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Abstract - Previous research by the author has the 

theory that histograms of second-order derivatives are 
capable of determining differences between pixels in MRI 
images for the purpose of noise reduction without having 
to refer to ground truth. However, the methodology of the 
previous research resulted in significant false negatives 
in determining which pixel is affected by noise. The theory 
has been revised in this article through the introduction 
of an additional Laplace curve, leading to comparisons 
between the histogram profile and two curves instead of 
just one. The revised theory is that differences between 
the curve and histogram profile and the differences 
between the second curve and the profile can determine 
which pixels are to be selected for filtering in order to 
improve image clarity while minimizing blurring. The 
revised theory is tested with a modified average filter 
versus a generic average filter, with PSNR and SSIM for 
scoring. The results show that for most of the sample MRI 
images, the theory of pixel selection is more reliable at 
higher levels of noise but not as reliable at preventing 
blurring at low levels of noise. 

Keywords—histograms, MRI images, modified average filter, 

Laplace curves, second-order derivatives, 

I. INTRODUCTION 

This article is preceded by three other related works, 
which focus on the utilization of histograms of second-
order derivatives of pixel values in an image [1][2][3]. All 
three works utilize second-order derivatives of pixel 
values, obtained from applying a distinct Laplace 
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operator to a pixel and its neighbours. These works also 
use the observation that the frequency histogram of the 
aforementioned second-order derivatives resembles a 
Laplace curve. The theory behind these works is that the 
differences between the curve and the histogram profile 
can determine which pixel is affected by noise or low 
contrast. This paper utilizes the same ideas. 

However, the first and second related works used just 
one Laplace curve that is made using the standard 
deviation of the distribution of the second-order 
derivatives. Although there are consistencies in the 
results, such as variables that are observed to be 
proportional to the level of noise, control tests with 
ground truth images showed that there were 
considerable false negatives, i.e. the methodology that 
was used did not select some pixels that happen to be 
affected by noise. This article intends to revise the theory 
behind the first and second works. 

II. REVIEW OF PREVIOUS WORKS & REVISION OF THEORY 

The third of the previous works established the basis 
for the revision [3]. Analysis of the data in that work 
revealed that the previous theory of differences between 
just one Laplace curve and the histogram profile is not 
sufficient to avoid false negatives and false positives. 
That work led to the use of a different Laplace curve that 
is made using the peak frequency of the histogram 
profile. In the preliminary work for the research in this 
article, the third of the previous work was reexamined 
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with the use of ground truth images. The results of this 
reexamination is in Section E of Methodology. 

Hence, this article proposes the use of more than one 
curve. The first curve, which is generated with the 
standard deviation of the distribution of the derivatives, 
is retained. A second curve is generated with the peak 
frequency of the histogram profile. Thus, the theory in 
this article is the merger of the theories in the previous 
works. Differences between the histogram profile and the 
two curves are used as the factors for a noise filter that 
selects pixels for average filtering. 

III. METHODOLOGY 

A.  Samples of MRI Images 

The testing of the method that is proposed in this 
article uses a set of MRI images that are 150 in total from 
sources that include Radiopaedia and The Cancer 
Imaging Archives (TCIA). This set has been used in 
previous works [1][2][3]. The set includes images with 
many different image subjects. The images of the 
subjects were taken in different conditions and some 
have text and labels, among other visual diversity. This 
diversity has been useful for model training [4] and were 
so for the previous works, in which certain images 
revealed anomalies in the process flow of the methods. 

B. Second-order Derivatives & Their Histograms 

The use of second-order derivatives of pixel values 
and the frequency histograms of these derivatives have 
been elaborated in previous works [1][2][3]. For the sake 
of brevity and to avoid repetition, they will not be 
mentioned here. However, the use of two curves instead 
of just one in the methodology of this article still relies on 
the theory that noise contributes to the differences 
between the histogram profile and the curves. 

C. Laplace Curves on the Histogram 

As in previous works, there is a Laplace curve that is 
made using the standard deviation of the distribution of 
second-order derivatives [1][2][3]. This curve has been 
instrumental to applications of the aforementioned 
theory and remains so in the method that is proposed in 
this article. For ease of reference, this curve is referred 
to as the “first curve”. 

A second Laplace curve is introduced in the revision 
of the theory. This Laplace curve is generated such that 
its peak coincides with the top of the frequency interval 
of the second-order derivative value of zero. This is the 
curve that is used as the core of the termination 
conditions that are described in the third of the previous 
works [3]. It is used in the proposed method too. For ease 
of reference, the curve is referred to as the “second 
curve”. 

D. Differences between Heights of First and Second 
Curves and Heights of Histogram Intervals 

The first and second of the previous works utilize the 

differences between the histogram profile and the first 

Laplace curve. The following is a recitation of equations 

that have been described in these works [1][2]. 

 

𝑥1,𝑗 = ℎ1,𝑗 − 𝑓𝑗 (1) 

Where j is a distinct second-order derivative value, 

fj is the frequency of j, 
h1,j is the height of the first curve at the location of j, and 

x1,j is the difference between the height and the 

frequency. 

 

The third of the previous works utilizes the 

differences between the profile and the second Laplace 

curve. The equation that is used for the differences is 

similar. 

𝑥2,𝑗 = ℎ2,𝑗 − 𝑓𝑗 (2) 

Where f and j have been described in Equation (1), 

h2,j is the height of the second curve at the location of j, 
and 
x2,j is the difference. 

 

These differences as described in Equations (1) and 

(2) are part of the hypotheses for the method that is 

proposed in this article. The hypotheses are described 

in the next two sections. 

A reminder here is that the calculations in Equations 

(1) and (2) are performed for every image, be it the 

ground truth or its versions that have Rician noise 

introduced into them. 

E. First Hypothesis 

The aforementioned preliminary work, which is the 
reexamination of the third of previous work, resulted in 
the first hypothesis of the proposed method. The first 
hypothesis considers the following conditions that a 
pixel has with regard to its second-order derivative 
value, the frequency of that distinct value and the 
heights of the points on the curves that correspond to 
the second-order derivative value. These conditions are 
similar to the conditions that are described in the third 
previous work [3]. 
 
Condition No. 1: The second-order derivative value of 
the pixel has a frequency that is below the 
corresponding frequencies of both Laplace curves. 
 
Condition No. 2: The second-order derivative value of 
the pixel has a frequency that is above the 
corresponding frequencies of both Laplace curves 
 

FIGURE 1(a) shows one of the MRI images that were 

used in the preliminary work. Incidentally, this is the 

image that was featured in the previous works. Its 

second-order histogram and Laplace curves happen to 

be convenient for illustrating methodologies in the 

previous works. It is just as useful here. 

 



Vol 3 (2021)  E-ISSN: 2682-860X 

28 
 

 

FIGURE 1(b) shows the histogram of second-order 

derivative values for the image in FIGURE 1(a). The 

curve that is labeled σ1 is the first curve, whereas the 

curve that is labeled σ2 is the second curve; the first and 

second curves have been described earlier in section C. 

σ1 is also the standard deviation of the distribution of the 

second-order derivatives. σ2 is the standard deviation 

that is derived from the Laplace probability distribution 

function (PDF) for the second curve. 

The number of pixels that meet the aforementioned 

conditions is determined. The results for the image in 

FIGURE 1(a) are shown in Table 1. Next, the 

percentages of pixels that meet the two conditions and 

are affected by noise are determined. This is done by 

referring to the ground truth image. Table 2 shows the 

results for the image in FIGURE 1(a). 

The percentages in Table 2 are observed to be under 

those in Table 1, in terms of magnitude. This is expected 

because not all of the pixels that meet conditions no. 1 

and 2 are affected by noise. However, since the 

percentages in both Tables are based on the total 

number of pixels in the image, the percentages in Table 

2 are not significantly far from those in Table 1, 

especially at higher levels of noise. In other words, the 

pixels that meet conditions no. 1 and 2 do indicate the 

severity of noise. A reminder here is that conditions no. 

1 and 2 do not make use of the ground truth image.  

TABLE 1. Percentages of pixels in MRI image of Figure 1 that 
meet conditions no. 1 & 2 as noise level increases. 

Standard 
deviation of 

distribution of 
Rician noise 

introduced into 
MRI image in Fig. 

1 

Percentages of pixels in MRI image 
of Fig. 1 that meet the conditions 

involving differences between 
histogram intervals and Laplace 

curves 

Condition no. 1 Condition no. 2 

   
2 42.22% 28.78% 
   

4 38.91% 58.40% 
   

6 35.04% 63.48% 
   

8 31.48% 66.39% 
   

10 29.93% 66.18% 
   

12 30.89% 64.45% 
   

16 33.33% 65.55% 
   

20 32.71% 65.80% 
   

TABLE 2. Percentages of pixels in MRI image of Figure 1 that 
meet conditions no. 1 & 2 and are affected by noise as noise 

level increases. 

Standard 
deviation of 

distribution of 
Rician noise 

introduced into 
MRI image in Fig. 

1 

Percentages of pixels in MRI image 
of Fig. 1 that meet the conditions 

involving differences between 
histogram intervals and Laplace 
curves and are affected by noise 

Condition no. 1 Condition no. 2 

   
2 32.59% 24.45% 
   

4 34.48% 52.87% 
   

6 32.17% 59.46% 
   

8 29.21% 63.37% 
   

10 28.12% 63.80% 
   

12 29.33% 62.50% 
   

16 31.88% 64.03% 
   

20 31.55% 64.52% 
   

 

Furthermore, the summed percentages of pixels that 

meet conditions no. 1 and 2 and are affected by noise in 

Table 2 happen to approach 100% as noise levels 

become higher. 

Thus, the first hypothesis of this article is that the 

number of pixels that meet conditions no. 1 and 2 can 

be used to estimate the amount of pixels to be selected 

for filtering. The caveat of which pixels to select is 

addressed by the second hypothesis. 

 

FIGURE 1(a). MRI image of breast fibroadenoma. 

Frequency 

723 

σ1 = 51 
0 
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FIGURE 1(b). Histogram of 2nd-order derivatives for Fig. 1(a). 
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F. Second Hypothesis 

The second hypothesis of the proposed method 

considers how the level of noise affects pixels across 

the breadth of the histogram of second-order 

derivatives. The foreknowledge that is needed for this 

hypothesis is the effect of noise on the second-order 

derivatives of the pixels, which has been demonstrated 

in the first of the previous works [1]. 

To reiterate that previous work, at low levels of noise, 

the changes in the second-order derivative values are 

small, such that the effects are most significant in pixels 

that have similar intensity values, e.g. pixels with near-

zero second-order derivatives. At higher levels of noise, 

the effects of noise are more severe such that pixels 

with second-order derivative values that are significantly 

greater in magnitude than zero, i.e. pixels further away 

from the vertical axis of the histogram, are affected by 

noise. 

Therefore, the second hypothesis is that the selection 

of pixels should begin with pixels that have second-

order derivative values of near-zero, before moving on 

to pixels with second-order derivatives of higher 

magnitudes. 

G. Selection of Pixels 

Pixels in the image are to be selected according to the 

stipulations as mentioned in the hypotheses. The extent 

of the pixels that are selected is determined by the ratio 

of pixels that meet conditions no. 1 and 2 to the total 

number of pixels that are on either side of the histogram. 

This ratio is calculated according to Equation (3). 

 

𝑅<0 =
𝑛1,𝑗<0 + 𝑛2,𝑗<0

∑ 𝑁𝑗<0

  
(3) 

Where R<0 is the aforementioned ratio for the left side of 

the histogram, i.e. the side with distinct second-order 

derivative values that are negative, 

j<0 represents a distinct second-order derivative value 

that is negative, 

ΣNj<0 is the total number of distinct second-order 

derivative values that are negative, 

n1, j<0 and n2, j<0 are the numbers of distinct second-order 

derivative values that are negative, and which 

respectively meet conditions no. 1 and 2 as described in 

section E. 

Equation (4), which is the converse of Equation (3), is 

for the distinct second-order derivative values that are 

positive, i.e. the right side of the histogram. 

 

𝑅>0 =
𝑛1,𝑗>0 + 𝑛2,𝑗>0

∑ 𝑁𝑗>0

  
(4) 

For emphasis, the ratios of R<0 and R>0 are not based 

on numbers of pixels. Rather, they are based on the 

number of distinct second-order derivative values. 

 

𝑁𝑅,𝑗<0 ≈ (𝑅<0)(𝑛1,𝑗<0 + 𝑛2,𝑗<0) (5) 

𝑁𝑅,𝑗>0 ≈ (𝑅>0)(𝑛1,𝑗>0 + 𝑛2,𝑗>0) (6) 

Each ratio is then multiplied with the sum of n1 and n2 

for its respective side of the histogram to give the 

number of distinct second-order derivative values that 

will be targets of the pixel selection process. This 

number is NR, j>0 for the positive side of the histogram and 

NR, j<0 for the negative side as described in Equations (5) 

and (6). 

−𝑁𝑅,𝑗>0 ≤ 𝑗 < 0 (7) 

0 < 𝑗 ≤ 𝑁𝑅,𝑗>0 (8) 

The numbers are then used to designate the distinct 

second-order derivative values that will be part of the 

pixel selection process. Equations (7) and (8) show the 

ranges of values that will be targeted. Any pixels with 

second-order derivative values that are within these 

ranges will be selected for average filtering. 

This has been implemented as a response to the 

findings of the preliminary work as described in Tables 

1 and 2, which is that not every pixel is affected by noise. 

A similar hypothesis has been posed in a previous work 

about noise reduction, in which the pixels with second-

order derivative values that are closer to zero are 

processed before the others [2]. 

 

H. PSNR, SSIM & Control Tests 

As in the previous works, PSNR and SSIM scores are 

used to measure the results of the tests. The scores are 

calculated by using the aforementioned 150 sample MRI 

images as ground truth images. 

The control tests are performed using a generic 

average filter, which is typically applied on every pixel; 

this is otherwise known as the mean filter. Variants and 

modifications of the average filter have been used in the 

history of image processing because of the convenience 

of their implementation in programming and 

effectiveness on correcting pixels with significant noise 

[5]. Control tests for these filters use the generic 

average filter for comparing their results with those of 

the generic original, so the work that is described in this 

article does the same. 

 

I. Goal of Testing 

Ideally, the proposed conditions for selecting pixels 

for average filtering is to select pixels that are affected 

by noise while avoiding the pixels that are not. However, 

this is not possible without referring to the ground truth 

image [6]. Attempts like the preliminary work, as 
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described in Table 2, could not produce a reliable 

method of identifying pixels that are affected with noise 

without the aforementioned referral. 

Thus, the goal of the test would involve measuring the 

PSNR and SSIM scores of the results of both sets of 

tests, and comparing them with each other. The 

outcome is considered to be in the favor of the proposed 

methodology if the PSNR and SSIM scores for the tests 

with the methodology are consistently higher than those 

for the control tests. 

IV. RESULTS & DISCUSSION 

A. Example of Filtering with the Proposed 
Methodology 

The MRI image in FIGURE 1 and its noisy versions 

are used as an example to demonstrate the results of 

the filtering. Tables 3 and 4 show the results for the tests 

on the image. The results for the tests with the proposed 

method are represented by the second and third 

columns from the left in Tables 3 and 4. Results of the 

tests with the control tests are represented by the fourth 

and fifth columns. 

Table 3 shows that the proposed method does not 

always produce higher PSNR and SSIM results for 

every level of noise for this MRI image. Similar results 

would be had for other specific MRI images too, thus 

suggesting that the image subject is a factor. 

Incidentally, this finding has occurred in two of the 

previous works as well [2][3]. 

However, when the results across the 150 sample 

images and their noisy variants are considered, there is 

a trend of the proposed method producing generally 

higher PSNR and SSIM scores than the control tests. 

TABLE 3. PSNR & SSIM scores for the MRI image in Figure 1 
across Rician noise levels of standard deviation of 2 to 10. 

Scores 

Standard deviation of noise 
distribution in noisy MRI image 

2 4 6 8 

     
PSNR before filtering 42.35 36.48 33.01 30.43 

     
SSIM before filtering 0.999 0.998 0.996 0.993 

     
PSNR after filtering 

with proposed method 
38.18 33.93 33.55 32.61 

     
SSIM after filtering with 

proposed method 
0.999 0.997 0.997 0.996 

     
PSNR after filtering 

with control test 
35.45 34.62 33.51 32.23 

     
SSIM after filtering with 

control test 
0.998 0.997 0.997 0.995 

     

 

B. Results of Tests on Sample MRI Images 

Table 5 shows the results across the 150 sample MRI 

images. In the case of these results, the exact PSNR 

and SSIM scores for each image and its noisy versions 

have been omitted for the sake of brevity. Instead, the 

results are tabulated according to the method shown in 

Tables 5 and 6.  

The results in both tables have been arranged 

according to levels of Rician noise so as to examine the 

effectiveness of the proposed method as noise 

increases in severity. 

The data in Table 5 is obtained from the ratio of the 

PSNR score achieved by the proposed method to the 

score achieved by the control test. Ratios are used 

instead of numerical differences because of the wide 

variation in the scores due to the use of images with 

varying image subjects. To present the results across 

the sample images, the average of the ratios and their 

standard deviation are calculated for each level of noise 

[7]. The table also includes a column on the number of 

images where the ratio is less than 1, i.e. where the 

control test performed better.  

The data in Table 6 is obtained from the difference 

between the SSIM score achieved by the proposed 

method and the score achieved by the control test. 

Since the range for the SSIM score is limited between 

zero and unity, these differences are sufficient for the 

presentation of the data. As in Table 5, averages and 

standard deviations of the differences are calculated for 

each level of noise. There is also a column on the 

number of images where the difference is negative, i.e. 

where the proposed method performed worse. 

 

 

TABLE 4. PSNR & SSIM scores for the MRI image in Figure 1 
across Rician noise levels of standard deviation of 12 to 20. 

Scores 

Standard deviation of noise 
distribution in noisy MRI image 

10 12 16 20 

     
PSNR before filtering 28.40 26.78 24.09 22.27 

     
SSIM before filtering 0.989 0.984 0.971 0.949 

     
PSNR after filtering 

with proposed method 
31.35 30.71 28.45 24.47 

     
SSIM after filtering with 

proposed method 0.994 0.994 0.989 0.967 

     
PSNR after filtering 

with control test 
30.99 29.79 27.57 23.84 

     
SSIM after filtering with 

control test 
0.994 0.992 0.987 0.961 
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TABLE 5. PSNR scoring for tests across the 150 sample MRI 
images. 

Standard 
deviation of 

noise 
distribution 

Average of 
ratios of 

PSNR scores 
by the 

proposed test 
over the 

PSNR scores 
by the control 

tests 

Standard 
deviation  of 

ratios of 
PSNR scores 

by the 
proposed test 

over the 
PSNR scores 
by the control 

tests 

Number of 
images 

where the 
proposed 
test has 
lesser 

performanc
e than the 

control test 

    
2 1.0886 0.1425 40 
    

4 1.0676 0.1145 33 
    

6 1.0582 0.0923 19 
    

8 1.0528 0.0757 17 
    

10 1.0518 0.0640 17 
    

12 1.0545 0.0566 14 
    

16 1.0653 0.0438 9 
    

20 1.0730 0.0417 7 
    

 

Both Tables 5 and 6 show that the proposed method 

of selecting pixels with the use of histograms of second-

order derivatives generally has better performance than 

the control test across all levels of noise. The 

performance also improves with increasing levels of 

noise, as indicated by the increasing averages in both 

Tables. Furthermore, the decreasing magnitudes of the 

standard deviations in both Tables suggest that the 

reliability of the proposed method improves as noise 

levels increase. 

As a reminder, blurring can occur for images with low 

levels of noise if a noise filter selects more pixels for 

processing than it should. The control test uses a typical 

average filter, so it is selecting every pixel there is in an 

image. The proposed method does not select all of 

them, as mentioned earlier in the Methodology section; 

ideally, this should result in less blurring.  

However, the data that is represented by the fourth 

column in both Tables has been included to determine 

any setback or caveat in the proposed method. From 

this data in the results, the proposed method evidently 

could not prevent blurring at low levels of noise and 

more importantly, it has not selected many of the pixels 

that are affected by noise; the control test certainly has 

included these pixels for processing, so the control test 

performed better for these images. 

On the other hand, the same columns also show that 

the number of images where the proposed method has 

lesser performance decreases as the noise level 

increases, thus further reinforcing the aforementioned 

impression that the proposed method has improved 

performance and reliability as noise levels increase. 

TABLE 6. PSNR scoring for tests across the 150 sample MRI 
images. 

Standard 
deviation of 

noise 
distribution 

Average of 
differences 

between 
SSIM 

scores by 
the 

proposed 
test and the 

SSIM 
scores by 
the control 

tests 

Standard 
deviation  of 
differences 

between 
SSIM scores 

by the 
proposed test 
and the SSIM 
scores by the 
control tests 

Number of 
images where 
the proposed 

test has 
lesser 

performance 
than the 

control test 

    
2 0.0049 0.0194 39 
    

4 0.0047 0.0191 31 
    

6 0.0049 0.0187 20 
    

8 0.0050 0.0183 18 
    

10 0.0052 0.0177 18 
    

12 0.0058 0.0174 14 
    

16 0.0083 0.0154 8 
    

20 0.0114 0.0142 7 
    

C. Checks on False Negatives and False Positives 

The proposed method is not subjecting every pixel to 
average filtering, i.e. it is selecting specific pixels as 
described in section G of the Methodology. Thus, the 
pixels that are selected have to be checked against the 
corresponding pixels in the ground truth image for any 
presence of noise that has been introduced in the noisy 
versions of the ground truth images . 

Specifically, the values of the pixels that have been 
selected are compared with those of their counterparts 
in the ground truth image. If they are equal, this is a false 
positive, i.e. the proposed method has selected a pixel 
that does not have noise introduced to it. The values of 
the pixels that have not been selected are also 
compared with those of their counterparts. If they are not 
equal, this is a false negative, i.e. the proposed method 
did not select a pixel that has noise introduced to it. 

To present the data of these checks across the 
sample images, the amounts of false negatives and 
false positives are presented as a percentage of the 
number of false negatives to the total number of pixels 
that are not selected, whereas the amount of false 
positives are presented as a percentage of the number 
of false positives to the total number of pixels that are 
targeted. For juxtaposition, the amounts of false 
negatives and positives are also presented as 
percentages of the total number of pixels in an image. 
The results are shown in Tables 7 and 8. 

According to Table 7, the proposed method exhibits 
less false positives on average as noise levels increase. 
However, the standard deviation does not share the 
same trend. 
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TABLE 7. False positives and false negatives, according to 
noise level and percentage of pixels selected and not selected. 

Standard 
deviation of 

noise 
distribution 

Average percentage 
(%)a of pixels with 
false positives and 
standard deviation  

Average percentage 
(%)b of pixels with 

false negatives and 
standard deviation  

   
2 24.05 ± 7.39 78.03 ± 4.11 
   

4 14.87 ± 7.23 88.08 ± 4.26 
   

6 11.63 ± 7.18 91.20 ± 4.59 
   

8 9.99 ± 7.14 92.62 ± 4.71 
   

10 8.99 ± 7.11 93.17 ± 5.11 
   

12 8.32 ± 7.10 93.55 ± 5.24 
   

16 7.50 ± 7.09 93.78 ± 5.75 
   

20 7.06 ± 7.15 94.19 ± 6.03 
   

a. The percentage is calculated according to the fraction of the pixels that have 
false positives over the number of pixels that have been selected for filtering. 
b. The percentage is calculated according to the fraction of the pixels that have 
false negatives over the number of pixels that have not been selected for 
filtering. 

 
This suggests that the decreasing average is not a 

sign of improving performance at avoiding false 
positives. Instead, the increasing proportion of pixels 
that are affected by noise as the noise level increases 
would mean that most of the pixels that the proposed 
method would select are already affected by noise, thus 
reducing the possibility of a false positive. 

This impression is further reinforced with the finding 
that the average percentage of false negatives 
increases as noise level increases. As the noise level 
increases, there are fewer pixels that are not affected by 
noise, so the likelihood of a pixel that is not selected 
having noise increases.  

Table 8 is included here to allay the impression that 
the proposed method fares poorly at avoiding false 
outcomes. While Table 7 presents the percentages as 
percentages of the numbers of pixels that are or are not 
selected, Table 8 presents them as percentages of the 
total number of pixels in the image instead. From Table 
8, the proposed method appears to have a trend of 
improvement as the noise level increases, if its 
performance is to be measured against the total number 
of pixels in the image instead of the numbers of pixels 
that have or have not been selected. 

However, that the standard deviations for the 
percentages in Table 8 have opposing trends for false 
positives and false negatives would suggest that this 
seeming improvement is mainly due to there being more 
pixels that are affected by noise and fewer pixels that 
are not, as mentioned earlier. In other words, the 
proposed method has fewer occurrences for false 
negatives and negatives as noise level increases. 

TABLE 8. False positives and false negatives, according to 
noise level and percentage of total number of pixels in an 

image. 

Standard 
deviation of 

noise 
distribution 

Average percentage 
(%)c of pixels with 
false positives and 
standard deviation  

Average percentage 
(%)d of pixels with 

false negatives and 
standard deviation  

   
2 21.32 ± 5.56 7.92 ± 7.10 
   

4 13.53 ± 6.08  6.90 ± 6.99 
   

6 10.78 ± 6.33 5.62 ± 6.51  
   

8 9.40 ± 6.51 4.72 ± 6.40  
   

10 8.56 ± 6.61 3.81 ± 5.51  
   

12 8.00 ± 6.69 3.05 ± 4.58  
   

16 7.30 ± 6.76 1.95 ± 2.67  
   

20 6.89 ± 6.84  1.66 ± 2.55  
   

c. The percentage is calculated according to the fraction of the pixels that have 
false positives over the total number of pixels in an image. 
d. The percentage is calculated according to the fraction of the pixels that have 
false negatives over the total number of pixels in an image. 

V. CONCLUSION 

The proposed method of pixel selection through the 

use of statistical data from a histogram of second-order 

derivatives has significant performance and reliability at 

higher levels of noise when this is measured via PSNR 

and SSIM. The results also show that the revised theory 

of having two Laplace curves to compare the histogram 

against is more reliable than the previous theory of using 

only one curve that is based on the standard deviation 

of the distribution of the second-order derivative values 

of the pixels in the image. 

However, when the performance of the method is 

measured according to whether the pixel that is selected 

for filtering is affected by noise or not, the finding is that 

the proposed method performs better at filtering pixels 

with noise at higher levels of noise by virtue of there 

being more pixels with noise that it would select. Yet, the 

performance of the method when measured in 

comparisons of PSNR and SSIM would suggest that 

selecting pixels through analysis of the second-order 

histogram is a viable choice.  

In other words, there is space for improvement, 

namely how the selection algorithm could be modified 

further in order to provide an estimate of the noise that 

may be possibly affecting a pixel. The introduction of the 

second Laplace curve as another variable in the 

analysis supports the notion that more distinctly different 

types of data from the histogram is needed in order to 

improve the reliability of any theories that utilize a 

histogram of second-order derivative values of pixels for 

the processing of an image. 

 



Vol 3 (2021)  E-ISSN: 2682-860X 

33 
 

REFERENCES 

[1] W.T. Chan, K.S. Sim & F.S. Abas, “Contrast Measurement with 
Histograms of Second-order Derivatives of Pixels for Magnetic 
Resonance Images,” Engineering Letters, vol. 27, no. 2, pp. 390-
395, 2019.  

[2] W.T. Chan, K.S. Sim & F.S. Abas, “Pixel Filtering and 
Reallocation with Histograms of Second-order Derivatives of 
Pixel Values for Electron Microscope Images,” International 
Journal of Innovative Computing Information and Control, vol. 14, 
no. 3, pp. 915-928, 2018. 

[3] W.T. Chan & K.S. Sim, “Termination Factor for Iterative Noise 
Reduction in MRI Images Using Histograms of Second-order 
Derivatives,” International Journal of Computer Science, vol. 48, 
no. 1, pp. 174-180, 2021. 

[4] Y. Gao, Y.Y. Wang & J.H. Yu, “Optimized Resolution-Oriented 
Many-to-One Intensity Standardization Method for Magnetic 
Resonance Images,” Applied Sciences, vol. 9, no. 24, pp. 5531, 
2019. 

[5] H.P. Singh, A. Nigam, A.K. Gautam, A. Bhardwaj & N. Singh, 
“Noise Reduction in Images using Enhanced Average Filter,” in 
International Conference on Advances in Computer Engineering 
& Applications (ICACEA-2014), 2014, pp. 25-28. 

[6] R.C. Gonzalez & R.E. Woods, Digital Image Processing, 4th 
Edition, Pearson, 2018. 

[7] V. Kumar & P. Gupta, “Importance of Statistical Measures in 
Digital Image Processing,” International Journal of Emerging 
Technology and Advanced Engineering, vol. 2, no. 2, pp. 56-62, 
2012.  

[8] M. Rottman, K. Maag, R. Chan, F. H¨uger, P.  Schlicht & H. 
Gottschalk, “Detection of False Positive and False Negative 
Samples in Semantic Segmentation”, Computer Vision and 
Pattern Recognition, arXiv:1912.03673 [cs.CV], 2019. 

 


