 
leaves’ conditions in real time using a camera. 

II. METHODOLOGY 

The system overview for plant disease 
classification system using deep learning is shown in 
Figure 1. The system is divided into two main 
components: model training and testing, and the real-
time vision system. The system consists of Pixy2 
camera web applications that use a CNN model to 
detect and classify plant diseases. The construction of 
the sequential model was accomplished using Python 
with the Tensorflow 2.3.0 and Keras frameworks. A 
CNN model was trained as part of this work, with the 
aim of detecting and classifying plant diseases. 
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FIGURE 1. System overview 

 

A. Plant Disease Model Training 

A dataset, publicly accessible and comprising 
20,638 images of both healthy and diseased 
specimens of potatoes, peppers, and tomatoes, was 
downloaded from Kaggle. These images were 
collected under controlled conditions. Given the 
decision to use a sequential model, there was no 
requirement for a validation set. The training dataset 
contained 19,384 images, while the testing dataset 
included 1,254 images. These images were distributed 
across 15 distinct categorical classes. Sample images 
of the plant diseases are displayed in Figure 2. 

 

 
 

FIGURE 2. Sample images of plant disease 
 

The model employed 10-Fold cross validation in 
this study. The data was randomly split into 10 equal-
sized subsets, following a 90-10 split. To address GPU 
memory limit issues while maintaining a larger batch 
size (64 in this case), each image was resized to 48×48 
and segmented as part of the preprocessing step. The 
number of train and test plant disease images is shown 
in Figure 3. 

 

 

FIGURE 3. Number of train and test plant disease images 
 

The augmentation was utilized to expand the 
dataset, mitigate overfitting, and equalize the image 
distribution. To artificially diversify the samples, 
realistic transformations were applied to the training 
images. This not only curbed overfitting but also 
exposed the model to various facets of the training 
data. It was crucial to design models that accept raw 
data as input, as opposed to preprocessed data. If a 
model is designed to expect preprocessed data, the 
same preprocessing pipeline would need to be 
replicated when exporting the model for use in web or 
mobile applications.  

The architecture of the CNN model employed in this 
study is depicted in Figure 4. The model’s top layer 
was subjected to training, followed by a 
comprehensive fine-tuning of the entire model. The 
initial five layers of the model consisted of Conv2D 
layers, which processed the input images. The first 
layer had 64 filters, the second layer had 128 filters, 
the third layer had 256 filters, and the fourth and fifth 
layers each had 512 filters. Each layer of filters was 
designed to detect patterns. 

 

FIGURE 4. Block diagram of CNN model architecture 
 

The convolutional layer was subsequently handed 
to max pooling, which facilitated the extraction of low-
level features such as edges and points, thereby 
enhancing accuracy. During the pooling process, the 
maximum element in the feature map covered by the 
filter was selected. The output of feature map is the 
most significant feature. Each convolutional layer was 
combined with the ReLU (Rectified Linear Unit) 
activation function, as CNNs with ReLUs 
demonstrated faster and more reliable training, 
enabling models to learn more efficiently and function 
optimally. The images were processed through the 
layers multiple times to ensure superior feature 
extraction. 

The model was trained with an epoch of 25. 
Increasing the number of epochs generally improved 
accuracy and reduced loss, thereby enhancing the 
precision of the plant disease classification model. The 
batch size was established at 64, as larger batch sizes 
can expedite training and potentially yield superior 
generalization performance. However, it’s important to 
note that an increase in batch size would also 
necessitate more GPU memory. 

A dropout layer was incorporated prior to the 
classification layer as a regularization measure to 
avoid overfitting in the model. When a dropout rate of 
0.25 was applied, it resulted in a random elimination of 
25% of the nodes from the neural network. The 
implementation of dropout gradually improved 
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accuracy and reduced loss. The loss function 
employed was categorical cross entropy, with a lower 
score signifying superior model performance. The 
Adam Optimizer was selected with a learning rate of 
0.05 due to its efficiency and ability to train the neural 
network in less time. 

Classification involved fully connected classifiers, 
which were developed based on the model’s various 
learnings. This CNN model utilized three dense layers 
to identify and classify these features. In a dense layer, 
all outputs from the preceding layer are connected to 
all its neurons, ensuring full connectivity. The ‘Softmax’ 
activation function was used, providing a probability for 
each predicted class. The pooled images were 
flattened, converting them into single-dimension 
vectors. 

B. Evaluation metrics 

The performance of the trained CNN model was 
assessed by the training accuracy, test accuracy, 
training loss, and test loss. Additionally, graphs were 
plotted to show the relationship between training 
accuracy and test accuracy over epochs, as well as 
training loss and test loss over epochs. Precision 
serves as an indicator of the classifier’s accuracy. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
   (1) 

 

Recall is the number of positive sample images that 
are classified correctly. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(2) 

 

The F1-score, ranging from 0.0 (the worst) to 1.0 
(the best), represents the weighted harmonic mean of 
recall and precision. It is used to compare different 
classifier models through its weighted average. 
Because the F1-score considers both false positives 
and false negatives, it may be lower but is generally 
more informative than simple accuracy measures.  

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗(𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
   

 

(3) 

III. RESULTS AND DISCUSSIONS 

The training and testing model achived similar 
accuracy of 97.2%. The model training loss is 8.5% 
while test loss is 11.9%. Table 1 showed the key 
predictive analytics metrics for 15 distinct categorical 
classes. The model’s performance improves with a 
higher F1-score. Precision indicates the model’s 
capability to classify plant diseases, while the 
computation of recall reveals its limitations. For 
accurate detection and classification of plant diseases, 
it’s crucial to minimize false negatives due to their 
potential adverse effects. The model demonstrates 
commendable performance, achieving 0.97 average 
accuracy and class-weighted accuracy. 

 

TABLE 1. Key predictive analytics metrics for 15 classes 
of plant disease images  

 
Class 

ID 
Class 

Precisi
-on 

Recall 
F1-

score 
Support 

1 Pepper bell 
bacterial 

spot 
1.00 0.94 0.97 80 

2 Pepper bell 
healthy 

0.97 0.93 0.95 76 

3 Potato 
early blight 

1.00 0.97 0.99 73 

4 Potato late 
blight 

0.95 1.00 0.98 81 

5 Potato 
healthy 

0.96 0.88 0.92 25 

6 Tomato 
bacterial 

spot 

1.00 0.98 0.99 110 

7 Tomato 
early blight 

0.96 0.90 0.93 81 

8 Tomato 
late blight 

1.00 0.98 0.99 93 

9 Tomato 
leaf mold 

1.00 0.99 0.99 73 

10 Tomato 
septoria 
leaf spot 

0.92 1.00 0.96 89 

11 Tomato 
spider 
mites 

0.94 1.00 0.97 73 

12 Tomato 
target spot 

0.90 0.95 0.92 97 

13 Tomato 
yellow leaf 
curl virus 

0.99 1.00 1.00 141 

14 Tomato 
mosaic 
virus 

1.00 0.98 0.99 65 

15 Tomato 
healthy 

1.00 1.00 1.00 97 

Accuracy   0.97 1254 

Macro average 0.97 0.97 0.97 1254 

Weighted average 0.97 0.97 0.97 1254 

 
Figure 5 illustrates the plot of training accuracy in 

relation to the epoch, while Figure 6 depicts the plot of 
training loss against the epoch. The model test 
accuracy and loss were 97.2% and 11.9% 
respectively. 

 

 

FIGURE 5. Model accuracy 

 
Finally, the developed model was integrated into a 

web application built with HTML and CSS. A Pixy2 
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camera was used to interface with the web application, 
creating a real-time inference vision system for 
detecting and classifying plant diseases. Figure 7 
illustrates this real-time inference vision system using 
the CNN model. 
 

 

FIGURE 6. Model loss 

 

 
 

FIGURE 7. Camara system with CNN model for detecting 
and classifying plant diseases. 
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IV. CONCLUSION 

In conclusion, the CNN model achieved 97.2% 
accuracy and 97% average F1 score, indicating its 
effectiveness in detecting and classifying plant 
diseases. The model has been deployed on web 
applications and with a camera to create a real-time 
system. This system can offer valuable insights for 
farmers, helping them apply pesticides more 
effectively to treat plant diseases, thus benefiting the 
agricultural sector. Future efforts will focus on further 
improving the model's accuracy.  

The current GPU faces memory constraints, 
limiting its ability to perform advanced deep 
processing. To fully leverage deep CNNs and extract 
a broader range of plant disease features, a more 
powerful GPU with increased memory is needed. The 
current system can classify three classes and 15 types 
of plant diseases. Expanding the system’s training to 
include a wider variety of plants and diseases is 
proposed to broaden its scope. To improve the 
system’s accuracy, more images of different plants are 
needed for the extraction of additional plant features. 
In future, capturing diverse array of plant images 
dataset can enrich dataset to develop superior models. 
Future improvements in accuracy are anticipated with 
the use of more advanced algorithms.  
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