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Abstract

Procedural Content Generation (PCGQG) is a powerful tool in video game development, enabling the
automated creation of diverse and replayable game environments. This paper presents a novel extension

of the recursive backtracking algorithm, which adapted to procedurally generate interconnected rooms
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and staircases across multiple vertical floors in 3D dungeon layouts. By using parameters such and
maximum room chain lengths, staircase probability and directional constraints, the system generates
coherent, non-repetitive and fully traversable environments. Through 13 test samples, the API
demonstrates its ability to produce varied and scalable dungeons, including multi-level environments,
showcasing its versatility and adaptability for diverse game design needs. Performance testing further
reveals the API’s efficiency, with low CPU and GPU demands, optimized memory usage, and high
frame rates ensuring smooth and visually responsive gameplay. These results highlight the API's ability
to deliver high-quality content generation while maintaining system stability, making it suitable for use
on mid-range hardware. The implementation offers game developers a robust and flexible tool for

creating dynamic and engaging game experiences with minimal resource overhead.

Keywords: Application programming interface; Dungeon generation; Procedural Content Generation;
Recursive backtracking; Video game development
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Introduction

Procedural content generation (PCG) is a technique used to dynamically create complex and varied
dungeon layouts by applying algorithmic rules and randomized factors (de Pontes, 2022; Volz, 2023).
This approach ensures that every playthrough offers a unique experience, enhancing replayability and

player engagement.

As the demand for unique, expansive, and replayable content grows in the gaming industry, an
increasing number of developers are adopting PCG techniques to enrich their games. By utilizing PCG,
developers can craft intricate dungeons that challenge players through the unpredictability and

dynamism of procedurally generated content.

PCG is often implemented using application programming interfaces (APIs), which allow
developers to customize parameters such as layout complexity, room types, and overall structure to
align with specific gameplay objectives. This paper introduces a novel API that harnesses the power of
PCG to generate 3D room-based dungeons using the Recursive Backtracking algorithm. The proposed
solution provides game developers with a flexible and efficient tool for creating procedurally generated

dungeons tailored to their design goals.

Related Work and Background

The concept of procedural content generation (PCG) has been utilized for several decades in gaming,
tracing back to early text-based adventures and roguelike games (de Pontes et al., 2022; Volz et al.,
2023). A notable example is "Rogue" (Viana et al., 2022), which employed random algorithms to
generate distinct dungeon layouts for each playthrough. This innovative approach gave rise to the
“Roguelike” genre, characterized by procedural level design and permanent death mechanics (Viana et
al., 2022). However, earlier PCG techniques, relying solely on simple random number generators, often

produced poorly structured dungeons, frustrating players and diminishing their gaming experience.

Advancements in technology have progressively addressed these limitations. Instead of
depending on basic randomization, procedural generation has shifted toward more structured methods.
Developers began experimenting with various algorithms to create balanced and coherent dungeon

layouts, moving away from fully randomized, disjointed designs.
The introduction of sophisticated algorithms has marked a significant evolution in procedural

generation, transforming it into a refined technique. As the industry matured, structured approaches

such as Recursive Backtracking, Binary Space Partitioning (BSP), and the Random Walk Algorithm
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were adopted to create dungeons that are not only coherent but also engaging for players (Bellot et al.,

2021; Lan et al., 2023; Li et al., 2023).

Recursive Backtracking offers several advantages, primarily its ability to guarantee a
traversable dungeon layout where every room is accessible from the starting point (Bellot et al., 2021).
This makes it ideal for maze-like structures, as the interconnected spaces provide players with a sense
of exploration and adventure. Additionally, this algorithm allows developers to define varying degrees

of complexity in dungeon structures, enabling customization to suit different playstyles.

Binary Space Partitioning (BSP), while also a recursive algorithm, takes a distinct approach to
generating complex environments. Originally developed for 3D graphics, BSP can be adapted for 2D
dungeon generation through recursive division. It divides a space into two halves, repeatedly
subdividing these areas until the desired number of rooms is created, forming a binary tree structure of
rooms and corridors (Lan et al., 2023). Rooms are then placed within the resulting areas, and corridors
are established to connect them. This approach produces structured and visually appealing dungeons,
granting developers precise control over room sizes and shapes to serve specific gameplay purposes.
However, BSP is less suitable for games requiring multiple floors, levels, or vertical traversal unless

combined with other algorithms or techniques.

Random Walk Algorithm involves randomly traversing a grid from a starting point and
continuing until a path is generated (Li et al., 2023). While this algorithm is simple to implement and
can produce irregular maze-like results, it has limitations. Without proper guidance, the generated

layout may become disconnected or form loops, potentially compromising the overall design quality.

Application of PCG in Games

The usability of procedural content generation (PCG) in video games is extensive and impactful,
offering the ability to create expansive worlds without the need for manual level design, a significant
advantage in modern gaming where players expect abundant and diverse content (de Pontes et al., 2022;
Volz et al., 2023). PCG is widely employed across various game genres, each leveraging its unique
benefits. Role-Playing Games (RPGs) frequently use procedural dungeons to deliver open-world
experiences, ensuring engaging and fresh gameplay across multiple playthroughs (da Rocha Franco et
al., 2024). Roguelike games heavily rely on PCG to generate unpredictable and challenging dungeons,
enhancing their signature elements of permadeath and emergent gameplay. Adventure games also
benefit from PCG, enabling the creation of dynamic and responsive environments that offer players
exciting and unpredictable opportunities, ensuring novel and immersive experiences with each session

(de Pontes et al., 2022; Volz et al., 2023). By generating diverse, adaptive, and content-rich
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environments, PCG has become a cornerstone of modern game design, underscoring its value in the

evolving gaming landscape.

Examples of Games using PCG

Several popular games have successfully integrated procedural dungeon generation to enhance
gameplay variety and replayability. Spelunky (2008) features procedurally generated levels with traps,
treasures, and enemies, ensuring challenging and diverse experiences. The Binding of Isaac: Rebirth
(2014) uses randomized layouts and encounters to provide unique gameplay for each player. Darkest
Dungeon (2016) leverages procedurally generated environments to create a tense, immersive
atmosphere filled with relentless challenges. Similarly, Enter the Gungeon (2016) offers dynamic
gameplay through its procedurally generated dungeons packed with enemies, weapons, and historical

items.

Application of PCG in Games

A novel API has been developed as a room-based procedural dungeon generator, empowering
developers to create diverse and replayable 3D dungeons by leveraging a predefined set of room
prefabs. The API generates a room-based layout and assembles the dungeon by strategically placing
these pre-designed rooms into the layout. To achieve this, the Recursive Backtracking algorithm is

employed, ensuring the creation of coherent and traversable dungeon structures.

Dungeons are a vital element in many game genres, including RPGs, Roguelikes, and Horror
games, where procedurally generated environments significantly enhance replayability and player
engagement. Unlike static, pre-designed dungeons, procedural generation introduces adaptability and

unpredictability, ensuring players experience fresh and challenging layouts with each playthrough.

This API is structured to give developers flexibility by allowing them to:

o Design and save custom room prefabs: The API dynamically arranges these prefabs into
varied dungeon layouts, ensuring flexibility and uniqueness.

e Adjust parameters: Customize aspects such as the number of rooms, connection
pathways, and room types to control the complexity and structure of the generated
dungeons.

o Implement predefined room types: Include specific room types, such as end rooms, with

placement criteria to ensure logical dungeon flow and accessibility.
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Recursive Backtracking for Layout Creation
The process begins with a grid-based framework, where each cell represents a potential room. The
Recursive Backtracking algorithm ensures that every room connects to the layout's starting point,

eliminating isolated spaces and creating a fully navigable dungeon.

Room Initialization: The API begins by defining the starting room. Using the Recursive
Backtracking algorithm, it incrementally places rooms by selecting available doorways and connecting

neighbouring rooms.

Room Placement and Stair Generation: The API generates a dungeon consisting of
interconnected rooms, each capable of having up to four doors—one on each side. These doors connect
to other rooms, ensuring a coherent and traversable layout. The Recursive Backtracking algorithm is
employed to generate the dungeon layout using a grid-based system, establishing the foundational

structure.

Once the layout is created, the API iterates through the grid to place rooms and stairs, filling
the layout with randomly selected pre-designed rooms. This process connects and completes the

dungeon, resulting in a dynamic and interconnected environment.

Condition-Based Room Assignment: Room placement adheres to specific conditions based
on room type. For instance, end rooms must have only one entrance with no additional doors. The API
allows users to integrate their own pre-designed rooms into the layout, ensuring these rooms meet the
specified conditions. Developers can also customize parameters such as the maximum number of rooms

to tailor the dungeon to their desired specifications.

Replayability and Customization: Using this API, random 3D dungeons are generated with
each run, providing a unique experience every time and enhancing the game’s replayability. Players are

challenged to adapt to new layouts, preventing the dungeon from becoming predictable.

The API also offers developers the flexibility to adjust parameters, enabling them to create
dungeons of varying scales and complexity to fit their games. Additionally, developers can integrate
their pre-designed rooms with custom objects, introducing further variation and diversity into the

dungeon design.
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Algorithm Description

The algorithm employed in this API is Recursive Backtracking, a powerful technique for solving
complex problems through systematic exploration. Recursive Backtracking is particularly effective for
maze generation, producing a unique layout each time it is used, making it ideal for creating dungeon
layouts. The recursive nature of the algorithm enables a trial-and-error approach, where it explores
potential paths and backtracks when a dead end is encountered, ultimately ensuring the generation of a

coherent and traversable dungeon.

Recursive Backtracking Implementation

Recursive Backtracking is an algorithmic paradigm that incrementally solves problems through
recursion. The algorithm makes a series of choices, each leading to a new state. If a choice results in a
dead end, the algorithm backtracks to the previous state and explores alternative paths. This process

continues recursively until a solution is found or all possibilities are exhausted (Bellot et al., 2021)

As illustrated in Figure 1, a 4x4 matrix is provided to represent a path, where a value of 1
indicates an accessible tile, and 0 indicates an inaccessible tile. The algorithm starts at (0, 0) and aims
to reach the destination at (3, 3). A recursive function is employed to check adjacent tiles of the current
position. If an adjacent tile has a value of 1, the function is called recursively for that tile. The algorithm
starts by randomly selecting an initial cell, explores its neighbours, and continues until no valid moves
remain. When all neighbouring cells have been visited, the algorithm backtracks to previous cells to
resume exploration. Once all cells in the grid are visited, the maze is complete. If no solution is found
on the left node, the algorithm backtracks to the previous tile and examines other options. This process
repeats until a valid path is identified. In this example, the solution is discovered on the second path. If
no solution were found, the algorithm would continue backtracking to previous states, recursively

exploring other possible paths until a solution is reached or all options are exhausted.
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Figure 1. Visualization of Recursive Backtracking
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Common use of the Recursive Backtracking Algorithm

Recursive Backtracking is widely used for maze generation, making it an ideal choice for creating
dungeon layouts in video games. Dungeons in games often function similarly to mazes, requiring
players to navigate through interconnected pathways to find exits, items, or other objectives. By
procedurally generating a maze, it can serve as the layout for a dungeon, ensuring each layout is unique

and provides players with a fresh experience every time they start a new game.

The process of maze generation using Recursive Backtracking begins with a grid of cells, where
each cell represents a potential pathway. An initial cell is selected to begin the exploration, and
neighbouring cells are examined to construct the maze. The key steps involved in maze generation are
as follows:

1. Starting Point: A predefined or algorithm-selected starting cell is marked as visited and

serves as the initial point for maze construction.

2. Exploration: From the current cell, neighbouring cells are examined to determine if they
have been visited.

3. Recursive Choice: Among the unvisited neighbouring cells, one is randomly selected as
the next cell. The algorithm then recursively calls itself, setting the chosen cell as the new
current cell.

4. Backtracking: If all neighbouring cells are visited or no valid moves are available, the
algorithm backtracks to the previous cell and continues the exploration from there.

5. Completion: The process repeats until all cells in the grid have been visited, resulting in a

fully generated maze.

However, Recursive Backtracking comes with a limitation, where it is possible for a single path
to continuously extend itself, leaving other paths idling for an extended period of time. To address such
an issue, it is possible to implement conditions/restrictions that can limit the extension of a single path,

forcing it to stop and backtrack once certain conditions are met.

Application of Recursive Backtracking to API Design

The concept of Recursive Backtracking is utilized to generate a maze, which serves as the foundation
for creating the dungeon layout in the API. Using Unity with C# coding, a GameObject array can be
implemented to represent the grid of cells. One element of the array is predefined as the starting point,
from which exploration begins. To mark an element as visited, it is replaced with a placeholder cube
GameObject, while null elements are treated as unvisited. To add further complexity to the dungeon, a
3D GameObject array is used, allowing exploration to extend vertically. This approach expands the

layout across multiple layers, resulting in a dungeon that is both randomized and multi-levelled.
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Since the API generates a dungeon without a fixed shape, several modifications are made to the

standard Recursive Backtracking algorithm:

1. Recursive Choice: Instead of randomly selecting an element to create a new cube and
continuing exploration from there, the API first determines which of the unvisited elements will
be generated as a new cube. Exploration then proceeds from this newly created cube. This
ensures that the generated dungeon adheres to specified constraints, such as limiting the number

of rooms to a maximum value.

2. Backtracking: The backtracking process has been enhanced with additional restrictions and
conditions to refine the layout:

a. End Cubes: A cube is considered an end cube if it cannot generate additional cubes.
This may occur due to randomization or when the maximum number of rooms has been
reached. In such cases, the algorithm backtracks to the previous cube.

b. Preventing Premature Backtracking: If randomization prevents additional cube
generation but the maximum room count has not been reached, and the minimum chain
length of rooms has not been achieved, the algorithm selects an unvisited element to
generate a new cube. This ensures the chain continues, avoiding incomplete dungeon

layouts.

3. Completion Criteria: The layout generation is deemed complete when either:
a. The maximum number of rooms has been reached, or

b. No unvisited elements remain to generate additional cubes.

Once the layout generation is finished, the placeholder cubes in the grid are replaced with actual
room designs. The resulting dungeon layout is randomized, multi-layered, and ready for use in the

game.

Pseudocode and Workflow Visualisation

Pseudocode for Recursive Backtracking Function

The pseudocode for the solve backtracks() algorithm is presented in Table 1. This algorithm operates
as follows:
o Solution Check: The function first checks if the solution is already found. If the solution

is found, the function immediately returns true.
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Iterating Through Candidates: The algorithm iterates over each candidate in the list of
potential solutions. A candidate represents a possible choice or moves for the current step
in solving the problem.

Candidate Validation: Within the loop, the algorithm checks whether the current
candidate is valid. If the candidate is invalid, the loop skips to the next candidate using the
continue statement.

Accepting a Candidate: If a candidate is deemed suitable, it is accepted as part of the
current solution. The algorithm then recursively calls solve backtrack() to attempt solving
the problem with the updated state. If this recursive call returns true, the solution has been
found, and the function exits successfully.

Failure to Find a Solution: If no candidate meets the requirements, or if all possibilities

are exhausted, the function returns false.

This process ensures that the algorithm systematically explores and validates all possible

solutions, backtracking when necessary, to find a viable path to the solution (Bellot et al., 2021).

Table 1. The solve backtrack() pseudocode.

Algorithm 1 BackTracking Algorithm

function solve_backtrack():
IF solutionIsFound
return TRUE
FOREACH candidate in candidateList:
IF candidate is not valid

continue

SELECT candidate for the current position
IF solve_backtrack():
return TRUE

ELSE

remove candidate

return FALSE

For

the API’s implementation, the concept of Recursive Backtracking is applied to generate

rooms dynamically. The process begins with the creation of a startRoom using the GenerateRoom

function. This function then performs a recursive call by invoking GenerateRoom(startRoom).

The GenerateRoom(Room currentRoom) function generates new rooms based on the input

currentRoom (Table 2). Each room is assigned random door states (true or false) to determine which

doors will lead to new rooms. New rooms are created by recursively calling the GenerateRoom function

for each open door in the current room.

If the current room is designated as a stairs room, a temporary room is generated above or below

it after all neighbouring rooms have been processed. Additionally, each room has specific variables to
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assist with condition checking. For instance, a boolean variable, isEndRoom, determines whether a

room qualifies as an End Room.

These conditions influence the generation of subsequent rooms, allowing for diverse and
dynamic dungeon layouts. The recursion process concludes when there are no additional rooms to

generate, at which point the algorithm backtracks to the previous room in the sequence.

Table 2. Recursive GenerateRoom() pseudocode

Algorithm 1 Initialize the GenerateRoom function

Create startRoom as a new Room object

Set chainlndex of startRoom to 0

Save room to arrayOfRooms

Increment the noOfRooms count

Call GenerateRoom(startRoom)to begin room generation

Algorithm 2 Recursive Room Generation

IF currentRoom chainlndex is 0 AND noOfRooms greater than 1
set noOfDoors to 4
ELSE

set noOfDoors to 3
IF currentRoom greater than maxChain OR noOfRooms has reached maxRoomNo):

Set all doors to false
currentRoom.isEndRoom = true
RETURN to end this recursive call
IF room with chainlndex greater than 0
Generate RandomNumber

IF RandomNumber greater than or equals to stairs probability

set stairNumber to 1 OR -1 to indicate upward or downward connection

ELSE
Set stairNumber to 0

Algorithm 3 Door Assignment

FOREACH noOfDoors representing directions like west, north, east and south
IF neighbourRoom is occupied in that direction

doorlsClosed

ELSE

Randomly assign the door to be open or close

IF all doors are closed

currentRoom.isEndRoom is TRUE

Algorithm 4 Recursive Room Placement

IF currentRoom is not an EndRoom
FOREACH door that is opened
Create a newRoom
Set newRoom’s chainlndex to currentRoom.chainlndex+1
Save room to array
Increment of noOfRooms
Call GenerateRoom(newRoom) to continue to recursive generation process

Algorithm 5 Stairs Generation

IF stairNumber is not 0
Create a tempRoom to connect above or below the currentRoom
Set tempRoom.chainIndex to 0
Save tempRoom in the room array
Call GenerateRoom(tempRoom)to add it to the layout

Figure 2 provides a visualisation of the working for the algorithms; the details of each step are

as shown below:

33



N ok

10.
11.

12.

13.

14.

15.

16.
17.

¥
¥
¥

= Initialization of cubes Initialization of Generate Add cube to Grid
~
AduistRarameber "|  as placeholders Grid System Starting Room | system and initialize

: = - Determine - Room Number | :
Generate Neighbor [« Increment Count [« Neighbor -+ Check -+ Meighbor Check

End Room ] Elevation Room Recursive
Check i Check Replacements Backiracking
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Users can first tweak the public parameters shown in Table 3.
Initialize 4 GameObjects cubes to act as placeholders that represent different types of rooms,
startRoom, normalRoom, stairsRoom, endRoom and wall. An additional dummy cube will be
initialized to act as placeholder for the room above or below the stairRoom.
startRoom - The starting/entrance room of the dungeon, essentially the first room the player will
see.
normalRoom - Rooms generated without any special condition
stairsRoom - Rooms that allow players to climb to the next floor.
endRoom - Rooms without any door other than the entrance.
wall - Wall prefab used to block directions without doors. Users should also specify the thickness
of the wall and the height of the wall for calculation purposes.
Each room will store variables as shown below:

a. An integer to indicate its number in the chain

b. A boolean to indicate if it's an end room

c. An integer value to indicate type of stairsRoom (0 =non, 1 = Up, -1 = Down)
Initialize a 3D array to use as our grid system.
First generate a starting room on [maxRoom/2][0][0]
Every time a cube is generated, add it to the gameObject array and create an array of bool to
represent the west, north, east of the block respectively
Check if the neighbouring block is occupied, if it is, set false for the respective index.
If the room chain number is the same as the maximum chain number, set all to false. Else if not all
entries are false, and the chain number is less than the minimum chain number, randomly assign a
null entry to be true and increment room count.
Using a loop, for every null entry, check if maximum room is reached, if it is set to false, else
randomly set true or false to entry.
Increment room count every time when true is set
Based on the array result, generate room; prioritize west, north then east room.

If the room does not have any doors, set true as an end room
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18. Before recursing back to the previous room, check the upper block and if it is occupied, if it is not,
based on stairsProb, randomly assign stairs number to 1, if it is assigned to 1, generate a dummy
block with 4 directions instead of 3. If the upper block is occupied, check the bottom block, and
repeat the same steps, but assign to -1 instead. Set the chain index of the room as 0.

19. Repeat the steps until the number of rooms reaches the limit.

After layout generation, loop through the 3D array, if the entry is not null, based on the type of
placeholder cube, and randomly replace it with the respective room type prefab, then add doors based
on the array in the cube. If it is a dummy cube, skip it, and if it is a stairs room, check the block above

or below based on the stair index, and generate doors based on the results and stairs index

Table 3 shows the parameter used in the algorithm and the description for each parameter.

Table 3. Public and adjustable parameters

Parameter Description

int maxRooms The maximum number of rooms the dungeon will have. If users wish to have more rooms in their dungeon, they
should increase this parameter, however, do note that this parameter only LIMITS the number of rooms, hence
it is not guaranteed that the number of rooms generated will be or close to the specified number.

int minChain The minimum number of rooms in a single chain of connected rooms. On a chain of connected rooms, an end
room (Room without any other door other than the entrance) will not appear until the specified Min Chain is
reached, for example if Min Chain is 3, the end room will only appear starting on the 3rd room of the chain.

int maxChain The maximum number of rooms in a single chain of connected rooms. Once the specified Max Chain number
of rooms is reached in a single chain, the nth room will be guaranteed to be an end room.

float roomSize The size of the prefab rooms assigned by the user, do note each room should be shaped as a cube, with the same
width, length and height.

float stairsProb The probability of a room generated to be replaced by a stair room, which allows the user to climb to another
floor.

Design of the Recursive Backtracking API

In this example, the dungeon is generated using a recursive function to create rooms. The process begins
with the generation of a starting room and its doors. For this case, the west and north doors are
initialized. The algorithm prioritizes the west door first, invoking the recursive function to generate a

room on the west side.

As new rooms are generated, their chain index is incremented from the previous room. If the
chain index is less than the minimum chain length (minChain, set to 3) and the total number of rooms
has not exceeded the maximum room limit (maxRooms, set to 20), the room will always have at least
one door. Once a room reaches the minimum chain length (minChain of 5), it will no longer generate

additional doors.

35



If a room is designated as a stair room, the algorithm diverges slightly. Instead of immediately
backtracking to the previous room, it first generates a new room directly above the stair room. This
newly generated room follows the same rules as other rooms but is initialized with four doors instead
of three and begins with a chain index of 0. Once this new room's generation is complete, the algorithm

returns to the stair room and then backtracks to the preceding room from which it originated.

When a room runs out of available doors for further generation, the algorithm backtracks to the
previous room and checks for any remaining unprocessed doors. If any doors are available, the function
is called again to generate a room for that door. This process repeats until either no more doors are

available (including in the starting room) or the maximum number of rooms (maxRooms) is reached.

API Tool Implementation

The Recursive Backtracking API is divided into three main sections:

e Dungeon Layout Editor: This section manages the layout generation process, allowing
users to create the foundational structure of the dungeon.

¢ Room Replacement Editor: This section handles replacing the placeholder rooms in the
layout with pre-designed rooms, enabling customization of the dungeon's appearance and
functionality.

o Save Dungeon: This section allows users to save the generated dungeon, preserving its
layout and room configurations for future use.

e For user convenience, tooltips are provided. If users are unsure about specific parameters
or buttons, they can hover over them to view descriptive tooltips explaining their

functionality.

Dungeon Layout Editor
In the Dungeon Layout Editor, users can adjust parameters to customize the dungeon's structure to their
preferences. Once satisfied, they can click the Generate Layout button to initiate the layout generation

process.

During generation, blocks are placed to visually represent the layout. Different block colours
indicate room types:

e  White blocks: Normal rooms

e Green blocks: Starting room

e Red blocks: End rooms

e Blue blocks: Stair rooms
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If the generated layout is not satisfactory, users can click the Generate Layout button again
(Figure 3), either with the same or updated parameters. This will destroy the current layout and replace
it with a newly generated one. The process can be repeated as many times as needed until the desired

layout is achieved.

Dungeon Layout Editor

Generate Layout

Figure 3. Parameter Used in Dungeon Layout Editor

Jagged-textured blocks indicate placeholder blocks generated to store data for the room
replacement process. These placeholder blocks ensure that rooms generated during replacement will

not overlap, as they are ignored when placing final room assets.

Room Replacement

The API (Figure 4) enables users to assign their pre-designed rooms, which are then randomly placed
according to the layout generated by the API. However, stress testing revealed that each user-designed
room should have a maximum of 120,000 triangles, particularly for dungeons with a high number of
rooms. This limitation is essential because the total number of triangles is effectively multiplied by the
number of rooms in the layout. Considering additional resource demands, such as physics colliders,
adhering to this limit helps prevent high computational usage, which could otherwise lead to

performance issues.

Using the API, pre-designed rooms are assigned to replace each cube in the generated layout.
The API supports assigning multiple variations of rooms to a single room type, allowing for randomized
replacement based on the room type. This process can be repeated with the same layout to produce

different results, enabling users to refine the dungeon until the desired configuration is achieved.
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Room Placement Editor

Recommended Triangles per Room: 120k

Normal Roo

Normal Ro

all Thickr
Height

Replace Room

Figure 4. Parameter Used in Room Placement Editor

Saving the Dungeon

The generated dungeon can be saved as a prefab by clicking the Save Dungeon button. This action saves
the current dungeon to the Dungeon folder, located at the path: Assets/Dungeon. Once saved, users can
export the dungeon or incorporate it into a new scene within their project. This functionality allows

seamless integration of the generated dungeon into any custom project or scene.

Results

Dungeon Layout Configuration
Table 4 shows the configuration for the dungeon layout, and Figure 5 displays the output under the

parameter input in Table 4.

Table 4. Configuration for dungeon layout.

Test case  Dungeon Layout Type maxRooms minChain maxChain stairsProb
1 Large Dungeon 50 6 12 0.05

2 Small Dungeon 10 2 3 0.05

3 Vertical Dungeon 50 1 2 0.9

4 Single-Floor Dungeon 50 5 8 0

5 One-Way Dungeon 50 50 10 0

6 Consistent Shape Dungeon 50 5 6 0

7 Diverse Shape Dungeon 50 5 8 0

The dungeon layouts generated using the proposed API are visually represented with colour-
coded blocks to distinguish room types: white blocks for normal rooms, green for starting rooms, red
for end rooms, and blue for stairs. This intuitive representation provides a clear overview of the dungeon

structure, aiding in the identification of room types within the layout. The Large Dungeon Configuration
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(Figures 5a and 5b) demonstrates a high-density layout with diverse room connections across multiple
floors, achieved using a moderate stairsProb setting to enable vertical progression. For the Multi-Floor
Small Dungeon Layout (Figures 7c and 7d), a stairsProb of 0.05 generates staircases for multi-floor
layouts, whereas a stairsProb of O restricts the layout to a single floor. The Vertical Dungeon
Configuration (Figures Se, 5f, and 5g) emphasizes intricate room connections across multiple floors
with a high stairsProb value, promoting vertical exploration. In contrast, the Single-Floor Dungeon
Configuration (Figures 5h and 5i) features a densely connected layout on a single floor due to a
stairsProb of 0. The One-Way Dungeon Configuration (Figures 5j and 5k) limits backtracking by setting
the minChain parameter higher than maxChain, resulting in linear room connections. The API is
implemented in a way where minChain takes precedence over maxChain, and since users have the
ability to input values for both minChain and maxChain, the API would essentially generate the layout
that ignores maxChain completely if the minChain has a higher value than maxChain. Combined with
setting the maxRoom to be the same or lower than minChain, it would guarantee the maximum number
of rooms is reached once the first chain of rooms are generated, resulting in a one way dungeon. The
Consistent-Shaped Chain Dungeon Configuration (Figures 51 and 7m) achieves minimal variation in
room connections by maintaining a small gap between minChain and maxChain, creating a high-density
layout. Lastly, the Diverse-Shaped Chain Dungeon Configuration (Figures 50 and 5p) produces varied
layouts with unique dungeon shapes by setting significant differences between minChain and

maxChain, resulting in diverse room connection patterns.
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Figure 5. The 15 Screenshots from 7 Test Cases of Dungeon Output Generated using the API



Room Placement Configuration
Room placement allows the customization of the room prefab according to the preference of the game
developer. From Table 5, Singular type room placements are the room that assigns only one room prefab

for each type of room, while multiple type room placements.

Table 5. Room placement configuration

Test case Room Placement Type Normal Room Stair Room End Room
8 Singular Type Room Placements 1 1 1
9 Multiple Type Room Placements 3 1 2

Singular Type Room Placements (Figure 6a) assign only one room prefab for each type of

room. Multiple Type Room Placements (Figure 6b) assign multiple rooms for each type of room.

(@
Figure 6. Room Placement Configuration from 3 Test Cases

Chain Placement Configuration
Table 6 chain placement configuration. Min chains represent the minimum number of rooms to be
placed in a chain while max chain represents the maximum number of rooms that can be placed in a

chain.

Table 6. Chain Placement Configuration from 3 test cases

Test case  Room Placement Type Max Room Min Chain Max Chain Room Size Stairs Probability
10 Min and Max Chain 50 1 1 2 0
Room Placements
11 Same Max Chain and 50 20 20 2 0
Min Chain Placements
12 Same Max Chain and 50 5 5 2 0
Min Chain Placements
13 All Max Placements 50 50 50 20 1

In the Min and Max Chain Room Placements configuration (Figure 7a), when both the
MinChain and MaxChain parameters are set to 1, the dungeon will generate only one additional room,
even if the MaxRoom parameter is set to 50. Occasionally, an end room may appear in this extra room

due to the random placement logic.
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For the Same Max Chain and Min Chain Placements configuration (Figures 7b and 7¢), when
the MaxChain and MinChain parameters are equal, the resulting dungeon layout is relatively linear. For
instance, setting both MaxChain and MinChain to 20 produces a straight dungeon with minimal

branching.

In the All Max Placements configuration (Figure 7d), setting all parameters to their maximum
values creates a significantly larger and more complex dungeon layout. The entire model scales up, and

the layout includes additional staircases, leading to a more intricate multi-floor structure.

Generate Layout

(b)

(d)

Figure 7. Min and Max Chain Room Placement Configuration
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After replacing the placeholder blocks with pre-designed room prefabs, the dungeon generation
is complete. Figure 8 showcases screenshots of the completed dungeon, including both indoor and

outdoor environments, illustrating the transformation after room replacement.

(@ (b)

TR

(d)

Figure 8. Completed Dungeon

Performance Test Results
A performance test is conducted with the PC requirements below to identify the benchmark of the APIL.
Below are the screenshots of the generated environment, indoor and outdoor, after being replaced with

prefabs. The performance test is conducted using the gaming laptop with the following specifications.

e CPU -AMD Ryzen 7 4800H with Radeon Graphics 2.90 GHz Base Speed
e Memory 16.0GB with 3200 MHz

e GPU -NVIDIA GeForce GTX 1650Ti

e AMD Radeon ™ Graphics
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Large dungeon’s generation performance is being captured using Microsoft Game Performance
software. The duration of the recorded footage was 1 minute. Table 7 shows the summary of the

performance metric together with average value.

Table 7. Summary of the performance metric

Metric Average Value

CPU usage (%) 27.642

GPU usage (%) 359189

Memory usage (%) 47.5926

VRAM (%) 14.1111

Framerate (FPS) 135.7407 (Peak value 144)

The average value of CPU usage at around 28% indicates that the API is not demanding and
stable on the processor. Users can run additional background processes when using this APL
Meanwhile, GPU usage around 36% indicates a moderate graphics load, with some peak values. This
shows that certain parts of the room graphics are more high-consumption in GPU. Overall, the moderate
graphic load indicates that the system can remain cool with the low risk of thermal throttling. As for the
RAM usage at 47.59% and VRAM suggests that the API is moderate but below the threshold of graphic
bottleneck. This indicates that the algorithm implementation is optimized for memory efficiency. High
average fps at 135.74 with the peak value 144 suggests that the API is highly performant, rendering
frames above the common standard of 60 fps, indicating smooth visuals and responsiveness. The FPS
values are consistent over the time, suggesting that the application runs smoothly without significant
frame drops. Users may expect a visually smooth gaming experience with minimum stuttering. In
overall, the API performs efficiently across all metrics. However, it is suggested that the application

runs on a mid-range hardware PC so that it leaves room for other applications to run concurrently.

Figure 9 to figure 11 shows the performance of CPU usage capture in 60 seconds of interval

over the time.

CPU Usage Over the Time (%)
B Dscconds [ %0 scconds [ 60 seconds = Average GPU Usage (%]

&0

CPU Usage
1]

Figure 9. Average CPU Usage over Time
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Figure 10. Average GPU Usage over Time

Peak (FPS) vs. Average Frame Per Seconds (FPS)
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Figure 11. Peak Frame Per Seconds (FPS) vs Average Frame Per Seconds (FPS)

Conclusion

Recursive Backtracking has been thoroughly explored in this research to determine its implementation
in an API designed to procedurally generate 3D room-based dungeons. This approach allows game
developers to create dynamic, replayable content that enhances player engagement. By integrating
customizable parameters, the API provides developers with the flexibility to tailor dungeon layouts to
suit diverse game genres, ensuring that each dungeon is functional, distinct, and engaging. This level
of adaptability empowers developers to optimize gameplay experiences while maintaining creative

control over design aesthetics.
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However, several limitations were identified during testing. While recursive backtracking
ensures connectivity between rooms, it can lead to uniform layouts, particularly when using narrow
minChain and maxChain ranges. This uniformity may limit aesthetic variability, potentially affecting
the uniqueness of dungeon designs. Additionally, with complex configurations or high maxRoom
settings, computational load increases significantly. To maintain performance, it is recommended that
the triangle count for the 3D models remains below 120,000. Furthermore, random room placements
can sometimes result in illogical layouts that detract from the overall coherence of the level design. To
address this, additional constraints, such as thematic grouping or logical path progression, should be

applied to ensure that layouts are both coherent and purposeful.

Looking forward, as technology continues to advance; the scale and complexity of video games
will expand beyond what was previously imaginable. Procedural generation will play an increasingly
vital role in enabling developers to create expansive, dynamic, and engaging content efficiently. By
automating repetitive design tasks, developers can allocate more time to refining gameplay mechanics,

narrative depth, and artistic elements.

To further enhance procedural generation, the integration of machine learning and artificial
intelligence holds immense potential. These technologies can enable adaptive dungeon designs that
learn from player behaviour and preferences, creating more personalized and immersive experiences.
For instance, Al-driven algorithms could analyse gameplay data to dynamically adjust dungeon
difficulty or suggest thematic elements that resonate with specific audiences. Developers are
encouraged to explore hybrid approaches that combine recursive backtracking with other algorithms,
such as cellular automata or graph-based methods, to diversify procedural outcomes and overcome

current limitations.

In conclusion, while recursive backtracking offers a robust foundation for procedural dungeon
generation, continued research and iterative refinement are essential to unlock its full potential. By
addressing identified limitations and leveraging emerging technologies, game developers can create
richer, more versatile procedural systems that elevate player experiences and set new standards in game

design.
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