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Enhancing LLM Efficiency: A Literature Review of Emerging 
Prompt Optimization Strategies

Asyafa Ditra Al Hauna*, Andi Prademon Yunus, Masanori Fukui and Siti Khomsah

Abstract – This study focuses on enhancing the 
performance of Large Language Models (LLMs) through 
innovative prompt engineering techniques aimed at 
optimizing outputs without the high computational 
costs of model fine-tuning or retraining. The primary 
objective is to investigate efficient alternatives, such as 
black-box prompt optimization and ontology-based 
prompt refinement, which improve LLM performance by 
refining prompts externally while maintaining the 
model's internal parameters. The study explores 
various prompt optimization techniques, including 
instruction-based, role-based, question-answering, and 
contextual prompting, alongside advanced methods 
like CoT and ToT prompting. Methodologically, the 
research involves a comprehensive literature review, 
benchmarking prompt optimization techniques against 
existing models using standard datasets such as Big-
Bench Hard and GSM8K. The study evaluates the 
performance of approaches like APE, PromptAgent, 
self-consistency prompting, and many more. The 
results demonstrate that these techniques significantly 
enhance LLM performance, particularly in tasks 
requiring complex reasoning, multi-step problem-
solving, and domain-specific knowledge integration. 
The findings suggest that prompt engineering is crucial 
for improving LLM efficiency without excessive 
resource demands. However, challenges remain in 
ensuring prompt scalability, transferability, and 
generalization across different models and tasks. The 
study highlights the need for further research on 
integrating ontologies and automated prompt 
generation to refine LLM precision and adaptability, 
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particularly in low-resource settings. These 
advancements will be vital for maximizing the utility of 
LLMs in increasingly complex and diverse applications. 

Keywords—Prompt Optimization, Prompt Engineering, 

Black-Box, Ontology, Large Language Models. 

I. INTRODUCTION 

The rapid advancement of LLMs has led to their 
widespread use in automating diverse tasks. Despite 
their growing application, the effectiveness of LLMs in 
executing specific tasks remains heavily influenced by 
the quality of the prompts provided. Latest studies 
indicate that variations in prompt formatting can 
produce differing outcomes [1]. Recent approaches 
have been introduced to enhance the performance of 
LLMs through prompt engineering. For instance, 
ensemble prompt techniques have been proposed to 
boost the efficacy of in-context learning (ICL) [2]. 
Additionally, fine-tuning (adapting pre-trained LLM to 
task-specific data) strategies that incorporate prompts 
into the fine-tuning process have been suggested to 
address challenges such as hallucination and 
reproducibility issues [3]. Lately, a new role, termed 
prompt engineer, has emerged to address the 
challenge of prompt optimization. Considerable 
research efforts have been directed toward enhancing 
LLM prompts through various methodologies. These 
include directly utilizing LLMs' pre-existing knowledge 
and capabilities, fine-tuning them for particular 

 

International Journal on Robotics, 
Automation and Sciences 

 

https://doi.org/10.33093/ijoras.2025.7.1.9
http://journals.mmupress.com/ijoras
mailto:alditra@student.telkomuniversity.ac.id
https://orcid.org/0009-0005-3098-5386
mailto:alditra@student.telkomuniversity.ac.id
mailto:andiay@telkomuniversity.ac.id
mailto:fukui_m@iwate-pu.ac.jp
mailto:sitijk@telkomuniversity.ac.id


Vol 7 No 1 (2025)  E-ISSN: 2682-860X 

73 
 

applications, or retraining the models for specialized 
tasks. However, fine-tuning or retraining often incurs 
significant computational and financial costs. To 
address these limitations, a technique known as black-
box prompt optimization has been introduced, which 
seeks to improve LLM performance without modifying 
the model's internal parameters, offering a more cost-
effective solution by optimizing solely through the 
prompt. Furthermore, an additional method, ontology-
based enhanced prompt optimization, has been 
proposed, which incorporates knowledge 
representation to refine the prompts provided to LLMs, 
thereby enhancing their overall efficiency. 

II. TRENDS 

Figure 1 depicts a significant increase in research 
on prompt optimization in 2023. This surge can be 
attributed to several pivotal events, including the rise 
of open-source LLMs and the availability of powerful 
LLMs that offer APIs, enabling researchers to utilize 
and test these models with the methods they propose. 
Additionally, the growing urgency for effective human-
AI collaboration has highlighted challenges in crafting 
prompts that guide LLMs in executing assigned tasks.  
 
 

 
FIGURE 1.  Trend of prompt optimization methods. 

III. LITERATURE REVIEW 

A. Prompt Engineering Techniques 

(basics) Instruction-based prompt 

In natural language processing (NLP), prompt 
engineering involves developing instruction-based 
input prompts that direct language models to perform 
specific tasks efficiently. These prompts are crafted to 
mirror human-like instructions. For instance, in [4], 
instruction-based prompting is utilized to delineate the 
scope and limitations of a given task and address tasks 
related to fallacy detection, using prompts such as 
"Given a text segment, identify the fallacy,” A similar 
approach is utilized in [5] during the instruction tuning 

phase of the language model for further refinement and 
enhancement of its performance in zero-shot learning 
tasks, where the model is required to perform a task it 
has not been explicitly trained on by leveraging general 
knowledge and contextual understanding derived from 
its training data. With instruction tuning, the model 
becomes exposed to all types of instructions and 
learns how to generalize between different tasks for 
improved adaptability. 

(basics) Role-based prompt 

Since LLMs are typically trained on diversified sets 
of tasks, their general-purpose capabilities tend to be 
more general. It obviously may come at the cost of 
being less effective in specialized or domain-specific 
requests. In order to overcome this challenge, various 
techniques of role prompting have been advanced, 
especially instructing the LLM to behave like an expert 
in some domain. For example, a role may be specified 
thus: "You are a math professor, [task], [desired result 
format],” Moreover, research supports the view that 
role prompting enhances the reasoning capabilities of 
LLMs. In work [6], role prompting outperformed the 
zero-shot method on 12 datasets dedicated to 
reasoning. In [7], multi-domain adaptation is allowed 
for LLMs by introducing three key components: self-
distillation, role prompting, and role integration. Its 
setting has been proven effective for tackling some 
particular challenges of LLMs, such as catastrophic 
forgetting or interdomain confusion. 

(basics) Question-Answering-based Prompt 

Because ambiguous or irrelevant responses have 
occurred too frequently, LLMs rely on additional 
context to better understand the task or question. 
Related to this problem, the answer needs a clearer 
context and vague framing. The development of a 
question-answering-based prompt technique has 
addressed this problem. The approach utilizes 
templates such as "[context] [question] [desired output 
format]," [8] where context provides relevant 
background information to help the model understand 
the scope or domain of the problem. In contrast, the 
desired output format specifies the expected response 
type: a closed-one, for example, yes/no, or an opener 
with specific formats. Likewise, in [9], this question-
answering prompt strategy was used, where they 
performed data augmentation, a technique applies to 
creating additional training data by modifying existing 
data. It created relevant data, and the consistency was 
strict because it combined cloze (fill-in-the-blank 
exercises designed to predict the missing words) and 
QA tasks. In addition, in [10], the authors constructed 
ProQA by constructing the input schema similarly in 
order for the model to balance knowledge 
generalization among the QA tasks and allow the 
model to tailor knowledge customization toward every 
individual QA task. 

(basics) Contextual-based Prompt 

While applications can be general, contextual 
prompting has become a major stride in increasing 
language models' powers, particularly in domain-
specific applications. Although conventionally, LLMs 
have relied on graph-based structures to supplement 
their knowledge of domain-specific entities [11], this is 
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commonly insufficient as many entities are 
underrepresented or missing in today's knowledge 
bases. One way to address this challenge is the 
introduction of contextual prompting, which integrates 
information relevant to the task into the prompts to 
improve the model's understanding capability. This 
approach was explored in [12], where textual data 
were provided as a prompt, which fine-tuned the model 
and allowed it to learn from the particular tasks and 
knowledge encoded in texts. Additionally, contextual 
prompting works around the limitation of static 
prompting (pre-defined prompts that remain 
unchanged regardless of the task), which is mostly 
inappropriate for dynamic contexts. For example, static 
prompts in [13] cannot handle multi-turn dialogue 
scenarios. At the same time, contextual prompting 
allowed much flexibility and responsiveness, which 
was more befitting for task-oriented systems. 

(Advance) Zero-shot, one-shot, and Few-Shot 
Prompting 

Zero-shot prompting is a method where task 
instructions are given to the LLM alone, without any 
additional supporting task-specific information. The 
model draws only on knowledge acquired during 
previous training in this approach [14]. Countless 
research has been conducted showing that, without 
resorting to expensive task-specific fine-tuning, 
models can approach and solve acquainted complex 
tasks successfully: [15], [16], [17], [18]. In privacy 
areas, zero-shot prompting has been used to create 
systems that generate sanitized documents by 
minimizing the risks of deanonymization attacks, 
attempts to re-identify individuals from data that has 
been anonymized. This is preferred because it is 
important to maintain privacy; it avoids the use of 
sensitive data or particular tasks to train models [19]. 
Another field of application for zero-shot prompting has 
been clinical information extraction. Here, it helps 
address the challenges brought about by the scarcity 
of labeled data in clinical NLP [20]. 

On the other hand, one-shot prompting means that 
a single example or 'shot' is contained in the prompt 
given to the language model. This one sample 
represents how a task is accomplished [21]. One such 
application with one-shot prompting in SPARQLGEN 
reduces dependence on resource-intensive training by 
generating SPARQL queries from natural language 
input. Training in such a manner requires only the 
model to provide one SPARQL example query and a 
fragment of the knowledge graph to generalize and 
build needed queries without special training [22]. In 
the Automated Short Answer Grading (ASAG) model, 
a model designed to assess students’ short textual 
responses, adaptation has been done so that one-shot 
prompting is used to extract key points from the 
justification in students' responses. Typically, in 
evaluation, multi-part questions, which are 
indispensable, especially in low-resource educational 
settings [23], would be critical for assessing 
correctness [80], [82]. 

Few-shot prompting involves giving a small number 
of task examples along with the prompt to enable the 
LLMs to recognize patterns and generalize to unseen 
queries. It is advantageous, as it is extremely difficult 

to collect large amounts of annotated or labeled data 
in many cases. Indeed, as shown in [24], few-shot 
prompting can be adapted to prompt-based fine-tuning 
by aligning prompt formats during pretraining (training 
process lets a model learn foundational patterns and 
representations) and fine-tuning. It would render the 
fine-tuning examples more informative in a few-shot 
learning setting. Few-shot prompting has also been 
performed in [25] to enhance the performance of in-
context learning over downstream tasks without the 
instability within ICL due to variation in prompt 
construction. This technique significantly enhances 
model generalization by carefully selecting a few 
examples. Few-shot prompting has also been 
effectively used to handle the challenge of modeling 
heterogeneous graphs that use scarce labeled data, 
realized in the HGPROMPT framework. It greatly 
improves the performance of GNNs and HGNNs for 
few-shot tasks, as shown in [26]. 

(Advance) Chain-of-Thought (CoT) Prompting 

Chain-of-thought prompting is a teaching 
methodology that's supposed to guide LLM models 
through the steps of reasoning to solve complicated 
problems by breaking them down into their granular 
components. To this end, as shown in the study by 
[27],[81] it allows for more organized and logical 
thinking processes, thus enabling their users to 
comprehend better and create valuable ideas. 
Moreover, [28] showed that applying this kind of 
prompting technique in LLMs like GPT-4 increased 
performance not only on diverse sets of tasks, from 
medical board exams up to multi-step science-based 
questions, which reached 0.83 by Krippendorff's alpha, 
statistical measure to evaluate the consistency of 
model outputs or their alignment with human 
judgments across various tasks. That means chain-of-
thought prompting is an effective way to improve the 
LLM processing capability in complex situations. 
Similarly, in [29], an experiment conducted on two of 
the most simple mathematical settings—arithmetic 
expression evaluation and solving linear equations—
provided evidence that for such basic tasks, bounded-
depth transformer models cannot solve them without a 
chain of thought prompting if their model sizes are not 
increased polynomially concerning the input lengths. 
Regulated, however, was this performance by a chain 
of thought prompting, where guidance through step-
by-step processes in LLMs used the structure of 
mathematical language to facilitate the completion of a 
task. 

(Advance) Tree of Thought (ToT) Prompting 

Traditional prompting techniques for LLMs often 
yield single-step responses, even when methods such 
as CoT prompting are employed. CoT primarily 
facilitates a linear reasoning path, which presents a 
challenge because LLMs lack the human-like ability to 
consider multiple possible steps before determining 
the optimal solution. To address this limitation, the TOT 
prompting technique was introduced, enabling models 
to engage in a branching thought process. This 
approach allows the model to consider intermediate 
steps, hypotheses, and various potential paths to solve 
problems, effectively generating a "tree" of possible 
solutions [30].  
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Subsequent research has demonstrated that TOT 
improves upon COT by allowing LLMs to explore 
multiple reasoning paths through mechanisms of self-
evaluation and backtracking [31]. In this study, TOT 
proved to be more effective than COT, particularly in 
tasks requiring complex planning, such as the Game 
of 24, creative writing, and mini crosswords. Results 
indicated that GPT-4 using the TOT framework 
successfully completed 74% of tasks, compared to 
only 4% when using COT. Moreover, the TOT 
approach has been shown to outperform COT in multi-
hop question answering (MHQA). A study 
implementing the STOC-TOT method demonstrated a 
significant improvement in LLM reasoning capabilities 
[32]. By breaking down complex questions into sub-
questions, evaluating alternative reasoning paths, and 
applying probabilistic estimates to avoid dead ends, 
the method increased the accuracy by 7% and the F1 
score by 7.8 points, highlighting the potential of TOT in 
addressing more complex problem-solving tasks. 

(Advance) Self-Consistency (SC) prompting 

The self-consistency prompting technique, similar 
to the ToT prompting method, enhances the CoT 
prompting strategy. The primary distinction between 
these approaches lies in the reasoning process 
employed. While ToT utilizes a tree-based paradigm to 
explore multiple reasoning paths simultaneously, self-
consistency generates various reasoning pathways 
through sampling from the decoder, as opposed to the 
conventional greedy decoding method.  

Research [33] outlines that the self-consistency 
technique involves three key steps. First, the language 
model is prompted using CoT to decompose a given 
task into smaller reasoning steps. Second, the model 
is directed to generate multiple reasoning pathways via 
sampling, replacing greedy decoding (method to 
construct sequences by iteratively selecting the token 
with the highest probability at each step) with exploring 
alternative approaches. It allows the model to avoid 
always choosing the token or word with the maximum 
immediate probability and, instead, investigates a 
wider variety of possible reasoning pathways. Third, 
the generated reasoning paths are scored, and the 
answer is selected based on the path showing the 
highest consistency, determined by marginalizing over 
the sampled reasoning paths. The RASC method [34] 
further develops this technique. This approach 
improves some of the issues inherently part of 
traditional self-consistency mechanisms (strategies 
designed to improve the reliability and coherence of a 
model's outputs by ensuring alignment across multiple 
predictions or reasoning paths), such as hallucination 
and inefficiency regarding computation. RASC adjusts 
the sample size dynamically based on the output's 
consistency and the quality of the reasoning pathways. 
As a result, this technique is more effective and 
efficient than prior SC techniques [30], Escape Sky-
High Cost [35], and Adaptive-Consistency [36]. 

(Advance) Generated Knowledge Prompting 

Generated knowledge prompting is an explicit 
approach whereby language models are taught to 
generate knowledge or context relevant to the test first 
before giving it the final relevant answer as required in 
the question paper [37]. Successful usages in many 

domains based on CLINGEN [38] have been reported 
among many applications. Clinical knowledge graphs 
serve as the external knowledge source to be infused 
for better performance in these experiments when the 
resources become scarce. This approach led to an 
average performance improvement of 8.7% with 
PubMedBERT base and 7.7% with PubMedBERT 
large scale, compared to the ZeroGen [39] and 
DemoGen [40], [41] methods. The CLINGEN 
framework has shown significant capability in 
improving the quality and diversity of synthetic clinical 
data, particularly in resource-constrained 
environments. 

As well, research on the SPARTA framework [42] 
proposed a multi-stage knowledge transfer approach 
to address the challenges of zero-shot learning, 
particularly in conversational question generation. 
Applying generated knowledge prompting within this 
framework reduced the gap between single-turn and 
multi-turn conversations by synthesizing 
conversational history and integrating referential 
elements, such as anaphora. This approach facilitates 
the creation of realistic conversational questions under 
zero-shot conditions without annotated conversational 
data. 
(Advance) Least-to-Most Prompting 

The least to most prompting technique has been 
developed to address the limitations in reasoning 
processes within the Chain of Thought (COT) 
approach, mainly when dealing with tasks that are 
more complex than those provided as examples in the 
prompt. A key challenge CoT faces is its difficulty in 
managing compositional generalization, where its 
performance significantly declines when confronted 
with tasks that are more challenging than anticipated 
[43], [44].  

The method was first introduced in a study [45], 
which proposed a two-step approach for solving 
complex problems: decomposition and subproblem 
solving. In the decomposition phase, the prompt is 
designed to break down the main problem into 
subquestions, allowing the reasoning process to be 
divided into smaller, more manageable parts. 
Subsequently, in the subproblem-solving phase, each 
prompt includes the subquestion and provides the 
intermediate answer from the preceding subquestion 
to guide the solution to the next problem. Findings from 
this study indicated that LLMs, such as GPT-3, 
employing the least to most prompting technique, 
demonstrated superior performance in compositional 
generalization tasks compared to the CoT approach. 
Using only 14 exemplars, this technique achieved an 
accuracy of up to 99%, whereas CoT attained only 
16% accuracy. 

(Advance) Graph of Thought (GoT) Prompting 

Methods such as CoT and ToT rely on linear or 
sequential reasoning. While these approaches have 
demonstrated effectiveness in specific contexts, they 
exhibit limitations when confronted with the 
complexities inherent in human reasoning. Humans 
can connect diverse ideas and solutions through 
various relationships not confined to linearity. As a 
result, purely linear reasoning is often insufficient to 
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produce optimal solutions, particularly for tasks that 
require a high degree of complex reasoning. 

To address the challenges posed by the non-
linearity of human cognition, recent research on LLMs, 
as presented in the study [46], has proposed using a 
GoT method. This approach enables LLMs to mimic 
human cognitive processes by employing a graph 
structure, wherein nodes represent concepts and 
edges depict the relationships between those 
concepts. It represents an accuracy gain of 87.59%, a 
2.4% increase compared with the CoT method on the 
test set AQUA-RAT when using the T5-base model. 
Another work [47] applied the method GoT to handle 
the challenges that arise in complex multi-step logical 
reasoning tasks—those in which CoT and ToT could 
not demonstrate peak performance. Next, an 
enhanced version of the approach was presented by 
adding a checker function to show a better precision 
score against the standard scoring systems. It 
demonstrated an even better result in GPT-4 with 
greater accuracy on tasks like the 24-point game, 
solving high-degree polynomial equations, and 
deriving formulas for recursive sequences. A study 
also introduces the Rex-GoT framework to address 
challenges in Dialogue Commonsense Multi-Choice 
Question Answering (DC-MCQ) [48]. This framework 
is put forth to deal with issues like option saturation, 
where an increase in the number of options confuses 
the model. The other challenge is the clue labyrinth, 
the terminology for the entangled processing of 
combinations of clues. In both cases, features are 
combinations of questions, options, and clues 
implicating complex information about predicted 
information. 

(Advance) Retrieval augmentation Prompting 

A retrieval augmentation prompt enslaves LLMs to 
retrieve relevant information from external sources and 
combines it with internally stored knowledge for more 
accurate and up-to-date answers [49]. It would help 
resolve several problems that are part of the general 
course of operation involved with LLMs, such as 
hallucinations and issues with truthfulness [50]. In the 
case of studies that have focused on Non-Knowledge-
Intensive (NKI) tasks, two main challenges, such as 
the requirement of diversity in relevance ranking and 
the trade-off between training costs and performance 
of tasks [51], have been tackled effectively by 
prompting-based retrieval augmentation techniques. 
The results are that PGRA outperforms FiD [52] and 
RAG [53] using T5-large on more datasets, such as 
SST-2 [54] and CoLA [55]. Further research has used 
prompt-based RAG techniques to address issues of 
code completion. LLMs need more semantic 
understanding to complete code, which requires more 
depth than the training they have gotten [56]. This 
involves hallucinations and semantic lexical limitations 
that limit the model from fully comprehending the 
abstract structure of the code. 

B. Blackbox Optimization 

Blackbox prompt optimization is a technique for 
optimizing prompts using an LLM without modifying 
any parameters. In other words, it does not contain 
processes such as training or fine-tuning that modify 
the model's parameters; rather, it aims to maximize 

model capabilities using only prompt engineering [57]. 
Where most methods would stop, this one goes one 
step further: Blackbox prompt optimization presented 
here considers three widely known benchmark 
datasets to evaluate LLM performance on various 
tasks. These datasets include Big-Bench [58], GSM8K 
[59]. 

TABLE 1.  Methods accuracy. 
 

Method Big-Bench GSM8K 

APE[60] - 43.0 

PromptAgent[61] 83.9 - 

OPRO[62] 82 80.2 

AutoHint[63] 90.15 - 

AutoCoT[64] - 62.8 

Reprompting[65] 99.6 - 

 

Automatic Prompt Engineering (APE) 

Automation of creating expert-level LLM prompts 
serves as one of the most prominent tasks in 
increasing the models' performance. Manual prompt 
generation by humans often involves a time-
consuming process of trial and error, particularly in 
specialized cases. To address this challenge, methods 
such as APE [66] have been introduced to automate 
the process. APE consists of a sequence of steps, 
including the generation, evaluation, and optimization 
of prompts in a continuous loop. Initially, this method 
inferentially generates candidate prompts, which are 
then evaluated using log probability metrics and 
execution accuracy. High-scoring candidates are 
resampled to maintain quality, while new candidates 
are also explored. This process is conducted iteratively 
using a Monte Carlo search algorithm. 

The application of the APE method, combined with 
the CoT approach, as demonstrated in prior research 
[14], has been shown to enhance the performance of 
existing CoT models on datasets such as MultiArith 
[67] and GSM8K. On the MultiArith dataset, 
performance increased from 78.7 to 82.0, while on 
GSM8K, it improved from 40.7 to 43.0 as shown in 
Table 1 measured in normalize performance.  
Furthermore, on the BIG-Bench Hard (BBH) dataset, 
dataset designed to evaluate the reasoning capability 
of LLMs, the APE method exhibited superior 
performance, outperforming human-generated 
prompts in 17 out of 21 tasks under Few-Shot and 
Zero-Shot experimental settings. Despite this 
method's effectiveness, specific limitations exist in its 
implementation. Larger and more advanced LLMs are 
more effective at generating high-quality prompts, but 
they also incur higher per-token costs. While smaller 
models can occasionally generate effective prompts, 
their success rate is significantly lower. Consequently, 
even with a large number of iterations using smaller 
models, achieving optimal results remains challenging. 

PromptAgent 

PromptAgent [61] attacks the same challenge as 
APE. By contrast, a key feature of PromptAgent is that 
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it frames the optimization of prompts in terms of a 
strategic planning problem—maintaining a more 
systematic way to improve the quality of prompts. 
Indeed, empirical evidence supports that 
PromptAgent outperforms the APE method in this 
respect. This approach couples Monte Carlo Tree 
Search with an error feedback mechanism to explore 
a large space of possible prompts. During this, 
PromptAgent assesses the intermediate prompts and 
adjusts them according to the error feedback to find 
the optimal path that yields the highest reward. 

The main advantage of this approach is that it uses 
MCTS as a search strategy. It has already proved to 
perform considerably better than other approaches. 
For instance, PromptAgent using MCTS reached an 
accuracy of 0.754 against the BBH task, 
outperforming other alternatives such as MC [60], 
Beam Search [68], and Greedy. Additionally, the 
optimized prompts demonstrated strong 
transferability, achieving accuracies of 0.776 on the 
base GPT-3.5 model, 0.839 on GPT-4, and 0.441 on 
the weaker LLM model, PaLM 2—consistently 
outperforming both human-crafted prompts and the 
APE. However, the method has its limitations. One 
notable drawback is that its accuracy needs to be 
improved in the Chain-of-Thought (CoT) approach in 
specific tasks, such as object counting, which requires 
step-by-step reasoning to achieve optimal results as 
shown in Table 1. 

 
Optimization by Prompting (OPRO) 

Optimal Prompt Refinement (OPRO) is an iterative 
method that optimizes tasks described within a meta-
prompt (a prompt in natural language) by leveraging a 
LLM as both the optimizer and evaluator [69]. This 
process involves using a meta-prompt containing task 
descriptions and solution-score pairs, which the LLM 
optimizes to generate several candidate solutions. The 
process terminates if the best solution is identified; 
otherwise, the generated solutions are evaluated and 
assigned scores. These scores are then fed back into 
the meta-prompt for further optimization. The cycle 
continues until the highest-scoring optimal solution is 
found. 

OPRO has demonstrated significant performance 
improvements across various tasks, such as achieving 
80.2% accuracy on the GSM8K dataset and 82% 
accuracy on BBH tasks compared to baseline prompts 
as shown in Table 1. These results exceed the 
performance of manually designed human prompts, 
underscoring the effectiveness of this LLM-based 
optimization method. The adaptability of OPRO across 
different LLM architectures is noteworthy. In studies, it 
has been successfully applied to a range of models, 
including PaLM [70], Text-Bison, and GPT [71], 
indicating that OPRO functions effectively across 
diverse LLM architectures. 

However, OPRO is not intended to replace 
gradient-based optimization algorithms used for 
continuous mathematical optimization, nor is it 
designed for more specialized methods required for 
classic combinatorial optimization problems, such as 
the Traveling Salesman Problem (TSP). Additionally, 

OPRO encounters challenges when dealing with large-
scale problems due to LLMs' limited context window 
size, which constrains the amount of data or problem 
descriptions that can be included in a single prompt. 
This limitation is particularly problematic for tasks like 
high-dimensional linear regression (task to predict a 
continuous number) or more complex problems such 
as TSP [72]. 

AutoHint 

The AutoHint framework is designed to generate 
enriched instructions automatically, or “hints,” from 
input-output demonstrations to refine original prompts 
and improve the performance of LLMs [73]. This 
framework addresses challenges in zero-shot and few-
shot learning settings, where LLMs often struggle to 
understand tasks when no examples are provided 
fully. Even in few-shot settings, where answers tend to 
be more detailed, performance can be influenced by 
the order or selection of samples included in the 
prompt. To mitigate these issues, a residual-sampling-
summarize (three steps method to optimize prompts 
consists of residual sampling, hint generation, 
summarization and refinement) technique is 
employed. 

In terms of strengths, the framework demonstrates 
strong performance, particularly in zero-shot settings. 
It increases accuracy across five of six BIG-Bench 
Instruction Induction (BBII) tasks, with notable 
improvements in epistemic reasoning and hyperbaton 
tasks (task to evaluate LLM’s ability to determine the 
correct order of adjectives in english sentences), 
where balanced accuracy (performance metric used to 
evaluate the model’s classification ability) significantly 
rises to 90.15 as shown in Table 1 from the baseline 
values of 82.9. Additionally, it reduces evaluation costs 
by employing random sampling when the validation set 
(part of a whole data used during the training of a 
model to evaluate its performance) is too large. 
However, the framework has limitations. Performance 
decreases with additional iterations, especially on 
epistemic reasoning and Winowhy tasks. This decline 
also highlights the framework’s restricted 
generalization capability across all tasks, as evidenced 
by a drop in accuracy for logical fallacy detection from 
86.76 to 84.64 in few-shot settings. 

Auto CoT 

 CoT prompting technique is frequently employed in 
LLMs to optimize performance on multi-reasoning 
tasks by encouraging step-by-step thinking. However, 
this approach may fail in some cases, particularly 
under a Zero-Shot setting. Although prompts like “let 
us think step by step” [14] can reduce such failures, 
they do not fully address one of the leading causes: the 
diversity of demonstration questions. To tackle this 
issue, the AutoCoT method [64] was developed, which 
designs step-by-step reasoning demonstrations 
through two primary stages: question clustering and 
demonstration sampling, both conducted 
automatically. This method has proven effective in 
addressing the challenge of question diversity, 
showing adaptability and flexibility, as the 
demonstrations are tailored automatically to the 
specific task. In the study, CoT outperformed previous 
methods such as Zero-Shot [14], Zero-Shot-CoT [14], 
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Few-Shot [74], and Manual-CoT [74], especially in 
arithmetic and symbolic tasks, task designed to 
process and manipulate symbols such as numbers, 
letters, or logical expression. As shown in the Table 1, 
AutoCoT achieve 62.8 accuracy in GSM8K task while 
using the codex LLM.However, its performance on 
commonsense tasks did not exceed these methods by 
more than 5 points. While suitable for reasoning tasks 
involving arithmetic or commonsense tasks, this 
approach still requires testing on open-ended 
reasoning tasks where the answers are less 
structured. 

Reprompting 

 Reprompting method integrates the CoT paradigm 
with Gibbs sampling (a technique to generate samples 
from a probability distribution of two or more 
dimensions) techniques for prompt optimization [65]. 
This method was proposed to address the limitations 
in scalability and generalizability often seen with CoT 
techniques, which in some cases still rely on human 
experts to design prompts for tasks requiring multi-step 
reasoning. The reprompting method demonstrates 
superior performance compared to self-consistency 
decoding [33], Auto-CoT [64], and Automatic Prompt 
Optimization [75].  With improvements ranging from an 
average of 11 to 33 points on BBH tasks. Notably, it 
has shown potential for effective combinations; for 
example, using ChatGPT to generate initial sample 
guidance for InstructGPT improved performance by up 
to 71 points compared to using ChatGPT alone. In 
ObjectCount task the recorded performance is 99.6 as 
shown in Table 1 

 However, the experimental setup in the research 
involved up to 20,000 iterations, with costs for running 
the experiments on ChatGPT and text-DaVinci-003 
ranging from $80 to $800, which could rise with 
additional iterations. Despite its promise, the method 
still needs more consistency in cross-modal 
generalization (LLM’s ability to perform tasks on 
different types of data that differ from training data 
type). The study reported that CoT recipes developed 
using InstructGPT and later tested on ChatGPT 
resulted in an 18% performance drop. 

 

C. Ontological-based Prompt Optimization 

Ontological-based prompt optimization is a 
technique for optimizing prompts in LLMs by 
leveraging knowledge representations, such as 
ontologies, to enhance the quality and effectiveness 
of the prompts. Below is a review of research 
conducted in efforts to implement this approach. 
 
Ontoprompt 

OntoPrompt [76] is designed to transform 
structured knowledge, specifically ontologies, into 
textual prompts, leveraging these prompts to enhance 
few-shot learning performance. According to the 
findings, this method addresses the challenges of 
missing information, noise, and heterogeneity through 
span-sensitive knowledge (only adding helpful 
information to the prompts while ignoring irrelevant 
details) and collective training (a way to train both the 
added knowledge and the model together, ensuring 

they work well as a team and make better predictions). 
One of the critical strengths of OntoPrompt is its 
model-agnostic nature, allowing it to integrate 
seamlessly with any pre-trained language model, such 
as BERT or BART. This flexibility underscores its 
potential for use across various model architectures to 
tackle specific tasks within few-shot learning settings. 

In terms of performance, OntoPrompt has 
demonstrated notable success, particularly with 
extraction tasks, where it achieved an F1 score (metric 
used to evaluate the performance of the model’s 
classification ability by combining precision and recall 
into a single value) of 52.6 in an 8-shot learning 
scenario, outperforming Fine-tuning (24.8) and 
GDPNET (25.3). For event extraction, with only 1% of 
training data, OntoPrompt recorded an F1 score of 
25.6, significantly higher than MQAEE (5.2) and 
TEXT2EVENT (3.4). Additionally, the knowledge 
graph completion task on the FB15K-237 mini dataset 
attained a Hit@10 (metric used to evaluate the 
performance of recommendation and ranking systems) 
of 0.111, surpassing models like KG-BERT (0.0451) 
and GRL (0.0300). However, this approach's limitation 
is its reliance on high-quality external knowledge, 
which can restrict its applicability in cases where 
external sources need more comprehensive 
ontologies. 

OntoChatGPT 

OntoChatGPT [77] is a meta-learning framework 
that integrates ontology-driven structured prompts with 
ChatGPT to enhance performance in domain-specific 
dialogue systems. This approach involves the creation 
of formal models for structuring knowledge and 
designing prompts, enabling ChatGPT to interpret, 
extract, and infer information based on predefined 
ontologies. By employing a meta-learning approach, 
this framework overcomes limitations in the training 
data and continuously improves the prompt generation 
process, adapting to new challenges and fine-tuning 
responses. The method has shown promising results 
in specific domains, such as rehabilitation medicine, 
where it achieved an accuracy of 0.7059, precision of 
0.6534, recall of 0.9444, and an F1 score of 0.7724. In 
the confusion matrix, the model produced 17 true 
positives, seven true negatives, nine false positives, 
and one false negative. However, further testing is 
necessary in languages other than Ukrainian to 
demonstrate its applicability across various languages 
and to ensure that the syntax of a specific task does 
not influence the framework's performance. 
Additionally, similar to previous methods, the 
performance of this ontology-based approach depends 
heavily on the quality and comprehensiveness of the 
predefined ontologies. 

 

D. Fine Tuning based Prompt Optimization  

Fine-tuning-based prompt optimization represents 
an approach wherein a fine-tuned language model has 
been used to improve prompts. Fine-tuning-based 
prompt optimization modifies the model for better 
generation and refinement of prompts, as opposed to 
black-box prompt optimization, which makes no 
internal changes to the model. This approach fine-
tunes the model to create better prompts, ultimately 
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leading to more contextually appropriate and accurate 
outputs. 

P-Tuning 

P-tuning [78] is specially designed to improve the 
performance and stability of LLMs by using trainable 
continuous prompt embeddings. It contrasts manually 
designed discrete prompts, which are mostly unstable 
and sensitive to minor changes. P-Tuning uses 
continuous embeddings (numerical vectors that 
represent words to capture their meanings and 
relationships) optimized by back-propagation so that 
the model can learn more robust patterns for natural 
language understanding tasks by combining 
continuous and discrete prompts. This approach offers 
several advantages, such as improved performance 
on a wide range of benchmarks and consistently 
outperforming traditional prompt-based methods like 
PET and manually crafted prompts, especially in tasks 
like SuperGLUE. These gains are evident in both fully-
supervised and few-shot learning, enhancing the 
performance of models like BERT and GPT-2 across 
various tasks. 

Important contribution of P-Tuning is the instability 
decoupling effect that discrete prompts have through 
continuous embeddings, which significantly reduces 
performance variance, as seen in the LAMA 
knowledge probing task. Moreover, its flexibility allows 
it to apply effectively to both unidirectional and 
bidirectional architectures, which increases its 
applicability to a wide range of NLP tasks. However, P-
Tuning introduces more complexity and computational 
overhead since optimizing continuous prompt 
embeddings requires backpropagation. This may not 
be feasible in real-time or resource-constrained 
environments. Furthermore, this method is heavily 
dependent on the underlying quality of pre-trained 
models such as GPT and BERT, meaning the biases 
and weaknesses in these models persist despite the 
improved prompt stability. 

Prompt Adaptation 

Prompt Adaptation, according to the framework in 
[79], the latest proposal is intended to boost the 
efficiency of text-to-image model by the automatic 
optimization of user-generated prompts. The principal 
task of the model is to transform user input into 
prompts so the model can better interpret and use 
them when producing high-quality images. The first 
phase is the supervised fine-tuning stage, which is a 
learning process that involves adjusting a pre-trained 
language model like GPT using a small set of pre-
specified prompts. This way, the end user's language 
feature will be familiar with the model's suggestion. 
Later on, the application of the reinforcement learning 
technique will further refine these prompts. Thereby, 
this step will increase the visual quality and the 
resemblance of the generated images to the user's 
idea. The goal of optimization is to have input as a 
starting point, but at the same time to achieve the 
highest artistic standard in the output. This approach 
adds resilience to the model for tackling more varieties 
of prompts and domains, thus enhancing its 
universality. 

One of the key positive sides of this automation 
process is that the prompt optimization process 
becomes completely automated so the prompt 
engineering work at the program level is less needed 
as it is manifested in lower costs for the company. The 
method is made versatile, as it can be applied to 
various models and across different domains by the 
built-in support of reinforcement learning. The 
approach draws out-of-domain input cases for which it 
particularly excels in performance through the use of 
reinforcement learning as well as the criteria of 
pertinence and aesthetics in prompt design. This 
dissertation's elegance is based on its ability to be 
general throughout diverse patterns and input sources. 
In contrast, the others use fixed reinforcement 
procedures only. 

Nonetheless, Prompt Adaptation entails certain 
limitations. It relies heavily on prompt snippets 
formulated by humans during the training of complex 
models like Lexica, densely packed with artistic theme 
vocabulary terms (i.e., using artist names), and thus, 
may limit the model's capability of producing realistic 
images and result in a narrower range of model output. 
The approach's real-time efficiency as well as its 
diversity in training data, crucially in the fine-tuning 
step, are also proven to be the keys to success in the 
methodology. If the data set content is contained the 
bias of some creative manner, for example, the target 
domains or the model may not be able to perform its 
tasks properly. Refinements in reinforcement learning 
are very demanding tasks, which can be particularly 
challenging when it comes to employing them in real-
time settings. Finally, the disparity in performance in 
more difficult or subjective tasks is subsided by the fact 
that it transfers well between the domains. But, pre-
specified reward functions for relevance and art mostly 
miss the subtlety of user interests, especially in more 
nuanced or subjective tasks. 

IV. CONCLUSION 

The explosion of LLMs all across the world has 
given exposure to the request to prompt engineering 
methods that will increase the task quality without the 
additional computational and financial overheads that 
usually come in the wake of fine-tuning or retraining. 
Techniques such as black-box optimization and the 
ontology-based prompt refinement are two examples 
of this process. The latter have emerged as successful 
options for optimization, thus the quality of the final 
LLM outputs is strengthened even as the original 
inward structure of the model is retained. These 
methods have been found to be effective in various 
applications, from general problem-solving to domain-
specific tasks, at the same time optimizing LLM 
efficiency in the most cost-effective way. 

Changes in the command given strategies like CoT 
and ToT provide particular strengths for enhancing 
multi-step reasoning and complex problem-solving. 
Nevertheless, there still are challenges of adaptability, 
scalability, and speed under the more and more 
complicated task. The future researches might work on 
the prompt transfer and generalization that promote 
the across models and tasks, especially in low-
resource settings. Additionally, integrating ontologies 
and automated prompt generation methods, such as 
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PromptAgent and APE, presents significant 
opportunities for refining LLMs' precision and 
contextual awareness. These advancements will be 
critical for maximizing LLM performance while 
minimizing resource demands in increasingly complex 
and dynamic tasks. 
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