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Abstract – This research presents a comparison of the 

grey-wolf, improved grey-wolf, particle swarm, jellyfish 
and whale optimisation algorithms regarding the inverse 
kinematics solution of a newly designed 6-degrees of 
freedom robotic arm for oil and gas pipeline welding 
which has not been used in literature. Consequently, due 
to the robot’s multiple joints with compounding 
combinatory possibilities of joint angles, the analysis of 
the inverse kinematics is relatively complex. In this 
research, the meta-heuristic algorithms, have been used 
to determine the robotic arm's inverse kinematics, 
essential for tracking a rectangular trajectory with six sets 
of waypoints in the 3D [X, Y, Z] space. The results were 
further analysed in terms of the accuracy of the position 
of the end effector from the accurate position of the 
rectangular target trajectory via a mean squared error 
cost function. Furthermore, the results of comparison 
between the meta-heuristic algorithms to position error 
from the inverse kinematics task demonstrated the 
superior performance of the grey-wolf algorithm over the 
particle swarm, improved grey-wolf, jellyfish, and whale 
optimisation algorithms.  

Keywords: Grey Wolf, Robotic Arm, 6 DoF, Inverse 

Kinematics, Meta-heuristic Optimization  

I. INTRODUCTION 

The use of robotic arms has been applied to a wide 
range of processes, including pick-and-place, welding, 
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and assembly. It is essential that the end-effector of the 
robot follows the specified trajectory precisely and 
smoothly when performing automated tasks such as 
welding. To control the motion of a robotic arm, two 
factors must be considered and applied: inverse 
kinematics and trajectory planning [1]. 

The kinematic analysis (KA) describes the structure 
of a robotic manipulator mathematically. The KA 
focuses solely on the robot's movement, without 
considering the force which causes it. Furthermore, KA 
describes the relationship between the end effector and 
the base, as well as the intermediate links [2, 3]. There 
are two main categories of KA; forward and inverse 
kinematics. The forward kinematics (FK) determines the 
cartesian position of the end effector given a set of fully 
defined joint parameters. While, inverse kinematics (IK) 
utilizes joint angles, positions, and orientations to 
determine a given position and orientation of the end-
effector. The IK method is more complicated and 
requires more constraints than the forward kinematics 
method. Most robotic arm designs and analyses use 
forward kinematics and inverse kinematics [4–6]. 

Robotics relies heavily on inverse kinematics 
solutions, especially for design, analysis, calibration, 
and control tasks [7]. Nevertheless, realising IK 
solutions analytically is difficult and cumbersome, 
especially for robots with higher degrees of freedom [8]. 
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For the aforementioned reason, meta-heuristic 
algorithms such as particle swarm and a novel dual 
particle swarm have been successfully applied to solve 
the IK of 6-DOF [8] and 7-DOF [9] robots. In [10], a multi-
objective particle swarm optimization algorithm with full 
parameters was presented to minimize manipulator 
position error, joint angle change, and attitude error. 
This transforms the manipulator’s inverse kinematics 
resolution into a multi-objective optimization problem. In 
[11, 12], the inverse kinematics solution method based 
on improved particle swarm optimization for the 6-DOF 
robotic arm manipulator was presented and compared 
with a closed numerical solution. The results showed the 
improved particle swarm optimization method to be 
better than the numerical solution. In [13] multi-objective 
whale optimization was used to design an optimal 
trajectory for a humanoid robot tasked with carrying 
objects in an inclined plane.  

Aside from the metaheuristic approach in [8,9] 
several alternative ways of achieving an inverse 
kinematic solution in robotics have been proposed in 
literature. One of these methods is based on the 
combination of the damping least square method of 
Jacobian matrix singular value decomposition and 
inverted Gaussian distribution presented in [14]. By 
avoiding unique points, the technique was employed to 
ensure the continuity of joint velocity. Another inverse 
kinematic algorithm for 7-DOF redundant manipulators 
with obstacles avoidance and singularities avoidance, 
developed on a hybrid of an analytical and numerical 
method was described in [15]. The algorithm 
transformed the inverse kinematics task into the 
optimization model of elbow orientation, while additional 
tasks were formulated as fitness evaluation functions. 
Also, in [16], a product of exponentials (POE) based 
analytical inverse kinematics-based method was used 
for the space station remote manipulator system. In 
addition to avoiding the Denavit-Hartenberg technique's 
singularity, the method also has better precision over 
the POE-based numerical solution. 

Furthermore, deep artificial neural networks and 
deep learning for realising inverse kinematics resolution 
in robots were reported in [17, 18]. The authors in [18] 
showed that the deep neural network method could 
calculate the inverse kinematics of a 5-DOF robot with 
fewer input variables. A neural inverse kinematics 
method was also presented in [19]. The technique used 
the problem's hierarchical structure to identify valid joint 
angles based on the target position and the previous 
joint angle along the chain. In order to solve the inverse 
kinematics problem for robots with various numbers of 
degrees of freedom (DOF) (4, 5, 6 and 7), artificial 
neural networks (ANN) and adaptive neuro-fuzzy 
inference systems (ANFIS) were also employed in [20]. 
The performances of the methods were analysed in 
terms of precession and accuracy. A method based on 
reinforcement learning was applied to the continuous 
state and action model to find the inverse kinematics 
solution of a 5-DOF robotic arm [21]. The authors 

showed the technique can effectively resolve inverse 
kinematics. 

The use of hybrid algorithms of reinforcement 
learning and metaheuristic methods such as Grey-wolf 
optimization to solve general optimization problems was 
emphasized in [22]. When the hybrid method was used 
to solve the inverse kinematics issue, it resulted in a 
better solution. A 6-DOF robotic manipulator's motion 
trajectories were generated via the use of the grey-wolf 
optimization [23]. The method determines certain 
parameters such as optimal trajectory with the least 
tracking error and joint increasing speed. Furthermore, 
the kinematic model and trajectory planning problem of 
an industrial robotic manipulator was based on hybrid 
optimization algorithms presented in [24]. As many as 
18 metaheuristic algorithms such as particle swarm 
optimization, grey-wolf optimization, genetic algorithms 
etc., were evaluated with regard to forward, inverse 
kinematics and trajectory planning problems of an 
industrial robot. The performance of an improved grey-
wolf optimizer as an effective tool in solving global 
optimization engineering problems in robotics was 
discussed in [25, 26]. 
 

The majority of the above-reviewed literature 
focused on undertaking the issue of inverse kinematics 
of robotic arm manipulator using metaheuristic 
algorithms such as particle swarm optimization, grey 
wolf optimization etc., or a hybrid of both metaheuristic 
algorithms in conjunction with deep learning, but rarely 
conducted a comprehensive and in-depth comparison 
of these meta-heuristic algorithms. Also, utilising deep 
neural network typically requires cumbersome planning 
data [27], while traditional closed-form IK solution is only 
possible for robots that have a simple structure [28]. 
This study presents the first application of the jellyfish 
optimiser (JFO) [29] for undertaking the inverse 
kinematics problem of a 6 DoF. Hence, extending the 
findings on the performance of the JFO for solving 
engineering problems. 

Also, the study aims to comparatively evaluate the 
inverse kinematic solution of meta-heuristic algorithms 
such as the grey-wolf optimization (GWO), improved 
grey wolf optimiser (I-GWO), particle swarm 
optimization (PSO), jellyfish optimiser (JFO) and whale 
optimisation (WO) techniques. The performances of the 
algorithms have been evaluated via the end-effector 
pose error of a newly designed 6-DoF robot in the 
MATLAB simulation environment, for welding 
applications in the oil and gas industry. 
 

II. METHODOLOGY 

A. Robotic Arm Forward Kinematics 

The six degrees of freedom robotic arm manipulator 
for welding oil and Gas pipelines used as a case study, 
consists of six (6) revolute joints J1 – J6 and five links 
L1-L6 from the Base to the End-effector (EE) as shown 
in Figure 1. 
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FIGURE 1.  6-dof robot arm for oil and gas pipeline welding 
operations. 

 

The Denavit-Hartenberg (D-H) chart in Table 1, 
presents the kinematics analysis of the robotic arm. 

TABLE 1. D-H parameters. 

Link  𝜶𝒏−𝟏(rad) 𝒍𝒏−𝟏(m) 𝜽𝒏(rad) 𝒅𝒏(m) Joint 
angle 
limit 

𝑇1
0 𝛼0 = 𝜋/2 𝑙0 =  0 𝜃1 𝑑1 =  𝐿1 −𝜋 ≤ 𝜃1

≤  𝜋 

𝑇2
1 𝛼1 = 0 𝑙1 =  0 𝜃2 𝑑2 = 0 − 𝜋/2

≤ 𝜃2

≤ 𝜋/2 

𝑇3
2 𝛼2 = 𝜋/2 𝑙2 =  0 𝜃3 𝑑3 = 0 − 𝜋/2

≤ 𝜃3

≤  𝜋/2 

𝑇4
3 𝛼3 = 𝜋/2 𝑙3 = 0 𝜃4 𝑑4 =  𝐿4 − 𝜋/2

≤ 𝜃4

≤ 𝜋/2 

𝑇5
4 𝛼4 = 𝜋/2 𝑙4 = 0 𝜃5 𝑑5 =  0 −𝜋/2

≤ 𝜃5

≤  𝜋/2 

𝑇6
5 𝛼5 = 0 𝑙5 = 0 𝜃6 𝑑6 =  𝐿6 −3/4𝜋

≤ 𝜃6

≤  3/4𝜋 

 

Generic presentation of Base to End-effector 
transformation matrix is as follows:  

𝑇6
0 ≡ [

𝑥𝑥 𝑦𝑥 𝑧𝑥 𝑃𝑥

𝑥𝑦 𝑦𝑦 𝑧𝑦 𝑃𝑦

𝑥𝑧 𝑦𝑧 𝑧𝑧 𝑃𝑧

0 0 0 1

]        

                                                                                             ()

                                                  
The transformation matrix specific displacement of 

the EE to the Base reference frame of the robot in 3-

dimensional Euclidean space {𝑷𝒙, 𝑷𝒚, 𝑷𝒛} is given as 

follows: 
𝑷𝒙 = 𝐿6𝑆𝜃3(𝐶𝜃1𝑆𝜃2 + 𝑆𝜃1𝐶𝜃2) + 𝐿4𝑆𝜃3(𝐶𝜃1𝑆𝜃2 +
𝑆𝜃1𝐶𝜃2)                                                                       () 
 

𝑷𝒚 = −(𝐿6𝐶𝜃3 + 𝐿4𝐶𝜃3 + 𝐿1)                                     ()                                                                  

𝑷𝒛 =  𝐿6𝑆𝜃4𝐶𝜃3(𝐶𝜃1𝑆𝜃2 + 𝑆𝜃1𝐶𝜃2) − 𝐿4𝑆𝜃3(𝐶𝜃1𝑆𝜃2 +
𝑆𝜃1𝐶𝜃2)                                                                       () 

 

B. Grey wolf Optimization 

Recently, [30] introduced the grey-wolf optimizer 
(GWO) a novel swarm-based algorithm for solving 
Engineering problems. The GWO mimics the grey-wolf 
hunting behaviour and social hierarchy. To achieve 
optimality, the grey wolf employs three stages to hunt 
preys which include encircling, hunting and attacking 
with strict observance of social hierarchy within the wolf 
pack.  Specifically, the social structure consists of four 
types of wolfs; the alpha (α), beta (β) delta (δ) and omega 
(ϖ) in order of importance with the downline wolf 
following the next superior wolf and so on. Thus, the 
alpha secures the wolf pack with the rest wolves in the 
pack following accordingly.  

The pack’s trajectory is governed in order of 
importance based on the leadership of the first, second 
and third best wolves; the alpha, the beta and the delta 
wolves which are respectively analogous to the three 
best optimal solutions, while the optimal solution with the 
least ranking are considered as the omega wolves [31], 
[32].  

• Encircling  

The encircling course is the first step deployed by the 
wolf pack in hunting prey and it is analogous to finding 
the optimisation search space. It is expressed 
mathematically as follows:  
 

�⃗⃗� = |𝐹⃗⃗  ⃗. 𝑋𝑝
⃗⃗ ⃗⃗  (𝑖) − 𝑋𝑤

⃗⃗ ⃗⃗  ⃗(𝑖)|                                                 ()   

                                                                                    

𝑋𝑤
⃗⃗ ⃗⃗  ⃗(𝑖 + 1) = 𝑋𝑝

⃗⃗ ⃗⃗  (𝑡) − �⃗⃗� ∗ �⃗⃗�                                           ()  

                                                                                   

where, 𝑖 signifies the current iteration time step, �⃗⃗� , �⃗⃗�  

and 𝐹  are vectorized coefficients, 𝑋𝑤
⃗⃗ ⃗⃗  ⃗ and 𝑋𝑝

⃗⃗ ⃗⃗   denote the 

wolf’s and prey’s vector positions respectively. The 

vector coefficients  �⃗⃗�  and �⃗⃗�  are presented 
mathematically as follows: 
 

�⃗⃗� =2𝑎 ∗ 𝑟𝑎⃗⃗⃗                                                                       () 
                                                                                         

�⃗⃗� = 2𝑟𝑏⃗⃗  ⃗                                                                        ()    
                                                                              
Here, the magnitude of vector 𝑎  linearly decreases from 
2 down to 0 but has been improved with an exponential 
decaying term to speed up the learning process in the 
course of the simulation while,  𝑟𝑎⃗⃗⃗   and 𝑟𝑏 ⃗⃗⃗⃗ are random 

vectors 𝜖[0, 1] s.  
 

• Hunting  

In contrast to a practical hunting scenario, the 
optimal position of the prey (analogous to the global 
minimum or optimum) is unknown, therefore, rough 
estimates of the alpha, beta and the delta solutions are 
used as representative solutions. Furthermore, the 
alpha, the beta, and the delta wolfs' average positions 
are indicative of the prey's location as in (9). Thereafter, 
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the positions of the alpha, the beta and the delta wolf 
are updated towards the prey’s location as in (10): 
 

𝑋𝑝
⃗⃗ ⃗⃗  (𝑖 + 1) = (𝑋1

⃗⃗⃗⃗ + 𝑋2
⃗⃗⃗⃗ + 𝑋3

⃗⃗⃗⃗ )/3                                        ()                                                                               

where, 

{

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗  − �⃗⃗� 1 ∗ (�⃗⃗� 𝛼)

𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗  − �⃗⃗� 1 ∗ (�⃗⃗� 𝛽)

𝑋2
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗  − �⃗⃗� 1 ∗ (�⃗⃗� 𝛿)

    and {

�⃗⃗� 𝛼 = |�⃗� 𝛼𝑋𝛼
⃗⃗ ⃗⃗  − 𝑋𝑤

⃗⃗ ⃗⃗  ⃗|

�⃗⃗� 𝛽 = |�⃗� 𝛽𝑋𝛽
⃗⃗ ⃗⃗  − 𝑋𝑤

⃗⃗ ⃗⃗  ⃗|

�⃗⃗� 𝛿 = |�⃗� 𝛿𝑋𝛿
⃗⃗ ⃗⃗  − 𝑋𝑤

⃗⃗ ⃗⃗  ⃗|

        ()                                                                                       

 

• Attacking 

In reality, the wolf attacks the prey once it is close 
enough. Similarly, in GWO, the grey wolf decreasing its 
movement as it inches towards the prey is analogous to 
vector 𝑎  , the learning rate being annealed from 2 to 
down to 0 as the optimal solution (prey) is approached. 
 
C. Improved Grey wolf Optimisation (I-GWO) 

The improved grey wolf optimiser (I-GWO) was 
proposed to enhance the standard GWO performance 
by updating and eliminating R wolfs from the wolf pack 
using the fitness score and replacing the eliminated wolfs 
with an equal number of randomly generated wolfs. 
Furthermore, the I-GWO which mimics the survival of the 
fittest biological evolution principle has fewer algorithmic 
parameters than GWO and is also easier to implement 
[33]. 

D. Particle Swarm Optimization (PSO) 

Particle swarm optimisation (PSO) is a meta-
heuristic optimizer whereby particles (individuals) 
indicate a lush feeding site (optimal solution) in an 
exploration space [34]. To activate the PSO, random 
population particles have random velocity and flight are 
lunched into the problem search space. Every particle 
modifies its flight trajectory pb using self-experience as 
well as experience from adjacent particles as well as 
tracking the optimal flight trajectory gb of the particle with 
the best fitness score [34]. 
The particles position and velocity modification are thus 
achieved as thus: 
 

𝑣𝑖,𝑢
(𝑛+1)

= 𝐾 ∗ [𝑣𝑖,𝑢
(𝑛)

+ 𝑐1𝑟1 ∗ (𝑃𝑏𝑖
− 𝑝𝑖,𝑢

(𝑛)
) + 𝑐2𝑟2 ∗ (𝑔𝑏𝑖

−

𝑝𝑖,𝑢
(𝑛)

)]                                                                         () 

 

𝑝𝑖,𝑢
(𝑛+1)

= 𝑝𝑖,𝑢
(𝑛)

+ 𝑣𝑖,𝑢
(𝑛+1)

                                                () 

 

Here, 𝑣𝑖,𝑢
(𝑛+1)

 is particle i's velocity of in g- dimension in 

iteration 𝑛 + 1 and 𝑝𝑖,𝑢
(𝑛+1)

 denotes the position of particle 

i in dimension g in iteration 𝑛 + 1, while 𝑐1and 𝑐2 
respectively signifies cognitive and social acceleration 
constants.  
The constriction factor 𝐶𝑓 is presented mathematically 
as follows:  
 

𝐶𝑓 =  
2

|2−𝑌√𝑌2−4𝑌|
                                                      () 

where, 𝑌 = 𝑐1+𝑐2,𝑌 > 4                                                                                                              
Consequently, the velocity range of a particle is 
[−𝑉𝑚𝑎𝑥, 𝑉𝑚𝑎𝑥], 𝑖 = 1, 2, . . . , 𝑘;  is the quantity of swarm 

particles in 𝑢 = 1,2, … , 𝑑 problem dimensional space 
[34]. 
 
D. Whale Optimisation Algorithm 

The whale optimisation algorithm (WOA) [35] is a 
meta-heuristic optimisation algorithm developed based 
on the principles of bubble-net foraging social conduct 
of humpback whales [36]. Three phases are involved in 
a whale bubble-net foraging; prey encircling process, 
bubble-net attack and hunting prey. 
 

• Encircling prey 

This involves the encircling of prey (solution) by the 
humpback whales (search agent) upon sighting. 
Nonetheless, since the optimal position towards which 
the whale should hunt is unknown ab-initio, the current 
best whale’s position (candidate) is used while the other 
candidates update their position in the direction of the 
best whale’s position. The mathematical presentation of 
the prey encircling process is as follows: 

�⃗⃗� = |𝐶 ∗ ∅∗⃗⃗⃗⃗ (𝑘) − ∅⃗⃗ (𝑘)|    ()        

                                                                        

∅⃗⃗ (𝑘 + 1) = ∅∗⃗⃗⃗⃗ (𝑘) − 𝐴 ∗ �⃗⃗�                                            ()                                                                       

where, 𝑘 denotes the most recent iteration, 𝐴  and �⃗⃗�  are 
vector factors, the optimal solution derived via the 
position vector with the current optimal solution is 

denoted as ∅∗⃗⃗⃗⃗ (𝑘) while the position vector is 

represented as  ∅⃗⃗ (𝑘).  

The vector factors 𝐴  and 𝐶  are evaluated as follows:                                                                                      

𝐴 = 2�⃗� ∗ 𝑟𝑐⃗⃗ − �⃗� )                                                          ()  
                                                                       

 𝐶 = 2. 𝑟𝑑⃗⃗  ⃗                                       () 

where, 𝑟𝑐⃗⃗   and 𝑟𝑑⃗⃗  ⃗   denotes random factors between 0 

and 1, and  �⃗�  is reduced gradually from 2 to 0 during the 
iteration to guarantee on the one hand exploration and 
on the other hand exploitation. 
 

• Bubble-net-attack 

The constricted spiral movement the whale exhibits 
in the prey’s route is represented mathematically as 
follows: 

∅⃗⃗ (𝑘 + 1) = 𝐷′⃗⃗⃗⃗ ∗ 𝑒𝛾𝑙 ∗ cos (2𝜋𝑙) + ∅∗⃗⃗⃗⃗ (𝑘)                    ()      

                                                                    

𝐷′⃗⃗⃗⃗  =|∅∗⃗⃗⃗⃗ (𝑘) − ∅⃗⃗ (k)|                                                    ()        

                                                                      

where, 𝐷′⃗⃗⃗⃗  represents the variance between the 

𝑛𝑡ℎwhale and the whale with the best position, 𝛾 is the 
constant factor governing the logarithmic spiral form or 
circular movement, while 𝑙 denotes a random factor 
between -1 and 1.  
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• Hunting prey 
Further, to the bubble-net foraging behaviour, the 
humpback whale can also engage in a random search 
for prey. Hence, the random search behaviour is 
expressed as follows: 
 

�⃗⃗�  =|𝐶 ∅𝑟
⃗⃗ ⃗⃗ (𝑘) − ∅⃗⃗ (k)|                                                     () 

 

∅⃗⃗ (𝑘 + 1) = ∅𝑟
⃗⃗ ⃗⃗ (𝑘)-𝐴 ∗ �⃗⃗�                                              ()                                                                          

Where, ∅𝑟
⃗⃗ ⃗⃗ (𝑘) is the position of a random agent. 

 
Therefore, if |A| > 1 agents’ position is updated based 
on a random agent’s position, and by the position of the 
otherwise best solution if |A| < 1, to guarantee 
exploration and as well as exploitation respectively. 
Thereafter, the process is terminated only if the stopping 
criterion is satisfied.  
 
 
E. Jelly Fish Optimisation (JFO)  

More recently, Chou and Troung [29] proposed a 
meta-heuristic algorithm called the jellyfish optimizer 
(JFO) which is fundamentally based on the foraging 
behaviour of the jellyfish in its oceanic habitat [37]. The 
foraging mechanism is enabled primarily by two 
movement types; ocean current and swarm movements 
and a time-based switching operation presented as 
follows: 

 

• Ocean Current Motion 

This movement type involves the jellyfish drifting in 
the direction of the ocean current during the foraging 
activity. The magnitude by which the jellyfish drifts in 
search of an ideal search space is governed by the error 
difference in position between the individual jellyfish and 
the averaged positions of all the oceanic jellyfish. This 
magnitude of drift is presented mathematically as 
follows: 

 

𝑑𝑟𝑖𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =1/𝑁 ∑  𝑑𝑟𝑖𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
𝑘                                                                                                                             

           =1/𝑁 ∑(𝑥∗ −𝑎𝑐𝑥𝑘)                                                                                                             

             = 𝑥∗ − 𝑎𝑐 ∑𝑥𝑘/𝑁)                                                                                                                       

            = 𝑥∗ − 𝑎𝑐𝜇                                                             () 

 
where, 𝑥∗ represents the jellyfish which has the current-
best position in the swarm; N is the overall quantity of 
jellyfishes in the swarm; 𝑎𝑐 is an attraction factor; 𝜇 is 
the average position of all jellyfishes in the swarm. 
 

Therefore, 

,  𝐷𝑓 =  𝑎𝑐𝜇                                                                      () 

 
Where, 𝐷𝑓 denotes the average position of the jellyfish 
to the jellyfish with the current-best position.  

 
More so, the JFO assumes that the jellyfish swarm 
contains jellyfishes which are distributed normally in all 
dimensions with a standard deviation of ±𝛽𝜎 around the 

average 𝜇 position which encompasses a certain 
likelihood of the entire jellyfish, thus:  
 

𝐷𝑓 =  𝛽𝜎.𝑟1(0,1)                                                           ()                   

Set 𝜎 =𝑟2. (0,1)                                                               ()   

Where, r1 and r2 are random values generated between 
0 and 1.  
Consequently, the jellyfish’s new position is obtained as 
follows: 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟1(0,1). 𝑑𝑟𝑖𝑓𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                   ()   

Furthermore, the jellyfish’s new position is then 
updated as follows:  

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑟1(0,1). (𝑥∗ −  𝛽𝜎.𝑟1(0,1))           () 

 

• Jellyfish Swarm Motion 

The jellyfish swarm movement is categorized as; 
active (type A) or passive (type B). The active motion is 
predominant during the swarm’s initial formative period. 
Nonetheless, in time the jellyfish displays the passive 
motion by updating its position towards a random 
jellyfish in the swarm with better direction (evaluated via 
a fitness score) to a foraging location.  
The type A motion is presented as follows: 
 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝛾. 𝑟1(0,1). (UB − LB)                   ()                                                                     
 
where 𝛾 is a motion factor regarding the distance about 
the jellyfish’s location, and UB and LB represent the 
upper and lower bounds of the search environment. 
 

Similarly, type B motion is denoted mathematically 
as follows: 
 

𝑆𝑡𝑒𝑝⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑋𝑖(𝑡 + 1) − 𝑋𝑖(𝑡)                                            ()                            
 
And,  
 

𝑆𝑡𝑒𝑝⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗= 𝑟1(0,1). 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                                  ()                                                                                    
 

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {
𝑋𝑗(𝑡) − 𝑋𝑖(𝑡)   𝑖𝑓 𝑓(𝑋𝑖(𝑡)) ≥ 𝑓(𝑋𝑗(𝑡))

𝑋𝑖(𝑡) − 𝑋𝑗(𝑡)   𝑖𝑓 𝑓(𝑋𝑖(𝑡)) < 𝑓(𝑋𝑗(𝑡))
   

                                                                                  () 

where, 𝑗 is the index of the 𝑗𝑡ℎ jellyfish in the swarm and 
𝑓 is a fitness function for evaluating the position 𝑋. 
 

Also, the next position the jellyfish attains is updated 
as follows: 
 

𝑋𝑖(𝑡 + 1)=𝑋𝑖(𝑡) + 𝑆𝑡𝑒𝑝⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗                                                 () 
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• Time Control Mechanism 

The time control mechanism is responsible for 
switching between both Type A and B motions for 
exploration and exploitation of the ocean current in 
course of searching for nutritious food (optimal solution). 
The time control mechanism "𝑐(𝑡)"  is achieved using a 
constant factor and a time-based randomly controlled 
function 𝑟 with values between 0 and 1, and presented 
mathematically as follows: 
 

𝑐(𝑡) = (1 −
𝑡

𝑡𝑚𝑎𝑥
) . (2. 𝑟2 − 1)                                    ()                                                                     

 
where, 𝑡, 𝑡𝑚𝑎𝑥 indicate the defined iteration and 

maximum iteration time respectively, 𝑟2 is a randomised 
factor between 0 and 1. 
 

During foraging both type A and B are performed by 
the jellyfish inside the swarm if r2 (0, 1) > (1 −c (t)), and 
if r2(0, 1) < (1 −c (t)) respectively. Initially, type A motion 
is selected more frequently mimicking exploration, but 
as time evolves the factor, (1 −c (t)) increases and the 
chance of (1 −c (t)) being greater than r2(0,1). Hence, 
type B motion will be selected more frequently than type 
A to mimic exploitation.                                                                      

III. RESULTS AND DISCUSSION  

The meta-heuristic algorithmic parameters are 
presented in Table 2. Specifically, the maximum 
iteration and population of search agents were selected 
modestly as 50 and 10 respectively for uniformity and 
consistency [34]. The meta-heuristic algorithms were 
utilised in determining the optimal joint angles which 
enables the end effector accurately trace the 
rectangular trajectory via the six sets of waypoints 
shown in Table 3. The mean squared error (MSE) 
fitness score is used statistically to determine the 
accuracy of the effector’s desired reference position and 
its actual position controlled by the meta-heuristic 
algorithms as follows: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑷(𝒊)𝒓𝒆𝒇 − 𝑷(𝒊))

2

𝑁

𝑖=1

           , i ∈ [𝑥 𝑦 𝑧]                (34) 

Where, 𝑃(𝑖)𝑟𝑒𝑓 and 𝑃(𝑖) respectively denotes to the 

reference and actual coordinate positions of the end 
effector. 
 

TABLE 2.  Meta-heuristic algorithmic parameters. 

Parameters Meta-Heuristic Algorithms 

GWO PSO I-GWO WO JFO 

Number of Agents, N 50 50 50 50 50 

Convergence iteration  10 10 10 10 10 

learning rate 𝑎  [35] 2 - 2 - - 

Weights, w [38] - 0.5 - - - 

Acceleration, c1 [38] - 1.4 - - - 

Velocity c2 [38] - 1.4 - - - 

 

The MATLAB/Simscape/Simulink model for Joint 
angle optimization solution to the inverse kinematics 
robotic manipulator arm problem is shown in Figure 2.  
 
 

. FIGURE 2.  Robotic arm inverse kinematics architecture for 
optimised joint angles. 

 
TABLE 3.  Waypoint for the reference rectangular trajectory. 

Waypoint Reference Pose Trajectory (m) 

𝑷𝒙𝒓𝒆𝒇 𝑷𝒚𝒓𝒆𝒇 𝑷𝒛𝒓𝒆𝒇 

1 0.25 0.01 0.11 

2 0.25 0.01 0.11 

3 0.25 0.11 0.11 

4 0.15 0.11 0.11 

5 0.15 0.01 0.11 

6 0.25 0.01 0.11 

 
The optimized joint angles resulting from GWO, 

PSO, I-GWO, WO and JFO are shown in Figures 3, 4 – 
7 respectively. Furthermore, Tables 4-8 present the 
summary of the results for the End Effector pose, Joint 
angles, and position error for the GWO, PSO, IGWO, 
WO and JFO methods respectively.  

From Figures 4-8, it is clear that the metaheuristic 
algorithms all constrained the joint angles within the pre-
defined limits. Furthermore, the GWO in contrast to the 
rest algorithms has the least fitness score, which 
indicates better accuracy with respect to position error 
between the rectangular trajectory waypoints and the 
actual end effector’s pose. 
 

FIGURE 3.  GWO optimised robotic joint angles solution for 
the inverse kinematics. 
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FIGURE 4.  PSO optimised robotic joint angles solution for the 
inverse kinematics. 

 

FIGURE 5.   I-GWO optimised robotic joint angles solution for 
the inverse kinematics. 

 

FIGURE 6.  WO optimised robotic joint angles solution for the 
inverse kinematics. 

FIGURE 7.  JFO optimised robotic joint angles solution for the 
inverse kinematics. 

 

 

 

 

 

TABLE 4.  GWO optimized joint angles with end-effector pose 
performance. 

Wa
yp
oin

t 

Robot output End-
Effector Pose (m) 

Optimized input Joint Angles (Rads) MSE 

𝑃𝑥 𝑃𝑦 𝑃𝑧 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 

1 0.250
7 

0.011
0 

0.106
3 

-0.2629 0.047
6 

0.456
8 

-
0.699

9 

-
1.570

8 

-
1.565

5 

5.0e-
06 

2 0.250
7 

0.011
0 

0.106
3 

-0.2629 0.047
6 

0.456
8 

-
0.699

9 

-
1.570

8 

-
1.565

5 

5.0e-
06 

3 0.250

5 

0.111

0 

0.108

4 

0.6918 1.112

5 

-

0.520
0 

-

1.538
5 

-

0.091
8 

0.393

1 

1.3e-

06 

4 0.150

3 

0.109

5 

0.111

5 

1.2061 0.837

6 

-

1.249
0 

-

1.266
1 

-

1.038
7 

-

2.212
5 

8.4e-

07 

5 0.148
0 

0.008
0 

0.093
7 

-0.0205 0.046
6 

0.159
2 

-
1.212

5 

-
1.570

8 

-
0.115

9 

6.5e-
05 

6 0.250
7 

0.011
0 

0.106
3 

-0.2629 0.047
6 

0.456
8 

-
0.699

9 

-
1.570

8 

1.565
5 

5.1e-
06 

 
TABLE 5. PSO optimized Joint Angles with end-effector pose 

performance. 
Wa
yp
oin

t 

Robot output End-
Effector Pose (m) 

Optimized input Joint Angles (Rads) MSE 

𝑃𝑥 𝑃𝑦 𝑃𝑧 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 
1 0.240

2 
0.035

5 
0.027

5 
0.6618 -

0.604
6 

-
0.748

0 

-
0.650

8 

-
1.537

5 

0.805
9 

2.5e-3 

2 0.240
2 

0.035
5 

0.027
5 

0.6618 -
0.604

6 

-
0.748

0 

-
0.650

8 

-
1.537

5 

0.805
9 

2.5e-3 

3 0.234
7 

0.059
3 

0.195
3 

0.6323 -
0.214

3 

-
0.346

8 

-
0.095

9 

-
2.340

9 

-
1.890

9 

3.4e-
03 

4 0.195

4 

0.096

0 

0.163

1 

0.6535 -

0.466
3 

0.014

4 

-

0.505
0 

-

2.138
8 

-

0.789
0 

1.7e-

03 

5 0.212
5 

0.055
2 

0.062
4 

0.1841 0.654
9 

1.088
0 

0.528
4 

2.429
3 

1.254
7 

2.7e-
03 

6 0.240
2 

0.035
5 

0.027
5 

0.6618 -
0.604

6 

-
0.748

0 

-
0.650

8 

-
1.537

5 

0.805
9 

2.5e-
03 

 
TABLE 6. I-GWO optimized joint angles with end-effector pose 

performance. 
Wa
yp
oin

t 

Robot output End-
Effector Pose (m) 

Optimized input Joint Angles (Rads) MSE 

𝑃𝑥 𝑃𝑦 𝑃𝑧 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 
1 

0.249
1 

0.010
1 

0.108
5 0.3159 

1.209
6 

-
0.529

6 

-
1.423

4 

-
0.485

7 

-
1.949

5 

9.8e-
07 

2 
0.250

1 
0.011

1 
0.110

2 0.1509 
0.534

7 

-
0.293

1 

-
0.851

8 

-
1.382

2 

-
1.383

8 

4.3e-
07 

3 

0.248
7 

0.110
0 

0.109
4 0.7060 

0.016
0 

-

0.434
2 

-

0.671
5 

-

1.466
1 

-

1.142
1 

6.7e-
07 

4 

0.149
9 

0.109
6 

0.109
5 0.0690 

-
0.631

1 
1.169

0 

-
1.130

4 

-
1.256

2 

-
0.482

0 

1.6e-

07 

5 

0.150
4 

0.010
0 

0.110
2 -0.0936 

-
0.740

4 
0.584

0 

-
1.212

8 

-
1.519

5 
0.747

8 

7.7e-
07 

6 

0.249
6 

0.009
0 

0.109
6 -0.3049 

-

0.668
5 

0.664
3 

-

1.073
5 

-

1.013
3 

-

0.342
2 

4.2e-
07 

 
TABLE 7. WO optimized joint angles with end-effector pose 

performance. 
Wa
yp
oin

t 

Robot output End-
Effector Pose (m) 

Optimized input Joint Angles (Rads) MSE 

𝑃𝑥 𝑃𝑦 𝑃𝑧 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 
1 

0.249
1 

0.004
8 

0.058
8 -0.1020 

0.299
7 

0.211
0 

-

1.014
7 

-

1.125
3 

-

1.393
7 

8.8e-
04 

2 
0.289

0 
0.011

6 
0.123

1 -1.7919 
1.570

8 

-
0.056

0 
1.570

8 
1.570

8 
2.356

2 
5.6e-

04 

3 

0.289

0 

0.011

4 

0.123

6 -1.7922 

1.570

8 

0.470

2 

1.570

8 

1.570

8 

-
0.332

9 

3.8e-

03 

4 

0.154
7 

0.036
8 

0.003
9 -0.4222 

-
1.570

8 

-
1.570

8 

-
1.570

8 

-
0.462

7 

-
2.356

2 
5.6e-

03 

5 

0.115
7 

0.084
3 

0.057
9 0.3623 

-
1.381

3 

-
0.590

4 

-
1.522

8 

-
0.986

6 
0.390

1 
3.1e-

03 

6 -

0.074
0 

0.020
1 

0.098
0 -3.1416 

-

1.570
8 

-

1.570
8 

-

1.570
8 

-

1.570
8 

-

2.356
2 

3.5e-
02 

 
 
 
 
 

 

 

 

 



Vol 4 (2022)  E-ISSN: 2682-860X 

20 
 

TABLE 8. JFO optimized joint angles with end-effector pose 
performance. 

Wa
yp
oin

t 

Robot output End-
Effector Pose (m) 

Optimized input Joint Angles (Rads) MSE 

𝑃𝑥 𝑃𝑦 𝑃𝑧 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 
1 0.226

6 

0.044

3 

0.158

5 

0.1771 1.439

4 

-

0.616
7 

-

0.848
7 

-

1.440
3 

-

1.482
9 

1.4e-

03 

2 0.198

7 

-

0.145
7 

0.231

3 

-0.5448 1.504

5 

-

0.974
8 

-

0.815
4 

-

1.132
8 

2.174

3 

14e-

03 

3 0.389
1 

0.028
0 

-
0.030

3 

-1.7579 1.330
2 

1.465
5 

0.336
3 

1.567
6 

0.801
3 

15e-
03 

4 0.435
3 

0.101
7 

0.322
8 

0.3662 0.242
8 

-
0.307

9 

-
0.621

2 

0.528
0 

0.691
7 

42e-
03 

5 -

0.005
6 

0.097

8 

-

0.060
2 

1.6378 -

1.295
9 

-

1.473
5 

-

0.872
4 

-

1.426
9 

-

2.249
1 

20e-

03 

6 0.053
8 

0.076
5 

0.098
0 

1.1184 -
0.614

3 

-
0.702

1 

-
1.469

2 

-
1.561

3 

-
2.221

0 

14e-
03 

 
The 2D performance comparison of the GWO with 

the PSO optimization methods with regards to the 
accuracy of the position error is shown in Figures 8(a) 
and 8(b) while Figures 6(a) and 6(b) show the 3D 
representations respectively. From Figure 5(b), a 
mismatch can be observed in 3D GWO optimized plot. 
However, by isolating the Z-axis as in the 2D plot in 
Figure 8(a) reveals that the cause of the error is due to 
position error in the Z-axis which causes the depth 
mismatch. Nevertheless, this type of error will be 
addressed in future work using a suitable controller. 

Furthermore, the trajectory trace of the end effector 
optimized by PSO shows greater distortion than the 
GWO counterpart. From Figures 9(a) and 9(b), both the 
2D and 3D plots respectively both show an 
unacceptable mismatch between the reference 
trajectory and that of the end effector, indicating the 
impact of the position error and the ineffectiveness of 
PSO to obtain optimized joint angles for this particular 
Robot. 

FIGURE 8(a).  Performance of GWO IK solution in 2D. 
 

FIGURE 8(b).  Performance of GWO IK solution in 3D. 

 

FIGURE 9(a).  Performance of PSO IK solution in 2D. 

 

FIGURE 9(b).  Performance of PSO IK solution in 3D. 
 

The robot’s trajectory trace in 2D and 3D derived 

using the I-GWO are shown in Figures 10 (a) and 10 (b) 

respectively. From Figures 10 (a) and 10 (b) plot the I-

GWO was only accurate in the 2D plane. 

  

FIGURE 10(a).  Performance of I-GWO IK solution in 3D. 

 

FIGURE 10(b).  Performance of I-GWO IK solution in 3D.  

 

Figures 11 (a) and 11 (b) show the 2 D and 3 D plots 

resulting from the WO method. The WO was not able to 

trace the trajectory as shown in both the 2D and 3D 

plots. This is as a result of the error not converging to a 

negligible value (i.e., less than 1e-06).as in the case of 

the GWO and I-GWO. 

 

FIGURE 11(a).  Performance of WO IK solution in 3D. 
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FIGURE 11(b).  Performance of WO IK solution in 3D. 

 

Furthermore, the JFO trajectory traces in both 2D 

and 3 D are shown in Figures 12(a) and 12(b) 

respectively. The accuracy was the least among the 

meta-heuristic algorithms which have been compared. 
 

FIGURE 12(a).  Performance of JFO IK solution in 3D. 

 

FIGURE 12(b).  Performance of JFO IK solution in 3D. 

IV. CONCLUSION 

The inverse kinematic performances of GWO PSO, I-

GWO, WO and JFO was evaluated using the end 

effector pose error of a newly designed robot in the 

MATLAB simulation environment. The GWO, PSO, I-

GWO, WO and JFO were recursively used to optimize 

the robotic arm’s joint angles for tracing a rectangular 

trajectory. From the analysis of the results in 2D, the 

GWO had the lowest fitness score which was closely 

followed by the I-GWO for matching the rectangular 

trajectory. Nevertheless, in 3D the GWO and I-GWO 

showed errors in the Z-axis. The PSO, WO and JFO all 

had unacceptable trajectories which mismatched the 

rectangular trajectory Thus, from the investigation, only 

the GWO and I-GWO effectively solved the inverse 

kinematics problem of the newly designed robotic arm 

manipulator with 6 degrees-of-freedom for welding 

operations.  

Future work will aim to practically implement the 

robot and also improve accuracy regarding the 

reference waypoints tracking using an innovative meta-

heuristic algorithm. 
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