
Vol 4 (2022) E-ISSN: 2682-860X

International Journal on Robotics, Automation and Sciences (2022) 4:13-22
https://doi.org/10.33093/ijoras.2022.4.3
Manuscript received: 4 Apr 2022 | Revised: 5 May 2022 | Accepted: 16 Jun 2022 | Published:
8 Jul 2022
Published by MMU PRESS. URL: http://journals.mmupress.com/ijoras
This article is licensed under the Creative Commons BY-NC-ND 4.0 International License

Inverse Kinematics Analysis of Novel 6-DOF Robotic Arm
Manipulator for Oil and Gas Welding Using Meta-Heuristic

Algorithms

Bassey Etim Nyong-Bassey*, Ayebatonye Marttyns Epemu

Abstract – This research presents a comparison of the

grey-wolf, improved grey-wolf, particle swarm, jellyfish
and whale optimisation algorithms regarding the inverse
kinematics solution of a newly designed 6-degrees of
freedom robotic arm for oil and gas pipeline welding
which has not been used in literature. Consequently, due
to the robot’s multiple joints with compounding
combinatory possibilities of joint angles, the analysis of
the inverse kinematics is relatively complex. In this
research, the meta-heuristic algorithms, have been used
to determine the robotic arm's inverse kinematics,
essential for tracking a rectangular trajectory with six sets
of waypoints in the 3D [X, Y, Z] space. The results were
further analysed in terms of the accuracy of the position
of the end effector from the accurate position of the
rectangular target trajectory via a mean squared error
cost function. Furthermore, the results of comparison
between the meta-heuristic algorithms to position error
from the inverse kinematics task demonstrated the
superior performance of the grey-wolf algorithm over the
particle swarm, improved grey-wolf, jellyfish, and whale
optimisation algorithms.

Keywords: Grey Wolf, Robotic Arm, 6 DoF, Inverse

Kinematics, Meta-heuristic Optimization

I. INTRODUCTION

The use of robotic arms has been applied to a wide
range of processes, including pick-and-place, welding,

*Corresponding Author email: Nyongbassey.bassey@fupre.edu.ng, ORCID: 0000-0002-4459-1733
Bassey Etim Nyong-Bassey* and Ayebatonye Marttyns Epemu are with the Department of Electrical/Electronic Engineering, Federal

University of Petroleum Resources Effurun, Nigeria.

and assembly. It is essential that the end-effector of the
robot follows the specified trajectory precisely and
smoothly when performing automated tasks such as
welding. To control the motion of a robotic arm, two
factors must be considered and applied: inverse
kinematics and trajectory planning [1].

The kinematic analysis (KA) describes the structure
of a robotic manipulator mathematically. The KA
focuses solely on the robot's movement, without
considering the force which causes it. Furthermore, KA
describes the relationship between the end effector and
the base, as well as the intermediate links [2, 3]. There
are two main categories of KA; forward and inverse
kinematics. The forward kinematics (FK) determines the
cartesian position of the end effector given a set of fully
defined joint parameters. While, inverse kinematics (IK)
utilizes joint angles, positions, and orientations to
determine a given position and orientation of the end-
effector. The IK method is more complicated and
requires more constraints than the forward kinematics
method. Most robotic arm designs and analyses use
forward kinematics and inverse kinematics [4–6].

Robotics relies heavily on inverse kinematics
solutions, especially for design, analysis, calibration,
and control tasks [7]. Nevertheless, realising IK
solutions analytically is difficult and cumbersome,
especially for robots with higher degrees of freedom [8].

International Journal on Robotics,
Automation and Sciences

https://doi.org/10.33093/ijoras.2022.4.3
http://journals.mmupress.com/ijoras
mailto:Nyongbassey.bassey@fupre.edu.ng

Vol 4 (2022) E-ISSN: 2682-860X

14

For the aforementioned reason, meta-heuristic
algorithms such as particle swarm and a novel dual
particle swarm have been successfully applied to solve
the IK of 6-DOF [8] and 7-DOF [9] robots. In [10], a multi-
objective particle swarm optimization algorithm with full
parameters was presented to minimize manipulator
position error, joint angle change, and attitude error.
This transforms the manipulator’s inverse kinematics
resolution into a multi-objective optimization problem. In
[11, 12], the inverse kinematics solution method based
on improved particle swarm optimization for the 6-DOF
robotic arm manipulator was presented and compared
with a closed numerical solution. The results showed the
improved particle swarm optimization method to be
better than the numerical solution. In [13] multi-objective
whale optimization was used to design an optimal
trajectory for a humanoid robot tasked with carrying
objects in an inclined plane.

Aside from the metaheuristic approach in [8,9]
several alternative ways of achieving an inverse
kinematic solution in robotics have been proposed in
literature. One of these methods is based on the
combination of the damping least square method of
Jacobian matrix singular value decomposition and
inverted Gaussian distribution presented in [14]. By
avoiding unique points, the technique was employed to
ensure the continuity of joint velocity. Another inverse
kinematic algorithm for 7-DOF redundant manipulators
with obstacles avoidance and singularities avoidance,
developed on a hybrid of an analytical and numerical
method was described in [15]. The algorithm
transformed the inverse kinematics task into the
optimization model of elbow orientation, while additional
tasks were formulated as fitness evaluation functions.
Also, in [16], a product of exponentials (POE) based
analytical inverse kinematics-based method was used
for the space station remote manipulator system. In
addition to avoiding the Denavit-Hartenberg technique's
singularity, the method also has better precision over
the POE-based numerical solution.

Furthermore, deep artificial neural networks and
deep learning for realising inverse kinematics resolution
in robots were reported in [17, 18]. The authors in [18]
showed that the deep neural network method could
calculate the inverse kinematics of a 5-DOF robot with
fewer input variables. A neural inverse kinematics
method was also presented in [19]. The technique used
the problem's hierarchical structure to identify valid joint
angles based on the target position and the previous
joint angle along the chain. In order to solve the inverse
kinematics problem for robots with various numbers of
degrees of freedom (DOF) (4, 5, 6 and 7), artificial
neural networks (ANN) and adaptive neuro-fuzzy
inference systems (ANFIS) were also employed in [20].
The performances of the methods were analysed in
terms of precession and accuracy. A method based on
reinforcement learning was applied to the continuous
state and action model to find the inverse kinematics
solution of a 5-DOF robotic arm [21]. The authors

showed the technique can effectively resolve inverse
kinematics.

The use of hybrid algorithms of reinforcement
learning and metaheuristic methods such as Grey-wolf
optimization to solve general optimization problems was
emphasized in [22]. When the hybrid method was used
to solve the inverse kinematics issue, it resulted in a
better solution. A 6-DOF robotic manipulator's motion
trajectories were generated via the use of the grey-wolf
optimization [23]. The method determines certain
parameters such as optimal trajectory with the least
tracking error and joint increasing speed. Furthermore,
the kinematic model and trajectory planning problem of
an industrial robotic manipulator was based on hybrid
optimization algorithms presented in [24]. As many as
18 metaheuristic algorithms such as particle swarm
optimization, grey-wolf optimization, genetic algorithms
etc., were evaluated with regard to forward, inverse
kinematics and trajectory planning problems of an
industrial robot. The performance of an improved grey-
wolf optimizer as an effective tool in solving global
optimization engineering problems in robotics was
discussed in [25, 26].

The majority of the above-reviewed literature
focused on undertaking the issue of inverse kinematics
of robotic arm manipulator using metaheuristic
algorithms such as particle swarm optimization, grey
wolf optimization etc., or a hybrid of both metaheuristic
algorithms in conjunction with deep learning, but rarely
conducted a comprehensive and in-depth comparison
of these meta-heuristic algorithms. Also, utilising deep
neural network typically requires cumbersome planning
data [27], while traditional closed-form IK solution is only
possible for robots that have a simple structure [28].
This study presents the first application of the jellyfish
optimiser (JFO) [29] for undertaking the inverse
kinematics problem of a 6 DoF. Hence, extending the
findings on the performance of the JFO for solving
engineering problems.

Also, the study aims to comparatively evaluate the
inverse kinematic solution of meta-heuristic algorithms
such as the grey-wolf optimization (GWO), improved
grey wolf optimiser (I-GWO), particle swarm
optimization (PSO), jellyfish optimiser (JFO) and whale
optimisation (WO) techniques. The performances of the
algorithms have been evaluated via the end-effector
pose error of a newly designed 6-DoF robot in the
MATLAB simulation environment, for welding
applications in the oil and gas industry.

II. METHODOLOGY

A. Robotic Arm Forward Kinematics

The six degrees of freedom robotic arm manipulator
for welding oil and Gas pipelines used as a case study,
consists of six (6) revolute joints J1 – J6 and five links
L1-L6 from the Base to the End-effector (EE) as shown
in Figure 1.

Vol 4 (2022) E-ISSN: 2682-860X

15

FIGURE 1. 6-dof robot arm for oil and gas pipeline welding
operations.

The Denavit-Hartenberg (D-H) chart in Table 1,
presents the kinematics analysis of the robotic arm.

TABLE 1. D-H parameters.

Link 𝜶𝒏−𝟏(rad) 𝒍𝒏−𝟏(m) 𝜽𝒏(rad) 𝒅𝒏(m) Joint
angle
limit

𝑇1
0 𝛼0 = 𝜋/2 𝑙0 = 0 𝜃1 𝑑1 = 𝐿1 −𝜋 ≤ 𝜃1

≤ 𝜋

𝑇2
1 𝛼1 = 0 𝑙1 = 0 𝜃2 𝑑2 = 0 − 𝜋/2

≤ 𝜃2

≤ 𝜋/2

𝑇3
2 𝛼2 = 𝜋/2 𝑙2 = 0 𝜃3 𝑑3 = 0 − 𝜋/2

≤ 𝜃3

≤ 𝜋/2

𝑇4
3 𝛼3 = 𝜋/2 𝑙3 = 0 𝜃4 𝑑4 = 𝐿4 − 𝜋/2

≤ 𝜃4

≤ 𝜋/2

𝑇5
4 𝛼4 = 𝜋/2 𝑙4 = 0 𝜃5 𝑑5 = 0 −𝜋/2

≤ 𝜃5

≤ 𝜋/2

𝑇6
5 𝛼5 = 0 𝑙5 = 0 𝜃6 𝑑6 = 𝐿6 −3/4𝜋

≤ 𝜃6

≤ 3/4𝜋

Generic presentation of Base to End-effector
transformation matrix is as follows:

𝑇6
0 ≡ [

𝑥𝑥 𝑦𝑥 𝑧𝑥 𝑃𝑥

𝑥𝑦 𝑦𝑦 𝑧𝑦 𝑃𝑦

𝑥𝑧 𝑦𝑧 𝑧𝑧 𝑃𝑧

0 0 0 1

]

 ()

The transformation matrix specific displacement of

the EE to the Base reference frame of the robot in 3-

dimensional Euclidean space {𝑷𝒙, 𝑷𝒚, 𝑷𝒛} is given as

follows:
𝑷𝒙 = 𝐿6𝑆𝜃3(𝐶𝜃1𝑆𝜃2 + 𝑆𝜃1𝐶𝜃2) + 𝐿4𝑆𝜃3(𝐶𝜃1𝑆𝜃2 +
𝑆𝜃1𝐶𝜃2) ()

𝑷𝒚 = −(𝐿6𝐶𝜃3 + 𝐿4𝐶𝜃3 + 𝐿1) ()

𝑷𝒛 = 𝐿6𝑆𝜃4𝐶𝜃3(𝐶𝜃1𝑆𝜃2 + 𝑆𝜃1𝐶𝜃2) − 𝐿4𝑆𝜃3(𝐶𝜃1𝑆𝜃2 +
𝑆𝜃1𝐶𝜃2) ()

B. Grey wolf Optimization

Recently, [30] introduced the grey-wolf optimizer
(GWO) a novel swarm-based algorithm for solving
Engineering problems. The GWO mimics the grey-wolf
hunting behaviour and social hierarchy. To achieve
optimality, the grey wolf employs three stages to hunt
preys which include encircling, hunting and attacking
with strict observance of social hierarchy within the wolf
pack. Specifically, the social structure consists of four
types of wolfs; the alpha (α), beta (β) delta (δ) and omega
(ϖ) in order of importance with the downline wolf
following the next superior wolf and so on. Thus, the
alpha secures the wolf pack with the rest wolves in the
pack following accordingly.

The pack’s trajectory is governed in order of
importance based on the leadership of the first, second
and third best wolves; the alpha, the beta and the delta
wolves which are respectively analogous to the three
best optimal solutions, while the optimal solution with the
least ranking are considered as the omega wolves [31],
[32].

• Encircling

The encircling course is the first step deployed by the
wolf pack in hunting prey and it is analogous to finding
the optimisation search space. It is expressed
mathematically as follows:

�⃗⃗� = |𝐹⃗⃗ ⃗. 𝑋𝑝
⃗⃗ ⃗⃗ (𝑖) − 𝑋𝑤

⃗⃗ ⃗⃗ ⃗(𝑖)| ()

𝑋𝑤
⃗⃗ ⃗⃗ ⃗(𝑖 + 1) = 𝑋𝑝

⃗⃗ ⃗⃗ (𝑡) − �⃗⃗� ∗ �⃗⃗� ()

where, 𝑖 signifies the current iteration time step, �⃗⃗� , �⃗⃗�

and 𝐹 are vectorized coefficients, 𝑋𝑤
⃗⃗ ⃗⃗ ⃗ and 𝑋𝑝

⃗⃗ ⃗⃗ denote the

wolf’s and prey’s vector positions respectively. The

vector coefficients �⃗⃗� and �⃗⃗� are presented
mathematically as follows:

�⃗⃗� =2𝑎 ∗ 𝑟𝑎⃗⃗⃗ ()

�⃗⃗� = 2𝑟𝑏⃗⃗ ⃗ ()

Here, the magnitude of vector 𝑎 linearly decreases from
2 down to 0 but has been improved with an exponential
decaying term to speed up the learning process in the
course of the simulation while, 𝑟𝑎⃗⃗⃗ and 𝑟𝑏 ⃗⃗⃗⃗ are random

vectors 𝜖[0, 1] s.

• Hunting

In contrast to a practical hunting scenario, the
optimal position of the prey (analogous to the global
minimum or optimum) is unknown, therefore, rough
estimates of the alpha, beta and the delta solutions are
used as representative solutions. Furthermore, the
alpha, the beta, and the delta wolfs' average positions
are indicative of the prey's location as in (9). Thereafter,

Vol 4 (2022) E-ISSN: 2682-860X

16

the positions of the alpha, the beta and the delta wolf
are updated towards the prey’s location as in (10):

𝑋𝑝
⃗⃗ ⃗⃗ (𝑖 + 1) = (𝑋1

⃗⃗⃗⃗ + 𝑋2
⃗⃗⃗⃗ + 𝑋3

⃗⃗⃗⃗)/3 ()

where,

{

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗ − �⃗⃗� 1 ∗ (�⃗⃗� 𝛼)

𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗ − �⃗⃗� 1 ∗ (�⃗⃗� 𝛽)

𝑋2
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗ − �⃗⃗� 1 ∗ (�⃗⃗� 𝛿)

 and {

�⃗⃗� 𝛼 = |�⃗� 𝛼𝑋𝛼
⃗⃗ ⃗⃗ − 𝑋𝑤

⃗⃗ ⃗⃗ ⃗|

�⃗⃗� 𝛽 = |�⃗� 𝛽𝑋𝛽
⃗⃗ ⃗⃗ − 𝑋𝑤

⃗⃗ ⃗⃗ ⃗|

�⃗⃗� 𝛿 = |�⃗� 𝛿𝑋𝛿
⃗⃗ ⃗⃗ − 𝑋𝑤

⃗⃗ ⃗⃗ ⃗|

 ()

• Attacking

In reality, the wolf attacks the prey once it is close
enough. Similarly, in GWO, the grey wolf decreasing its
movement as it inches towards the prey is analogous to
vector 𝑎 , the learning rate being annealed from 2 to
down to 0 as the optimal solution (prey) is approached.

C. Improved Grey wolf Optimisation (I-GWO)

The improved grey wolf optimiser (I-GWO) was
proposed to enhance the standard GWO performance
by updating and eliminating R wolfs from the wolf pack
using the fitness score and replacing the eliminated wolfs
with an equal number of randomly generated wolfs.
Furthermore, the I-GWO which mimics the survival of the
fittest biological evolution principle has fewer algorithmic
parameters than GWO and is also easier to implement
[33].

D. Particle Swarm Optimization (PSO)

Particle swarm optimisation (PSO) is a meta-
heuristic optimizer whereby particles (individuals)
indicate a lush feeding site (optimal solution) in an
exploration space [34]. To activate the PSO, random
population particles have random velocity and flight are
lunched into the problem search space. Every particle
modifies its flight trajectory pb using self-experience as
well as experience from adjacent particles as well as
tracking the optimal flight trajectory gb of the particle with
the best fitness score [34].
The particles position and velocity modification are thus
achieved as thus:

𝑣𝑖,𝑢
(𝑛+1)

= 𝐾 ∗ [𝑣𝑖,𝑢
(𝑛)

+ 𝑐1𝑟1 ∗ (𝑃𝑏𝑖
− 𝑝𝑖,𝑢

(𝑛)
) + 𝑐2𝑟2 ∗ (𝑔𝑏𝑖

−

𝑝𝑖,𝑢
(𝑛)

)] ()

𝑝𝑖,𝑢
(𝑛+1)

= 𝑝𝑖,𝑢
(𝑛)

+ 𝑣𝑖,𝑢
(𝑛+1)

 ()

Here, 𝑣𝑖,𝑢
(𝑛+1)

 is particle i's velocity of in g- dimension in

iteration 𝑛 + 1 and 𝑝𝑖,𝑢
(𝑛+1)

 denotes the position of particle

i in dimension g in iteration 𝑛 + 1, while 𝑐1and 𝑐2
respectively signifies cognitive and social acceleration
constants.
The constriction factor 𝐶𝑓 is presented mathematically
as follows:

𝐶𝑓 =
2

|2−𝑌√𝑌2−4𝑌|
 ()

where, 𝑌 = 𝑐1+𝑐2,𝑌 > 4
Consequently, the velocity range of a particle is
[−𝑉𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥], 𝑖 = 1, 2, . . . , 𝑘; is the quantity of swarm

particles in 𝑢 = 1,2, … , 𝑑 problem dimensional space
[34].

D. Whale Optimisation Algorithm

The whale optimisation algorithm (WOA) [35] is a
meta-heuristic optimisation algorithm developed based
on the principles of bubble-net foraging social conduct
of humpback whales [36]. Three phases are involved in
a whale bubble-net foraging; prey encircling process,
bubble-net attack and hunting prey.

• Encircling prey

This involves the encircling of prey (solution) by the
humpback whales (search agent) upon sighting.
Nonetheless, since the optimal position towards which
the whale should hunt is unknown ab-initio, the current
best whale’s position (candidate) is used while the other
candidates update their position in the direction of the
best whale’s position. The mathematical presentation of
the prey encircling process is as follows:

�⃗⃗� = |𝐶 ∗ ∅∗⃗⃗⃗⃗ (𝑘) − ∅⃗⃗ (𝑘)| ()

∅⃗⃗ (𝑘 + 1) = ∅∗⃗⃗⃗⃗ (𝑘) − 𝐴 ∗ �⃗⃗� ()

where, 𝑘 denotes the most recent iteration, 𝐴 and �⃗⃗� are
vector factors, the optimal solution derived via the
position vector with the current optimal solution is

denoted as ∅∗⃗⃗⃗⃗ (𝑘) while the position vector is

represented as ∅⃗⃗ (𝑘).

The vector factors 𝐴 and 𝐶 are evaluated as follows:

𝐴 = 2�⃗� ∗ 𝑟𝑐⃗⃗ − �⃗�) ()

 𝐶 = 2. 𝑟𝑑⃗⃗ ⃗ ()

where, 𝑟𝑐⃗⃗ and 𝑟𝑑⃗⃗ ⃗ denotes random factors between 0

and 1, and �⃗� is reduced gradually from 2 to 0 during the
iteration to guarantee on the one hand exploration and
on the other hand exploitation.

• Bubble-net-attack

The constricted spiral movement the whale exhibits
in the prey’s route is represented mathematically as
follows:

∅⃗⃗ (𝑘 + 1) = 𝐷′⃗⃗⃗⃗ ∗ 𝑒𝛾𝑙 ∗ cos (2𝜋𝑙) + ∅∗⃗⃗⃗⃗ (𝑘) ()

𝐷′⃗⃗⃗⃗ =|∅∗⃗⃗⃗⃗ (𝑘) − ∅⃗⃗ (k)| ()

where, 𝐷′⃗⃗⃗⃗ represents the variance between the

𝑛𝑡ℎwhale and the whale with the best position, 𝛾 is the
constant factor governing the logarithmic spiral form or
circular movement, while 𝑙 denotes a random factor
between -1 and 1.

Vol 4 (2022) E-ISSN: 2682-860X

17

• Hunting prey
Further, to the bubble-net foraging behaviour, the
humpback whale can also engage in a random search
for prey. Hence, the random search behaviour is
expressed as follows:

�⃗⃗� =|𝐶 ∅𝑟
⃗⃗ ⃗⃗ (𝑘) − ∅⃗⃗ (k)| ()

∅⃗⃗ (𝑘 + 1) = ∅𝑟
⃗⃗ ⃗⃗ (𝑘)-𝐴 ∗ �⃗⃗� ()

Where, ∅𝑟
⃗⃗ ⃗⃗ (𝑘) is the position of a random agent.

Therefore, if |A| > 1 agents’ position is updated based
on a random agent’s position, and by the position of the
otherwise best solution if |A| < 1, to guarantee
exploration and as well as exploitation respectively.
Thereafter, the process is terminated only if the stopping
criterion is satisfied.

E. Jelly Fish Optimisation (JFO)

More recently, Chou and Troung [29] proposed a
meta-heuristic algorithm called the jellyfish optimizer
(JFO) which is fundamentally based on the foraging
behaviour of the jellyfish in its oceanic habitat [37]. The
foraging mechanism is enabled primarily by two
movement types; ocean current and swarm movements
and a time-based switching operation presented as
follows:

• Ocean Current Motion

This movement type involves the jellyfish drifting in
the direction of the ocean current during the foraging
activity. The magnitude by which the jellyfish drifts in
search of an ideal search space is governed by the error
difference in position between the individual jellyfish and
the averaged positions of all the oceanic jellyfish. This
magnitude of drift is presented mathematically as
follows:

𝑑𝑟𝑖𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =1/𝑁 ∑ 𝑑𝑟𝑖𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑘

 =1/𝑁 ∑(𝑥∗ −𝑎𝑐𝑥𝑘)

 = 𝑥∗ − 𝑎𝑐 ∑𝑥𝑘/𝑁)

 = 𝑥∗ − 𝑎𝑐𝜇 ()

where, 𝑥∗ represents the jellyfish which has the current-
best position in the swarm; N is the overall quantity of
jellyfishes in the swarm; 𝑎𝑐 is an attraction factor; 𝜇 is
the average position of all jellyfishes in the swarm.

Therefore,

, 𝐷𝑓 = 𝑎𝑐𝜇 ()

Where, 𝐷𝑓 denotes the average position of the jellyfish
to the jellyfish with the current-best position.

More so, the JFO assumes that the jellyfish swarm
contains jellyfishes which are distributed normally in all
dimensions with a standard deviation of ±𝛽𝜎 around the

average 𝜇 position which encompasses a certain
likelihood of the entire jellyfish, thus:

𝐷𝑓 = 𝛽𝜎.𝑟1(0,1) ()

Set 𝜎 =𝑟2. (0,1) ()

Where, r1 and r2 are random values generated between
0 and 1.
Consequently, the jellyfish’s new position is obtained as
follows:

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟1(0,1). 𝑑𝑟𝑖𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ()

Furthermore, the jellyfish’s new position is then
updated as follows:

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟1(0,1). (𝑥∗ − 𝛽𝜎.𝑟1(0,1)) ()

• Jellyfish Swarm Motion

The jellyfish swarm movement is categorized as;
active (type A) or passive (type B). The active motion is
predominant during the swarm’s initial formative period.
Nonetheless, in time the jellyfish displays the passive
motion by updating its position towards a random
jellyfish in the swarm with better direction (evaluated via
a fitness score) to a foraging location.
The type A motion is presented as follows:

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝛾. 𝑟1(0,1). (UB − LB) ()

where 𝛾 is a motion factor regarding the distance about
the jellyfish’s location, and UB and LB represent the
upper and lower bounds of the search environment.

Similarly, type B motion is denoted mathematically
as follows:

𝑆𝑡𝑒𝑝⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑋𝑖(𝑡 + 1) − 𝑋𝑖(𝑡) ()

And,

𝑆𝑡𝑒𝑝⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗= 𝑟1(0,1). 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ()

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = {
𝑋𝑗(𝑡) − 𝑋𝑖(𝑡) 𝑖𝑓 𝑓(𝑋𝑖(𝑡)) ≥ 𝑓(𝑋𝑗(𝑡))

𝑋𝑖(𝑡) − 𝑋𝑗(𝑡) 𝑖𝑓 𝑓(𝑋𝑖(𝑡)) < 𝑓(𝑋𝑗(𝑡))

 ()

where, 𝑗 is the index of the 𝑗𝑡ℎ jellyfish in the swarm and
𝑓 is a fitness function for evaluating the position 𝑋.

Also, the next position the jellyfish attains is updated
as follows:

𝑋𝑖(𝑡 + 1)=𝑋𝑖(𝑡) + 𝑆𝑡𝑒𝑝⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ ()

Vol 4 (2022) E-ISSN: 2682-860X

18

• Time Control Mechanism

The time control mechanism is responsible for
switching between both Type A and B motions for
exploration and exploitation of the ocean current in
course of searching for nutritious food (optimal solution).
The time control mechanism "𝑐(𝑡)" is achieved using a
constant factor and a time-based randomly controlled
function 𝑟 with values between 0 and 1, and presented
mathematically as follows:

𝑐(𝑡) = (1 −
𝑡

𝑡𝑚𝑎𝑥
) . (2. 𝑟2 − 1) ()

where, 𝑡, 𝑡𝑚𝑎𝑥 indicate the defined iteration and

maximum iteration time respectively, 𝑟2 is a randomised
factor between 0 and 1.

During foraging both type A and B are performed by
the jellyfish inside the swarm if r2 (0, 1) > (1 −c (t)), and
if r2(0, 1) < (1 −c (t)) respectively. Initially, type A motion
is selected more frequently mimicking exploration, but
as time evolves the factor, (1 −c (t)) increases and the
chance of (1 −c (t)) being greater than r2(0,1). Hence,
type B motion will be selected more frequently than type
A to mimic exploitation.

III. RESULTS AND DISCUSSION

The meta-heuristic algorithmic parameters are
presented in Table 2. Specifically, the maximum
iteration and population of search agents were selected
modestly as 50 and 10 respectively for uniformity and
consistency [34]. The meta-heuristic algorithms were
utilised in determining the optimal joint angles which
enables the end effector accurately trace the
rectangular trajectory via the six sets of waypoints
shown in Table 3. The mean squared error (MSE)
fitness score is used statistically to determine the
accuracy of the effector’s desired reference position and
its actual position controlled by the meta-heuristic
algorithms as follows:

𝑀𝑆𝐸 =
1

𝑁
∑(𝑷(𝒊)𝒓𝒆𝒇 − 𝑷(𝒊))

2

𝑁

𝑖=1

 , i ∈ [𝑥 𝑦 𝑧] (34)

Where, 𝑃(𝑖)𝑟𝑒𝑓 and 𝑃(𝑖) respectively denotes to the

reference and actual coordinate positions of the end
effector.

TABLE 2. Meta-heuristic algorithmic parameters.

Parameters Meta-Heuristic Algorithms

GWO PSO I-GWO WO JFO

Number of Agents, N 50 50 50 50 50

Convergence iteration 10 10 10 10 10

learning rate 𝑎 [35] 2 - 2 - -

Weights, w [38] - 0.5 - - -

Acceleration, c1 [38] - 1.4 - - -

Velocity c2 [38] - 1.4 - - -

The MATLAB/Simscape/Simulink model for Joint
angle optimization solution to the inverse kinematics
robotic manipulator arm problem is shown in Figure 2.

. FIGURE 2. Robotic arm inverse kinematics architecture for
optimised joint angles.

TABLE 3. Waypoint for the reference rectangular trajectory.

Waypoint Reference Pose Trajectory (m)

𝑷𝒙𝒓𝒆𝒇 𝑷𝒚𝒓𝒆𝒇 𝑷𝒛𝒓𝒆𝒇

1 0.25 0.01 0.11

2 0.25 0.01 0.11

3 0.25 0.11 0.11

4 0.15 0.11 0.11

5 0.15 0.01 0.11

6 0.25 0.01 0.11

The optimized joint angles resulting from GWO,

PSO, I-GWO, WO and JFO are shown in Figures 3, 4 –
7 respectively. Furthermore, Tables 4-8 present the
summary of the results for the End Effector pose, Joint
angles, and position error for the GWO, PSO, IGWO,
WO and JFO methods respectively.

From Figures 4-8, it is clear that the metaheuristic
algorithms all constrained the joint angles within the pre-
defined limits. Furthermore, the GWO in contrast to the
rest algorithms has the least fitness score, which
indicates better accuracy with respect to position error
between the rectangular trajectory waypoints and the
actual end effector’s pose.

FIGURE 3. GWO optimised robotic joint angles solution for
the inverse kinematics.

Vol 4 (2022) E-ISSN: 2682-860X

19

FIGURE 4. PSO optimised robotic joint angles solution for the
inverse kinematics.

FIGURE 5. I-GWO optimised robotic joint angles solution for
the inverse kinematics.

FIGURE 6. WO optimised robotic joint angles solution for the
inverse kinematics.

FIGURE 7. JFO optimised robotic joint angles solution for the
inverse kinematics.

TABLE 4. GWO optimized joint angles with end-effector pose
performance.

Wa
yp
oin

t

Robot output End-
Effector Pose (m)

Optimized input Joint Angles (Rads) MSE

𝑃𝑥 𝑃𝑦 𝑃𝑧 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6

1 0.250
7

0.011
0

0.106
3

-0.2629 0.047
6

0.456
8

-
0.699

9

-
1.570

8

-
1.565

5

5.0e-
06

2 0.250
7

0.011
0

0.106
3

-0.2629 0.047
6

0.456
8

-
0.699

9

-
1.570

8

-
1.565

5

5.0e-
06

3 0.250

5

0.111

0

0.108

4

0.6918 1.112

5

-

0.520
0

-

1.538
5

-

0.091
8

0.393

1

1.3e-

06

4 0.150

3

0.109

5

0.111

5

1.2061 0.837

6

-

1.249
0

-

1.266
1

-

1.038
7

-

2.212
5

8.4e-

07

5 0.148
0

0.008
0

0.093
7

-0.0205 0.046
6

0.159
2

-
1.212

5

-
1.570

8

-
0.115

9

6.5e-
05

6 0.250
7

0.011
0

0.106
3

-0.2629 0.047
6

0.456
8

-
0.699

9

-
1.570

8

1.565
5

5.1e-
06

TABLE 5. PSO optimized Joint Angles with end-effector pose

performance.
Wa
yp
oin

t

Robot output End-
Effector Pose (m)

Optimized input Joint Angles (Rads) MSE

𝑃𝑥 𝑃𝑦 𝑃𝑧 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6
1 0.240

2
0.035

5
0.027

5
0.6618 -

0.604
6

-
0.748

0

-
0.650

8

-
1.537

5

0.805
9

2.5e-3

2 0.240
2

0.035
5

0.027
5

0.6618 -
0.604

6

-
0.748

0

-
0.650

8

-
1.537

5

0.805
9

2.5e-3

3 0.234
7

0.059
3

0.195
3

0.6323 -
0.214

3

-
0.346

8

-
0.095

9

-
2.340

9

-
1.890

9

3.4e-
03

4 0.195

4

0.096

0

0.163

1

0.6535 -

0.466
3

0.014

4

-

0.505
0

-

2.138
8

-

0.789
0

1.7e-

03

5 0.212
5

0.055
2

0.062
4

0.1841 0.654
9

1.088
0

0.528
4

2.429
3

1.254
7

2.7e-
03

6 0.240
2

0.035
5

0.027
5

0.6618 -
0.604

6

-
0.748

0

-
0.650

8

-
1.537

5

0.805
9

2.5e-
03

TABLE 6. I-GWO optimized joint angles with end-effector pose

performance.
Wa
yp
oin

t

Robot output End-
Effector Pose (m)

Optimized input Joint Angles (Rads) MSE

𝑃𝑥 𝑃𝑦 𝑃𝑧 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6
1

0.249
1

0.010
1

0.108
5 0.3159

1.209
6

-
0.529

6

-
1.423

4

-
0.485

7

-
1.949

5

9.8e-
07

2
0.250

1
0.011

1
0.110

2 0.1509
0.534

7

-
0.293

1

-
0.851

8

-
1.382

2

-
1.383

8

4.3e-
07

3

0.248
7

0.110
0

0.109
4 0.7060

0.016
0

-

0.434
2

-

0.671
5

-

1.466
1

-

1.142
1

6.7e-
07

4

0.149
9

0.109
6

0.109
5 0.0690

-
0.631

1
1.169

0

-
1.130

4

-
1.256

2

-
0.482

0

1.6e-

07

5

0.150
4

0.010
0

0.110
2 -0.0936

-
0.740

4
0.584

0

-
1.212

8

-
1.519

5
0.747

8

7.7e-
07

6

0.249
6

0.009
0

0.109
6 -0.3049

-

0.668
5

0.664
3

-

1.073
5

-

1.013
3

-

0.342
2

4.2e-
07

TABLE 7. WO optimized joint angles with end-effector pose

performance.
Wa
yp
oin

t

Robot output End-
Effector Pose (m)

Optimized input Joint Angles (Rads) MSE

𝑃𝑥 𝑃𝑦 𝑃𝑧 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6
1

0.249
1

0.004
8

0.058
8 -0.1020

0.299
7

0.211
0

-

1.014
7

-

1.125
3

-

1.393
7

8.8e-
04

2
0.289

0
0.011

6
0.123

1 -1.7919
1.570

8

-
0.056

0
1.570

8
1.570

8
2.356

2
5.6e-

04

3

0.289

0

0.011

4

0.123

6 -1.7922

1.570

8

0.470

2

1.570

8

1.570

8

-
0.332

9

3.8e-

03

4

0.154
7

0.036
8

0.003
9 -0.4222

-
1.570

8

-
1.570

8

-
1.570

8

-
0.462

7

-
2.356

2
5.6e-

03

5

0.115
7

0.084
3

0.057
9 0.3623

-
1.381

3

-
0.590

4

-
1.522

8

-
0.986

6
0.390

1
3.1e-

03

6 -

0.074
0

0.020
1

0.098
0 -3.1416

-

1.570
8

-

1.570
8

-

1.570
8

-

1.570
8

-

2.356
2

3.5e-
02

Vol 4 (2022) E-ISSN: 2682-860X

20

TABLE 8. JFO optimized joint angles with end-effector pose
performance.

Wa
yp
oin

t

Robot output End-
Effector Pose (m)

Optimized input Joint Angles (Rads) MSE

𝑃𝑥 𝑃𝑦 𝑃𝑧 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6
1 0.226

6

0.044

3

0.158

5

0.1771 1.439

4

-

0.616
7

-

0.848
7

-

1.440
3

-

1.482
9

1.4e-

03

2 0.198

7

-

0.145
7

0.231

3

-0.5448 1.504

5

-

0.974
8

-

0.815
4

-

1.132
8

2.174

3

14e-

03

3 0.389
1

0.028
0

-
0.030

3

-1.7579 1.330
2

1.465
5

0.336
3

1.567
6

0.801
3

15e-
03

4 0.435
3

0.101
7

0.322
8

0.3662 0.242
8

-
0.307

9

-
0.621

2

0.528
0

0.691
7

42e-
03

5 -

0.005
6

0.097

8

-

0.060
2

1.6378 -

1.295
9

-

1.473
5

-

0.872
4

-

1.426
9

-

2.249
1

20e-

03

6 0.053
8

0.076
5

0.098
0

1.1184 -
0.614

3

-
0.702

1

-
1.469

2

-
1.561

3

-
2.221

0

14e-
03

The 2D performance comparison of the GWO with

the PSO optimization methods with regards to the
accuracy of the position error is shown in Figures 8(a)
and 8(b) while Figures 6(a) and 6(b) show the 3D
representations respectively. From Figure 5(b), a
mismatch can be observed in 3D GWO optimized plot.
However, by isolating the Z-axis as in the 2D plot in
Figure 8(a) reveals that the cause of the error is due to
position error in the Z-axis which causes the depth
mismatch. Nevertheless, this type of error will be
addressed in future work using a suitable controller.

Furthermore, the trajectory trace of the end effector
optimized by PSO shows greater distortion than the
GWO counterpart. From Figures 9(a) and 9(b), both the
2D and 3D plots respectively both show an
unacceptable mismatch between the reference
trajectory and that of the end effector, indicating the
impact of the position error and the ineffectiveness of
PSO to obtain optimized joint angles for this particular
Robot.

FIGURE 8(a). Performance of GWO IK solution in 2D.

FIGURE 8(b). Performance of GWO IK solution in 3D.

FIGURE 9(a). Performance of PSO IK solution in 2D.

FIGURE 9(b). Performance of PSO IK solution in 3D.

The robot’s trajectory trace in 2D and 3D derived

using the I-GWO are shown in Figures 10 (a) and 10 (b)

respectively. From Figures 10 (a) and 10 (b) plot the I-

GWO was only accurate in the 2D plane.

FIGURE 10(a). Performance of I-GWO IK solution in 3D.

FIGURE 10(b). Performance of I-GWO IK solution in 3D.

Figures 11 (a) and 11 (b) show the 2 D and 3 D plots

resulting from the WO method. The WO was not able to

trace the trajectory as shown in both the 2D and 3D

plots. This is as a result of the error not converging to a

negligible value (i.e., less than 1e-06).as in the case of

the GWO and I-GWO.

FIGURE 11(a). Performance of WO IK solution in 3D.

Vol 4 (2022) E-ISSN: 2682-860X

21

FIGURE 11(b). Performance of WO IK solution in 3D.

Furthermore, the JFO trajectory traces in both 2D

and 3 D are shown in Figures 12(a) and 12(b)

respectively. The accuracy was the least among the

meta-heuristic algorithms which have been compared.

FIGURE 12(a). Performance of JFO IK solution in 3D.

FIGURE 12(b). Performance of JFO IK solution in 3D.

IV. CONCLUSION

The inverse kinematic performances of GWO PSO, I-

GWO, WO and JFO was evaluated using the end

effector pose error of a newly designed robot in the

MATLAB simulation environment. The GWO, PSO, I-

GWO, WO and JFO were recursively used to optimize

the robotic arm’s joint angles for tracing a rectangular

trajectory. From the analysis of the results in 2D, the

GWO had the lowest fitness score which was closely

followed by the I-GWO for matching the rectangular

trajectory. Nevertheless, in 3D the GWO and I-GWO

showed errors in the Z-axis. The PSO, WO and JFO all

had unacceptable trajectories which mismatched the

rectangular trajectory Thus, from the investigation, only

the GWO and I-GWO effectively solved the inverse

kinematics problem of the newly designed robotic arm

manipulator with 6 degrees-of-freedom for welding

operations.

Future work will aim to practically implement the

robot and also improve accuracy regarding the

reference waypoints tracking using an innovative meta-

heuristic algorithm.

ACKNOWLEDGEMENT

There is no financial support from any agencies

funding this research work.

AUTHOR CONTRIBUTIONS

Bassey Etim Nyong-Bassey: Conceptualization,
Data Curation, Methodology, Validation, Writing –
Original Draft Preparation, Project Administration,
Supervision, Writing – Review & Editing

Ayebatonye Marttyns Epemu: Conceptualization,
Data Curation, Methodology, Validation, Writing –
Original Draft Preparation, Project Administration,
Supervision, Writing – Review & Editing.

CONFLICT OF INTERESTS

No conflict of interests were disclosed.

ETHICS STATEMENTS

Our publication ethics follow The Committee of
Publication Ethics (COPE) guideline.
https://publicationethics.org/

REFERENCES

[1] M.A.N. Huda, S.H. Susilo, and P.M. Adhi, “Implementation of
Inverse Kinematic and Trajectory Planning on 6-DOF Robotic
Arm for Straight-Flat Welding Movement,” Logic: Jurnal
Rancang Bangun Teknologi, vol. 22, no. 1, pp. 51–61, 2022.
DOI: https://doi.org/10.31940/logic.v22i1.51-61

[2] M. Saraf, A. Agarwal, A. Chaudhary, and A. Ganthale,
“Kinematic Modelling and Motion Mapping of Robotic Arms,”
Journal of Physics: Conference Series, vol. 1969, no. 1, 2021.
DOI: https://doi.org/10.1088/1742-6596/1969/1/012002

[3] M.T. Nguyen, C. Yuan, and J.H. Huang, “Kinematic Analysis of
a 6-DOF Robotic Arm,” IFToMM World Congress on Mechanism
and Machine Science, vol. 73, no. 100, pp. 2965–2974, 2019.
URL: https://link.springer.com/chapter/10.1007/978-3-030-
20131-9_292

[4] Š. Ondočko, T. Stejskal, J. Svetlík, L. Hrivniak, M. Šašala, and
A. Žilinský, “Position Forward Kinematics of 6-DOF Robotic
Arm,” Acta Mechanica Slovaca, vol. 24, no. 2, pp. 30–36, 2020.
DOI: https://doi.org/10.21496/ams.2020.018

[5] Š. Ondočko, T. Stejskal, J. Svetlík, L. Hrivniak, M. Šašala, and
A. Žilinský, “Inverse Kinematics Data Adaptation to Non-
Standard Modular Robotic Arm Consisting of Unique Rotational
Modules,” Applied Sciences, vol. 11, no. 3, pp. 1–15, 2021. DOI:
https://doi.org/10.3390/app11031203

[6] A.R. Al Tahtawi, M. Agni, and T.D. Hendrawati, “Small-Scale
Robot Arm Design with Pick and Place Mission Based on
Inverse Kinematics,” Journal of Robotics and Control (JRC), vol.
2, no. 6, pp. 469–475, 2021.
DOI: https://doi.org/10.18196/26124

[7] A. Saadah, “Computing the Kinematics Study of a 6-DOF
Industrial Manipulator Prototype by Matlab,” Recent Innovations
in Mechatronics, vol. 7, no. 1, 2021.
DOI: http://dx.doi.org/10.17667/riim.2020.1/8..

[8] S. Dereli and R. Köker, “A Meta-Heuristic Proposal for Inverse
Kinematics Solution of 7-DOF Serial Robotic Manipulator:
Quantum-Behaved Particle Swarm Algorithm,” Artificial
Intelligence Review, vol. 53, no. 2, pp. 949–964, 2020.
DOI: https://doi.org/10.1007/s10462-019-09683-x

[9] H. Khan, H.H. Kim, S.J. Abbasi, and M.C. Lee, “Real-Time
Inverse Kinematics Using Dual Particle Swarm Optimization
(DPSO) of 6-DOF Robot for Nuclear Plant Dismantling,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 9885–9890, 2020.
DOI: https://doi.org/10.1016/j.ifacol.2020.12.2695

[10] S. Luo, D. Chu, Q. Li, and Y. He, “Inverse Kinematics Solution
of 6-DOF Manipulator Based on Multi-Objective Full-Parameter
Optimization PSO Algorithm,” Frontiers in Neurorobotics, vol.
16, pp. 1–12, 2022.
DOI: https://doi.org/10.3389/fnbot.2022.791796

https://publicationethics.org/
https://doi.org/10.31940/logic.v22i1.51-61
https://doi.org/10.1088/1742-6596/1969/1/012002
https://link.springer.com/chapter/10.1007/978-3-030-20131-9_292
https://link.springer.com/chapter/10.1007/978-3-030-20131-9_292
https://doi.org/10.21496/ams.2020.018
https://doi.org/10.3390/app11031203
https://doi.org/10.18196/26124
http://dx.doi.org/10.17667/riim.2020.1/8.
https://doi.org/10.1007/s10462-019-09683-x
https://doi.org/10.1016/j.ifacol.2020.12.2695
https://doi.org/10.3389/fnbot.2022.791796

Vol 4 (2022) E-ISSN: 2682-860X

22

[11] L.I.U. Yiyang, X.I. Jiali, B.A.I. Hongfei, and W. Zhining, “A
General Robot Inverse Kinematics Solution Method Based on
Improved PSO Algorithm,” IEEE Access, vol. 9, pp. 32341–
32350, 2021.
DOI: https://doi.org/10.1109/ACCESS.2021.3059714

[12] A. Jiping, L. Xinhong, Z. Zhang, W. Man, G. Zhang, and W. Ding,
“Application of an Improved Particle Swarm Optimization
Algorithm in Inverse Kinematics Solutions of Manipulators,” in
Proceedings of the IEEE 9th Joint International Information
Technology and Artificial Intelligence Conference (ITAIC), 2020,
pp. 1680–1684.
DOI: https://doi.org/10.1109/ITAIC49862.2020.9339042

[13] K. Sanprasit and P. Artrit, “Multi-Objective Whale Optimization
Algorithm for Balance Recovery of a Humanoid Robot,”
International Journal of Mechanical Engineering and Robotics
Research, vol. 9, no. 6, pp. 882–893, 2020.
DOI: https://doi.org/10.18178/ijmerr.9.6.882-893

[14] X. Li, X. Zhang, H. Li, W. Yuan, and Y. Qiu, “Singularity
Processing Algorithm for Inverse Kinematics of 6-DOF Series
Robot,” in Proceedings of the IEEE 9th Joint International
Information Technology and Artificial Intelligence Conference
(ITAIC), 2020, pp. 696–701.
DOI: https://doi.org/10.1109/ITAIC49862.2020.9338762

[15] M. Jin, Q. Liu, B. Wang, and H. Liu, “An Efficient and Accurate
Inverse Kinematics for 7-DOF Redundant Manipulators Based
on a Hybrid of Analytical and Numerical Method,” IEEE Access,
vol. 8, pp. 16316–16330, 2020.
DOI: https://doi.org/10.1109/ACCESS.2020.2966768

[16] Y. Wang, X. Ding, Z. Tang, C. Hu, Q. Wei, and K. Xu, “A Novel
Analytical Inverse Kinematics Method for SSRMS-Type Space
Manipulators Based on the POE Formula and the Paden-Kahan
Subproblem,” International Journal of Aerospace Engineering,
2021.
DOI: https://doi.org/10.1155/2021/6690696

[17] N.A. Mohamed, A.T. Azar, N.E. Abbas, M.A. Ezzeldin, and H.H.
Ammar, “Experimental Kinematic Modeling of 6-DOF Serial
Manipulator Using Hybrid Deep Learning,” in Proceedings of the
International Conference on Artificial Intelligence and Computer
Vision (AICV2020), 2020, pp. 283–295.
DOI: https://doi.org/10.1007/978-3-030-44289-7_27

[18] S.K. Shah, R. Mishra, and L.S. Ray, “Solution and Validation of
Inverse Kinematics Using Deep Artificial Neural Network,”
Materials Today: Proceedings, vol. 26, pp. 1250–1254, 2020.
DOI: https://doi.org/10.1016/j.matpr.2020.02.250

[19] R. Bensadoun, S. Gur, N. Blau, T. Shenkar, and L. Wolf, “Neural
Inverse Kinematics,” arXiv preprint, 2022.
DOI: https://doi.org/10.48550/arXiv.2205.10837

[20] J. Demby, Y. Gao, and G.N. DeSouza, “A Study on Solving the
Inverse Kinematics of Serial Robots Using Artificial Neural
Network and Fuzzy Neural Network,” in Proceedings of the IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE),
2019, pp. 1–6.
DOI: https://doi.org/10.1109/FUZZ-IEEE.2019.8858872

[21] X. Shi, Z. Guo, J. Huang, Y. Shen, and L. Xia, “A Distributed
Reward Algorithm for Inverse Kinematics of Arm Robot,” in
Proceedings of the 2020 5th International Conference on
Automation, Control and Robotics Engineering (CACRE), pp.
92–96, 2020.
DOI: https://doi.org/10.1109/CACRE50138.2020.9230347

[22] A. Seyyedabbasi, R. Aliyev, F. Kiani, M.U. Gulle, H. Basyildiz,
and M.A. Shah, “Hybrid Algorithms Based on Combining
Reinforcement Learning and Metaheuristic Methods to Solve
Global Optimization Problems,” Knowledge-Based Systems,
vol. 223, p. 107044, 2021.
DOI: https://doi.org/10.1016/j.knosys.2021.107044

[23] C. Choubey and J. Ohri, “Optimal Trajectory Generation for a 6-
DOF Parallel Manipulator Using Grey Wolf Optimization
Algorithm,” Robotica, vol. 39, no. 3, pp. 411–427, 2021.
DOI: https://doi.org/10.1017/s0263574720000442

[24] G. Singh and V.K. Banga, “Kinematics and Trajectory Planning
Analysis Based on Hybrid Optimization Algorithms for Industrial
Robotic Manipulators,” 2022.
DOI: https://doi.org/10.21203/rs.3.rs-1313895/v1

[25] M.H. Nadimi-Shahraki, S. Taghian, and S. Mirjalili, “An Improved
Grey Wolf Optimizer for Solving Engineering Problems,” Expert
Systems with Applications, vol. 166, p. 113917, 2021.
DOI: https://doi.org/10.1016/j.eswa.2020.113917

[26] S. Dereli, “A New Modified Grey Wolf Optimization Algorithm
Proposal for a Fundamental Engineering Problem in Robotics,”
Neural Computing and Applications, vol. 33, no. 21, pp. 14119–
14131, 2021.
DOI: https://doi.org/10.1007/s00521-021-06050-2

[27] B.E. Nyong-Bassey, D. Giaouris, C. Patsios, S. Papadopoulou,
A.I. Papadopoulos, S. Walker, and S. Gadoue, “Reinforcement
Learning Based Adaptive Power Pinch Analysis for Energy
Management of Stand-Alone Hybrid Energy Storage Systems
Considering Uncertainty,” Energy, vol. 193, p. 116622, 2020.
DOI: https://doi.org/10.1016/j.energy.2019.116622

[28] C. Lopez-Franco, D. Diaz, J. Hernandez-Barragan, N. Arana-
Daniel, and M. Lopez-Franco, “A Metaheuristic Optimization
Approach for Trajectory Tracking of Robot Manipulators,”
Mathematics, vol. 10, no. 7, p. 1051, 2022. DOI:
https://doi.org/10.3390/math10071051

[29] J.S. Chou and D.N. Truong, "A Novel Metaheuristic Optimizer
Inspired by Behavior of Jellyfish in Ocean," Applied Mathematics
and Computation, vol. 389, p. 125535, 2021. DOI:
https://doi.org/10.1016/j.amc.2020.125535

[30] S. Mirjalili, S.M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,”
Advances in Engineering Software, vol. 69, pp. 46–61, 2014.
DOI: https://doi.org/10.1016/j.advengsoft.2013.12.007

[31] H. Kraiem, F. Aymen, L. Yahya, A. Triviño, M. Alharthi, and S.S.
Ghoneim, “A Comparison Between Particle Swarm and Grey
Wolf Optimization Algorithms for Improving the Battery
Autonomy in a Photovoltaic System,” Applied Sciences, vol. 11,
no. 16, p. 7732, 2021.
DOI: https://doi.org/10.3390/app11167732

[32] Y.S. Kushwah and R. Shrivastava, “Particle Swarm Optimization
(PSO) Inspired Grey Wolf Optimization (GWO) Algorithm,”
International Journal of Mathematical Trends and Technology,
vol. 58, pp. 81–91, 2018.
DOI: https://doi.org/10.14445/22315373/IJMTT-V58P520

[33] J.S. Wang and J.S.X. Li, “An Improved Grey Wolf Optimizer
Based on Differential Evolution and Elimination Mechanism.
Scientific Reports,” Scientific Reports, 9(1), pp. 1–21, 2019. DOI:
https://doi.org/10.1038/s41598-019-43546-3

[34] B.E. Nyong-Bassey and B. Akinloye, “Comparative Study of
Optimized Artificial Intelligence Based First Order Sliding Mode
Controllers for Position Control of a DC Motor Actuator,” Journal
of Automation Mobile Robotics and Intelligent Systems, pp. 58–
71, 2014.
DOI: https://doi.org/10.14313/JAMRIS_3-2016/25

[35] I. Aljarah, H. Faris, and S. Mirjalili, “Optimizing Connection
Weights in Neural Networks Using the Whale Optimization
Algorithm,” Soft Computing, vol. 22, no. 1, pp. 1–15, 2018.
DOI: https://doi.org/10.1007/s00500-016-2442-1

[36] G.Y. Ning and D.Q. Cao, “Improved Whale Optimization
Algorithm for Solving Constrained Optimization Problems,”
Discrete Dynamics in Nature and Society, 2021.
DOI: https://doi.org/10.1155/2021/8832251

[37] M. Abdel-Basset, R. Mohamed, R.K. Chakrabortty, M.J. Ryan,
and A. El-Fergany, “An Improved Artificial Jellyfish Search
Optimizer for Parameter Identification of Photovoltaic Models,”
Energies, vol. 14, no. 7, p. 1867, 2021.
DOI: https://doi.org/10.3390/en14071867

[38] T. Zhang, W. Xin, and W. Zhenlei, "A Novel Improved Grey Wolf
Optimization Algorithm for Numerical Optimization and PID
Controller Design," in Proceedings of the 2018 IEEE 7th Data
Driven Control and Learning Systems Conference (DDCLS),
2018.
DOI: https://doi.org/10.1109/DDCLS.2018.8515951

https://doi.org/10.1109/ACCESS.2021.3059714
https://doi.org/10.1109/ITAIC49862.2020.9339042
https://doi.org/10.18178/ijmerr.9.6.882-893
https://doi.org/10.1109/ITAIC49862.2020.9338762
https://doi.org/10.1109/ACCESS.2020.2966768
https://doi.org/10.1155/2021/6690696
https://doi.org/10.1007/978-3-030-44289-7_27
https://doi.org/10.1016/j.matpr.2020.02.250
https://doi.org/10.48550/arXiv.2205.10837
https://doi.org/10.1109/FUZZ-IEEE.2019.8858872
https://doi.org/10.1109/CACRE50138.2020.9230347
https://doi.org/10.1016/j.knosys.2021.107044
https://doi.org/10.1017/s0263574720000442
https://doi.org/10.21203/rs.3.rs-1313895/v1
https://doi.org/10.1016/j.eswa.2020.113917
https://doi.org/10.1007/s00521-021-06050-2
https://doi.org/10.1016/j.energy.2019.116622
https://doi.org/10.3390/math10071051
https://doi.org/10.1016/j.amc.2020.125535
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.3390/app11167732
https://doi.org/10.14445/22315373/IJMTT-V58P520
https://doi.org/10.1038/s41598-019-43546-3
https://doi.org/10.14313/JAMRIS_3-2016/25
https://doi.org/10.1007/s00500-016-2442-1
https://doi.org/10.1155/2021/8832251
https://doi.org/10.3390/en14071867
https://doi.org/10.1109/DDCLS.2018.8515951

