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Abstract - Cardiovascular disease is a major concern 

for people all around the world and still remains as the 
main cause of death worldwide. Blood pressure has been 
identified as the most important risk factor. Having the 
ability to acquire continuous monitoring on this biological 
parameter plays a significant role in reducing the risk of 
getting cardiac disease. Many studies conducted utilize 
two biosignals and features manually extracted from 
signals as input to the model. However, these methods 
increase the computational complexity in the pre-
processing stage as it involves signal synchronization, 
and the model performance is highly dependent on the 
selection of features. The main objective of this study is 
to build a hybrid convolutional neural network combined 
with Long-Short Term Memory (CNN-LSTM) model to 
estimate blood pressure from PPG signals, which 
eliminates the need for manual feature extraction. 
Correlation study is performed to evaluate the 
performance of the model, and it gives a direct 
visualization of the model’s performance in percentage. 
This research compared the correlation performance 
between MIMIC-II dataset, UKM dataset, and PPG-BP 
dataset using the CNN-LSTM model to estimate blood 
pressure from PPG signals. The results show that the 
UKM dataset performs the best, having the highest overall 
correlation at 0.53 for systolic blood pressure, and 0.29 
for diastolic blood pressure. The model trained with this 
dataset is suitable to estimate systolic blood pressure 
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ranging from 141 to 150mmHg, and diastolic blood 
pressure ranging 81 to 90 mmHg. In conclusion, among 
the three datasets, UKM dataset is the most suitable 
dataset to be used as the input of the CNN-LSTM model to 
perform cuffless blood pressure measurement with PPG 

signals.  

Keywords— Blood Pressure, Artificial Intelligence, 

Photoplethysmography, Correlation. 

I. INTRODUCTION 

Cardiovascular diseases are diseases that are 
related to the heart or blood vessels. According to the 
statistics provided by the World Health Organization 
(WHO) [1], there are around 17.9 million deaths per year 
due to cardiovascular diseases. Around 85% of these 
deaths are due to heart attacks and strokes. In Malaysia, 
ischemic heart disease, a type of cardiovascular disease 
is the principal cause of death in year 2020 [2]. 
Cardiovascular disease is found to be related to high 
blood pressure [3-4] This is because high blood pressure 
destroys the inner layer of artery, causing them to be 
vulnerable to formation of plaque, which leads to the 
narrowing of artery that provides blood to the heart and 
brain [5]. Hence, blood pressure has been identified as 
the most important biomarkers and indicators for 
cardiovascular diseases. The ability to acquire a 
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continuous monitoring on this biological parameter 
would play a key role in preventing cardiac diseases [1].  

Many studies have been conducted, and techniques 
have been introduced to obtain monitoring of blood 
pressure. Based on previous studies, blood pressure 
monitoring technique can be divided into two parts, 
which are the invasive and non-invasive method. A 
catheter must be inserted into the body of the subject to 
perform invasive blood pressure monitoring. Although it 
enables a continuous monitoring on blood pressure, this 
method needs to be performed by skilled operator, and 
potentially exposes the subject to major complications, 
such as embolism if done wrongly [6]. Hence, non-
invasive methods are given attention.  

There are two types of non-invasive methods 
introduced. Firstly, we will be discussing non-invasive 
blood pressure monitoring with cuffs. The instrument 
used is a sphygmomanometer. This method works by 
having a rubber cuff cuffed around the arm of the subject 
and depending on the inflation of the cuff and the 
Korotkoff sound, the blood pressure can be determined 
[7]. However, the disadvantages of using a 
sphygmomanometer are, it does not allow a continuous 
monitoring on blood pressure [8], and the subject may 
experience inconvenience when being cuffed, especially 
people who have obesity [9-10]. 

Hence, the cuffless non-invasive blood pressure 
measurement techniques are introduced. This is further 

divided into two parts. Pulse Transit Time (PTT), and 
Pulse Arrival Time (PAT) are among of the works that 
been done to monitor blood pressure continuously. Parry 
Fung et al. [11] has proved that the PTT changes 
inversely with blood pressure. A photoplethysmography 
(PPG) signal, and an electrocardiogram (ECG) signal 
are required to obtain the PTT and PAT [12]. Although it 
provides continuous blood pressure assessment, the 
downside is it would require calibration in accordance 
with the subject’s physiological characteristics [13]. 
Since this method requires two signals, it might also 
cause the subject to feel uncomfortable as more than two 
sensors need to be located on the subject’s body. In 
addition to that, this would impose challenge on the 
hardware as it requires a synchronization between two 
signals [14]. 

Due to technological advancement, recent studies 
have diverted their focus to integrate artificial intelligence 
in solving this problem, which will be the focus of this 
research. This is because a cuffless non-invasive 
continuous blood pressure measurement is achievable 
by only utilizing one sensor to obtain the PPG signals 
[15]. The trained model can be further adapted and 
optimized into device for continuous blood pressure 
measurement. Table 1 shows eight studies which uses 
machine learning and deep learning modes to predict 
blood pressure using different types of inputs and 
databases from year 2001 to 2021.

 

TABLE 1. Investigation on the performance of different machine learning and deep learning models.

Reference Model and Input 
Type of 

Database 
Used 

Performance 
Limitations/Suggestions 

SBP DBP 

Chan et al. 
[16] 

Linear Regression Algorithm 
(PTT Features) 

Self-built 
Database 

ME: 7.49 
STD: 8.82 

ME: 4.08 
STD: 5.62 

Dependent on the calibration for 
each subject due to the difference 

in physiological parameter 

Kachuee et 
al. [17] 

AdaBoost (Features from 
PPG and ECG signals based 

on Pulse Arrival Time) 

MIMIC-II 
Database 

MAE: 8.21 
STD: 5.45 

MAE: 4.31 
STD: 3.52 

Include other biosignals and 
subject’s demographic information 

to increase the accuracy of the 
model 

Y. Zhang & 
Feng [18] 

Support Vector Machine 
(Time domain PPG signal 

features) 

University of 
Queensland 
Database 

ME: 11.64 
STD: 8.20 

ME: 7.62 
STD: 6.78 

Increase data size to increase the 
accuracy of the model 

Shobitha et 
al. [19] 

Relevance Vector Machine (7 
features from PPG signals) 

Self-built 
Database 

Kappa: 0.99 Kappa: 0.99 
Use larger database that contains 

subject with cardiovascular disease 

Kurylyak et 
al. [20] 

Artificial Neural Network (21 
features from PPG signals) 

MIMIC 
Database 

ME: 3.80 
STD: 3.46 

ME: 2.21 
STD: 2.09 

Optimize the model into 
smartphones 

Slapničar et 
al.[21] 

ResNet, combined between 
CNN+GRU (Original, first 

derivative, and second 
derivative of PPG signals) 

MIMIC-III 
Database 

MAE: 9.43 MAE: 6.88 
Noise in derivatives of PPG signals 

affects the model’s performance 
during training phase 

Su et al. 
[22] 

Recurrent Neural Network 
(Features from PPG and 

ECG signals) 

Self-built 
Database 

RMSE: 3.90 RMSE: 2.66 

Using Bi-LSTM would further 
increase the performance of the 

deep learning model in measuring 
blood pressure 

Yang et al. 
[23] 

CNN+LSTM hybrid model 
(Features from PPG and 

ECG signals with 
demographic information) 

Self-built 
Database 

ME: 4.43 
STD: 6.09 

ME: 3.23 
STD: 4.75 

Tuning hyperparameters 
based on the data of each 

individual to increase 
prediction accuracy. 

Use larger dataset to test the 
model 

Evdochim 
et al. [24] 

Fiducial Points from PPG 
signals 

MIMIC-III 
Database 

Pekali korelasi: 0.47 
Lack of an algorithm to ensure and 

check signals quality 
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Based on Table 1, we can observe that the overall 
performance of deep learning model is better than using 
machine learning algorithms to predict blood pressure. 
Besides that, there are various databases used to 
conduct the studies, such as the Multiparameter 
Intelligent Monitoring in Intensive Care (MIMIC) 
database, and self-built database. However, the 
correlation coefficient is not specified. Correlation 
coefficient does not only quantify the linear relationship 
between the targeted and inference value, but it also 
gives us a direct visualization on the model performance 
in percentage. Furthermore, we can observe that some 
studies used two signals as input to the model, but this 
would increase the computational complexity as it 
requires synchronization between signals. Moreover, 
most of the studies performed manual feature extraction, 
and the extracted features are fed into the model as 
inputs. Performing feature engineering manually would 
increase the workload in the pre-processing stage. 

To solve these problems, this paper aimed to build a 
pre-processing algorithm to clean up the PPG signals. 
Besides that, this paper proposed a deep learning model 
that can automate the process of feature extraction using 
a hybrid model consisting of convolutional neural 
network (CNN) and Long-Short Term Memory (LSTM). 
A correlation study based on three different datasets 
using the proposed model is performed to identify the 
most suitable dataset to be used as an input to the 
proposed model. Lastly, the performance of the model 
trained with the selected dataset is then further analyzed. 

II. METHODOLOGY 

A. Data Acquisition 

There are three databases that are used in this 
project. The first database is the MIMIC-II Database. 
This database is taken from the University of California, 
Irvine (UCI) Machine Learning Repository [17]. This 
database is adapted from the original database which is 
in the publicly available database at Physionet [25]. This 
database contains records of several physiological 
signals, such as PPG, artery blood pressure (ABP), and 
electrocardiogram (ECG). All records are sampled at 
125Hz. The ABP has been taken as the to calculate the 
systolic blood pressure (SBP), and diastolic blood 
pressure (DBP) of corresponding subject [26] as ground 
truth. The database from the UCI repository has 12000 
records stored in 4 MAT files, with each cell containing 
the record of each individual. In this project, the PPG 
signals of the first 692 subjects from this database are 
taken to form the MIMIC-II dataset. Figure 1 shows the 
data distribution of SBP and DBP for this dataset. 

Next, the second database that is used in this project 
is the UKM Database. This database contains 
continuous PPG signal records for subjects without 
diabetes, which are classified as healthy subjects, and 
diabetic patients. A total of 50 subjects are used to form 
the UKM Dataset. Each record that is chosen from this 
database is taken from the subject’s left hand at arms 
bed level. Each record has a duration of 1.5 minutes, 

sampled at 275Hz. Figure 2 shows the data distribution 
of SBP and DBP for the UKM Dataset. 

 
FIGURE 1. Data distribution in MIMIC-II Dataset for (a) SBP and 

(b) DBP.  

 
FIGURE 2. Data distribution in UKM Dataset for (a) SBP and 

(b) DBP. 

Lastly, the third database selected for this project is 
the PPG-BP Database. The PPG-BP Database is a 
database that is established through research conducted 
by [27]. In this database, there are 657 PPG signals 
taken from 219 subjects. The database covers 
individuals aged from 21 to 86 years old, and it contains 
healthy individuals as well as high blood pressure 
patients. All PPG signals in this database are sampled at 
1000 Hz. For each subject, three PPG signal segments 
are recorded with each record having a duration of 2.1 
seconds. All records in this database have been taken to 
form the PPG-BP Dataset. Figure 3 shows the data 
distribution of SBP and DBP for the PPG-BP Dataset. 
Hence, there are three datasets that engage in this 
project, which are the MIMIC-II Dataset, UKM Dataset, 
and PPG-BP Dataset. All the records in these datasets 
then underwent the signal pre-processing stage. 

 

 

FIGURE 3. Data distribution in PPG-BP Dataset for (a) SBP and 
(b) DBP. 
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B. Signal Pre-processing 

The PPG signals from each dataset will undergo pre-
processing stage before they are used to train the deep 
learning model. This process involved signal filtering, 
signal normalization, signal segmentation, and down-
sampling. Firstly, all the signals underwent signal 
filtering. This is because PPG signals contain direct 
current (DC) components, and alternating current (AC) 
components [28]. The DC components represent the 
absorption of light by body tissues, and it is affected by 
the respiration rate [29]. On the other hand, the AC 
components represent the volume of blood which is 
affected by the heartbeat [30]. Hence, filtering is crucial 
to ensure clean and suitable PPG signals are obtained 
to train the model.  

Thus, for UKM Dataset, a Butterworth Bandpass Filter 
ranging from 0.6Hz to 15.0Hz is used. 0.6Hz has been 
selected as the lowest cut-off frequency because 
according to Chowdhury et al. [31], the respiration rate is 
around 0.15Hz to 0.5Hz. As for the high cut-off 
frequency, 15.0Hz is selected as it can retain the signal 
features as much as possible while filtering out the high 
frequency noise. For PPG-BP Dataset, a Butterworth 
Lowpass Filter at 25.0Hz is selected to filter the PPG 
signals in the dataset as suggested by Chowdhury et al. 
[31]. However, for the MIMIC-II dataset, the signals from 
the UCI repository have been pre-processed previously 
[17], and hence, the signals do not undergo filtering 
process. 

To further reduce the computational complexity, signal 
normalization has been done to all datasets. Min-max 
normalization has been chosen in our project. 
Normalization is done to ensure that the deep learning 
model can treat all features equally. Besides that, this 
could also restrict the effect of outlier as all features are 
scaled from 0 to 1. In addition to that, normalization could 
reduce the computational complexity and speed up the 
processing time. This is because the process of 
summing up and subtracting small numbers can be 
performed easily by the computer [13]. The equation 
below shows the equation of min-max normalization 
used in this project. 

𝑋𝑛𝑜𝑟𝑚 =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
           (1) 

After normalization has been done, signal 
segmentation is performed. The main objective of this 
project is to increase the size of the dataset, which also 
indirectly creates variation in the available data to 
increase the generalization of the model [32]. In this 
project, the sliding window technique is used. A window 
which has a duration of 8 seconds is slid across the PPG 
signals with 75% overlapping, which is sufficient to 
capture useful information in the signal [33-34]. Table 1 
shows the total number of signals for each dataset after 
this process. 

All the signals are then down sampled to 250 samples 
while preserving the essential information in the signals 
[35]. The signals are down-sampled to further reduce the 
computational complexity, dan it allows the optimization 

of model into resource-constrained platform such as 
smartphones. Then, all the data are rearranged 
randomly for each dataset. Lastly, for each dataset, 80% 
of the signals are classified as training dataset, while the 
remaining 20% of the signals in the dataset are classified 
as testing dataset. 

TABLE 2. Total number of signals for each dataset. 
 

Type of Dataset Number of Signals 

MIMIC-II 2076 

UKM 2050 

PPG-BP 657 

C. Deep Learning Model Training and Evaluation 

In this project, the deep learning model chosen is the 
hybrid model consisting of CNN and LSTM (CNN-
LSTM). This model consists of only one input, which is 
the PPG signal, and the model can produce two outputs, 
which are the SBP, and DBP values. This model begins 
with two layers of one-dimensional CNN (1DCNN), 
which aims to automate the process of feature extraction 
from PPG signals that is received. Each layer of 1DCNN 
is also intercepted with ReLU activation layer, max-
pooling layer, and dropout layer to prevent overfitting 
situation. After the 1DCNN layers, the extracted features 
from 1DCNN layers are passed on to two layers of LSTM 
to predict the value of SBP and DBP. The CNN-LSTM 
model is built using Python language using Spyder 
integrated development environment. The model is built 
on Pytorch 1.10.2 framework with CUDA 11.3. The 
hardware used in the training is the AMD Ryzen 5 3550H 
with Radeon Vega Mobile GFX CPU, and NVIDIA 
GeForce GTX 1050 GPU. Figure 4 shows the 
architecture of the CNN-LSTM model used in this 
project. 

 

FIGURE 4. Architecture of CNN-LSTM model. 

To evaluate the performance of the model, a standard 
evaluation metric for machine learning and deep learning 
model is used. Correlation coefficient and mean squared 
error (MSE) are the most common metric that are used 
to evaluate the deep learning model performance, 
especially model which is used to solve regression 
problem [36-37]. Besides showing the strength of linear 
relationship between two values, correlation coefficient 
can evaluate how good the predicted value is matched 
with the targeted value. At the same time, the MSE is 
used to calculate the loss of each CNN-LSTM model. 
This evaluation has been conducted so that we are able 
to have a better understanding of the generalization of 
the model. Generalization of a model indicates the ability 
of the model to adapt to predict a value that has not been 
trained from dataset.  

Each dataset is used to train the CNN-LSTM model, 
and three models are produced, respectively. Based on 



Vol 5 No 2 (2023)  E-ISSN: 2682-860X 

29 
 

the correlation performance, the most suitable dataset to 
be used as an input to the CNN-LSTM model to predict 
blood pressure from PPG signal is determined. Then, the 
performance of the model trained with the selected 
dataset is further analyzed.  

III. RESULTS AND DISCUSSIONS 

A. Correlation Performance and Model Loss 

The optimizer used is Adam optimizer, and the 
scheduler for learning rate used is exponential with 
gamma = 0.99. The hyperparameters for the model of 
each dataset are optimized, and the results obtained are 
the best result for each model. Figure 5 shows the graph 
and correlation coefficient of SBP of each model trained 
with the three datasets, respectively.  

Based on Figure 5, the output of the model trained 
with UKM dataset has the highest correlation coefficient 
when predicting SBP, which is at 0.534826, followed by 
model trained with MIMIC-II dataset at 0.452832, and 
with PPG-BP dataset at 0.293501. Based on the result, 
we observed that the model trained with the MIMIC-II 
dataset can only predict SBP values more than 130 
mmHg, which leads to a poor correlation between the 
targeted and predicted value. Besides that, for PPG-BP 
dataset, the predictions made by the model can exceed 
130mmHg, however, the predictions made by the model 
are all scattered around, indicating many predictions 
made by the model do not match with the targeted 
value. Hence, while predicting SBP value, UKM dataset 
has the best correlation performance as compared to 
another dataset.  

 

 

FIGURE 5. Correlation graph of SBP for (a) MIMIC-II, (b) UKM, 
and (c) PPG-BP Dataset. 

Next, Figure 6 shows the graph and correlation 
coefficient of DBP of each model trained with the three 
datasets, respectively. Based on Figure 6, it is 
observable that both model outputs trained with MIMIC-
II dataset and UKM have similar correlation performance 
while predicting DBP, which are at 0.296664 and 
0.290799 respectively, while PPG-BP dataset is only at 
0.091125. The poor correlation performance of the PPG-
BP dataset might be due to the insufficient data in the 
dataset, which caused the model to fail to extract the 
relevant features to predict the data.  

Figure 7 shows the loss graph of each model trained 
with respective dataset. Based on Figure 8, the loss in 
MSE for each model decreases and converges as the 
number of epochs increases. The model trained with 
UKM dataset has the highest model loss during training 

and testing phase, whereas the model trained with the 
MIMIC-II dataset has the lowest model loss during both 
phases. 

 

FIGURE 6. Correlation graph of DBP for (a) MIMIC-II, (b) UKM, 
and (c) PPG-BP Dataset. 

However, there is a significant difference between the 
model loss during the training phase and testing phase 
for all three models, which indicates that these models 
are experiencing overfitting problem. This situation can 
also be observed in Figure 7 where there is a significant 
gap between the training and testing loss graph for all 
three models. Overfitting situation represents the trained 
model might not be able to predict the blood pressure 
correctly if other PPG signal were used as an input. 
Table 3 shows the summary of all model performance. 

 

(a) 

 

(b) 

 

(c) 

FIGURE 7. Model Loss in MSE for (a) MIMIC-II, (b) UKM, and (c) 
PPG-BP Dataset. 

Based on the results in Table 3, the results show that 
the CNN-LSTM model has a better prediction for SBP 
values as compared to the DBP values for all three 
datasets. However, based on the correlation 
performance, the UKM dataset has the highest overall 
performance, with correlation coefficient of 0.534826 for 
SBP values, and 0.290799 for DBP values. Hence, UKM 
dataset is determined to be the most suitable dataset to 
be used as input to the CNN-LSTM model to predict 
blood pressure from PPG signals.  

 
TABLE 3. Summary on model performance based on types of 

datasets. 
 

Type of 
Dataset 

Correlation 
Coefficient 

Model Loss 
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SBP DBP 
Training 
Phase 

Testing 
Phase 

MIMIC-
II 

0.447402 0.296664 5.81125 517.2136 

UKM 0.534826 0.290799 88.46954 4034.4727 

PPG-
BP 

0.293501 0.091125 52.49256 834.15497 

 
B. Analysis on Selected Model 

Since the CNN-LSTM model trained with UKM 
dataset has the highest overall correlation performance, 
this session further analyzed the model performance in 
predicting SBP and DBP of a subject. Table 4 shows the 
model performance in predicting SBP values according 
to bins. 

Table 4 shows that the selected model has the 
highest prediction for SBP values ranging between 131 
and 140 mmHg. This is because the correlation 
coefficient for this range is the highest, which is 
0.698117. On the other hand, due to the SBP values 
ranging between 141 and 150mmHg having the lowest 
correlation coefficient at -0.62234, this model has the 
lowest prediction for the SBP values falling within the 
range. This situation indicates that the model performs 
the best in predicting the blood pressure of a subject 
whose SBP is falling within 131 to 140mmHg from PPG 
signals.  

TABLE 4. SBP correlation coefficient based on bins. 

Bin (mmHg) Correlation Coefficient 

100 -0.36518 

110 0.486483 

120 0.114053 

130 0.465304 

140 -0.62234 

150 0.698117 

160 0.501342 

170 -0.20663 

180 -0.09088 

 

Table 5 shows the model performance in predicting 
DBP values according to bins. From Table 5, the 
correlation coefficient for DBP values ranging from 81 to 
90 mmHg is the highest, at 0.255321. This indicates that 
the trained model has the highest prediction for DBP 
values falling in this range. However, this model has the 
lowest prediction for DBP values that ranges from 101 to 
110mmHg. This is shown by the lowest correlation 
coefficient indicated at -0.60813. Therefore, the model 
performs the best when it is predicting the DBP values 
from 81 to 90mmHg. In short, the trained CNN-LSTM 
model is suitable to predict SBP values ranging from 131 
to 140mmHg, and DBP values with range between 81 to 
90mmHg. 

TABLE 5. DBP correlation coefficient based on bins. 

 

Bin (mmHg) Correlation Coefficient 

60 -0.33005 

70 0.215726 

80 0.234839 

90 0.255321 

100 -0.54296 

110 -0.60813 

120 - 

130 0.137269 

 

IV. CONCLUSION 

In this project, a pre-processing algorithm to clean up 
the PPG signals is built to ensure the data are suitable 
to be used as an input to the CNN-LSTM model for 
training and testing purposes. Besides that, a hybrid 
CNN-LSTM model that consists of two layers of CNN 
followed by two layers of LSTM is built to perform cuffless 
non-invasive blood pressure measurement based on 
PPG signals only. Moreover, the UKM dataset has been 
identified as the most suitable dataset as input to the 
CNN-LSTM model to predict blood pressure due to the 
model trained with this dataset having the highest 
correlation performance as compared to other datasets. 
By using the model trained with the selected dataset, it 
has the highest prediction for SBP values ranging from 
141 to 150 mmHg, and DBP values ranging from 81 to 
90mmHg. 

The issue faced in this project is that the MIMIC-II 
dataset that is obtained from the UCI repository contains 
signals that has been preprocessed by other 
researchers previously. This is because we are unable 
to have access to the original database that is on the 
Physionet website. Hence, we are unable to control the 
quality of the signal obtained, which is believed to be the 
reason the correlation coefficient of this dataset is low. 
Besides that, all the models trained are experiencing 
overfitting problems. 

In the future, we would suggest studies to obtain the 
signals from the original database instead of a pre-
processed database. This is to ensure that the quality of 
the signal used to train the deep learning model is 
controlled and in good condition. Besides that, 
demographic information of the subject can be used as 
an input to the deep learning model. Furthermore, 
increasing the complexity of the deep learning model is 
suggested so that the model can learn more about the 
relationship between the extracted features with the 
targeted values to increase prediction accuracy. Lastly, 
to ensure the quality of the signal used as input to the 
model, one algorithm can be established to check the 
signal quality to reduce the time needed in the pre-
processing stage and increase the efficiency of studies 
in the future.  
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